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BOOTSTRAP METHODS FOR LONG-RANGE DEPENDENCE: 

MONTE CARLO EVIDENCE 
 

Margherita Gerolimetto, Stefano Magrini 

 

 

 

 

1. Introduction 

 

Bootstrap methods (Efron, 1979) are a computer intensive approach, based on 

resampling, to statistical inference issues without any statistical assumption on the 

underlying data generating process. The bootstrap is often adopted because it has 

much better performance than the conventional approaches (first order 

asymptotics) and it provides empirical and efficient inference for complicated 

problems. However, bootstrap methods cannot be equally applicable to all random 

processes.  

In general, for data that are not independent identically distributed (iid), 

modifications of the original bootstrap set-up have been put forward in order to be 

able to resample without ignoring the dependence structure. For time series data, 

among the most common proposals are the block-bootstrap by Künsch (1989) that 

follows a “data-block” mechanism and the sieve bootstrap by Bühlman (1997) that 

shares the principle of data transformation. Both methods are time domain-based 

and have been developed for weakly dependent time series data (e.g. from short 

memory ARMA models) and. In a parallel line of research, there are also proposals 

in the frequency domain; in particular, Dahlhaus and Janas (1996) in their seminal 

paper established a bootstrap method for ratio statistics in case of weakly 

dependent data, where the Fourier transform is adopted in order to weaken the 

dependence structure. 

In the last decades there has been an increasing interest in strongly dependent 

(or long-range dependent) time series processes, that can be in general categorized 

as those processes whose autocovariance decays slowly, in contrast to weakly 

dependent (or short-range dependent) processes whose covariance decay is fast. 

Statistical issues between strongly and weakly dependent data change dramatically 

and, unsurprisingly given the high persistence implied by a slowly decaying 

autocovariance, the use of resampling methods is more complicated for highly 

persistent data. The degree of complexity increases even more in case of the 

dependence structure is not just highly persistent but actually nonstationary. As we 
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will see in the following sections, this will require a specific additional step of first 

order differencing of the time series. 

The aim of this work is two-fold. On the one hand, we study via Monte Carlo 

simulations the performance of block bootstrap and sieve bootstrap methods, 

originally developed for weakly dependent time series, in case of strongly 

dependent time series, both stationary and nonstationary. On the other hand, we 

propose an approach to improve the performance of those methods in case of 

nonstationarity and we will show its finite sample performance via Monte Carlo.  

The strongly dependent data generating processes we consider is long memory 

processes, in particular FARIMA(p,d,q). For these processes, in their stationary 

version (|d|<1/2), in literature there are contributes where it has been extended the 

validity of the block bootstrap (Kim and Nordman, 2011) and sieve bootstrap 

(Poskitt, 2008).  To the best of our knowledge, what happens in the nonstationarity 

case (d>1/2) is not clear yet and in this paper we intend to make a move in this 

direction by investigating the effective performance of these methods for data 

generating processes that are not just strongly dependent, but non-stationary. 

Results show that the performance of these bootstrap methods worsens with the 

increase of the persistence, however it improves if the bootstrap algorithms are 

augmented with the additional step depicted in this paper.  

The structure of the paper is as follows. In the second section, we provide 

details on the long memory. In the third section, we describe the bootstrap methods 

under examination. In the fourth section, we present our proposal of a modification 

of the bootstrap algorithms to handle nonstationarity. In the fifth section, we 

present our Monte Carlo experiments and some conclusions. 

 

 

2. Long-range dependence 

 

A linear stationary process {𝑋𝑡} with mean E(Xt) = µ is defined as  

𝑋𝑡 = 𝜇 + ∑ 𝑏𝑗𝑗∈𝑍 𝜖𝑡−𝑗 (1) 

  where {𝜖𝑡} are i.i.d. innovations with 𝐸(𝜖𝑡) = 0 and 𝐸(𝜖𝑡
2) < ∞, ∑ 𝑏𝑗

2 < ∞𝑗∈𝑍 . 

The process {𝑋𝑡}  is characterized by long-range dependence (LRD) if the 

autocovariance function 𝑟(𝑘) = 𝐶𝑜𝑣(𝑋0, 𝑋𝑘) satisfies the following slow decay 

condition:  

𝑟(𝑘)~𝜎2𝑘−𝜃, 𝑘 → ∞ (2) 
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      for some 𝜃 ∈ (0,1) and 𝜎2 > 0. If 𝜃 = 1, the process is characterized by short-

range dependence (SRD).  Another condition for the process {𝑋𝑡} to be LRD is that 

the partial sums of the autocovariances ∑ |𝑟(𝑘)| = 𝑂(𝑛1−𝜃)∞
𝑘=1  diverges as 𝑛 → ∞ 

(Robinson, 1995). On the other hand, for short-range dependent time series the 

autocovariance decay rapidly to 0 as 𝑘 → ∞, so that ∑ |𝑟(𝑘)|∞
𝑘=1 < ∞. 

Since in this paper we consider inference about the sample mean 𝑋̅𝑛 =
𝑛−1 ∑ 𝑋𝑡

𝑛
𝑡=1 , we need to characterize the LRD property in terms of the behavior of 

the sample variance of the sample mean. If we denote 𝜎𝑛,𝜃
2 = 𝑛𝜃𝑣𝑎𝑟(𝑋̅𝑛), the slow 

decay condition implies that  

lim
𝑛→∞

𝜎𝑛,𝜃
2 = 𝜎𝑛,∞

2 > 0  (3)  

holds for a constant 𝜎𝑛,∞
2 , depending on 𝜃 ∈ (0,1). The implication behind (3) 

is important as it means that the sample variance estimator of the sample mean, 

𝑣𝑎𝑟(𝑋̅𝑛), decays under LRD at a slower rate  𝑂(𝑛−𝜃) as 𝑛 → ∞ than the usual 

𝑂(𝑛−1) under SRD (that indeed it is obtained if 𝜃 = 1). 

So, for a linear process with LRD, if condition (3) holds, we have the normal 

limit for the scaled sample mean (Davidov, 1970)  

𝑛𝜃/2(𝑋̅𝑛 − 𝜇)
𝑑
→ 𝑁(0, 𝜎𝑛,∞

2 )   as  𝑛 → ∞ (4) 

In this paper, we will focus in particular on the class of long memory 

FARIMA(p,d,q) models  

𝜙(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜇 + 𝜓(𝐵)𝜖𝑡 (5) 

where {𝜖𝑡} are white noise, as above, B is the lag operator and the long memory 

parameter d is 𝑑 =
1−𝜃

2
. So, if 𝜃 = 1, we have that 𝑑 = 0, i.e. ARMA(p,q) models. 

Stationarity holds if 𝑑 ∈ (−
1

2
,

1

2
). The long memory parameter d can be estimated 

in a variety of ways, here we will adopt two well-known methods: the GHP method 

(Gewecke and Porter-Hudack, 1983) and Whittle method (Fox and Taqqu, 1986; 

Dahlhaus, 1989). 

 

3. Bootstrap for time series: an overview 

 

The bootstrap is a method to estimate the distribution of an estimator or a test 

statistic by resampling one's data. Under iid conditions, the bootstrap provides 
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approximations that are at least as accurate first order asymptotics. Often the 

bootstrap provides approximations that are even more accurate, especially when 

the sample size is not large 

When data are not iid, as in time series case, the bootstrap should be revisited in 

order to preserve the dependence structure in the data generating process (DGP). In 

the next subsections, we revise two methods developed with that purpose. 

 

3.1. Block Bootstrap 

The block bootstrap (Künsch, 1989) is based on the principle of capturing or 

preserving the dependence structure of the original time series. In practice, it means  

resampling data blocks, consisting of consecutive groups of data points.  

Two types of block bootstrap have been proposed and for both validity has been 

originally proved under short-range dependence. One is the moving block 

bootstrap (MBB), when resampling is done with respect to overlapping blocks 

(Künsch, 1989) the other one (Carlstein, 1986) is when resampling is done with 

respect to non-overlapping blocks (NBB). The following is the algorithm: 

 

1) Given a time series  𝑋𝑡, t =1,...,n, define block size l<n and compute the 

number of blocks for the resampling procedure 𝑏 = [
𝑛

𝑙
] 

2) Construct data blocks (either overlapping, MBB, or not overlapping, NBB) 

3) Generate bootstrap replicates from the data-block set as: 

(a) for a MBB series 𝑋1
∗, … , 𝑋𝑁

∗ , where 𝑁 = 𝑏𝑙, we generate 𝐼1
∗, … , 𝐼𝑏

∗ from 

iid uniform random variables {𝐼1
∗, … , 𝐼𝑛−𝑙+1

∗ } 

(b) for a NBB series 𝑋1
∗, … , 𝑋𝑁

∗ , where 𝑁 = 𝑏𝑙, we generate 𝐼1
∗, … , 𝐼𝑏

∗ from 

iid uniform random variables {𝐼1
∗, … , 𝐼𝑛+𝑙(𝑏−1)

∗ } 

4) Make a MBB/NBB series 𝑋1
∗, … , 𝑋𝑁

∗ , where 𝑁 = 𝑏𝑙 
 

Approximating the distribution of 𝑛𝜃/2(𝑋̅𝑛 − 𝜇) with the bootstrap counterpart 

𝑁𝜃/2(𝑋̅𝑛 − 𝐸∗𝑋̅𝑛
∗ ), that is valid in case of short-range dependence, appears to be a 

natural choice also in case of LRD. However, in this latter case, it is actually wrong 

as pointed out by Künsch (1989) and Lahiri (1993). More recently, Kim and 

Nordman (2011) proved that for long memory time series, the sample mean should 

be inflated by adjustment factor of 𝑏1−𝜃/2 and the distribution of 𝑛𝜃/2(𝑋̅𝑛 − 𝜇) 

will be approximated as follows: 

 

𝑠𝑢𝑝𝑥∈𝑅 |𝑃∗ (𝑏
1

2𝑙
𝜃

2(𝑋̅𝑛
∗ − 𝐸∗𝑋̅𝑛

∗) ≤ 𝑥) − 𝑃 (𝑛
𝜃

2(𝑋̅𝑛 − 𝜇))|
𝑝
→ 0 (6) 
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In other words, the inflating factors ensures that the MBB version 𝑏
1

2𝑙
𝜃

2𝑋̅𝑛
∗  has 

the “right” variance for approximating the distribution of 𝑛𝜃/2𝑋̅𝑛
∗  under LRD (the 

same hold for NBB).1 

Note that the performance of the BB depends on a block choice and optimal 

blocks for variance estimation are shown to decrease as the strength of the 

underlying process increases. Blocks of size 𝑂(𝑛1/2) may be a compromise for use 

in practice. 

 

3.2. Sieve Bootstrap 

The sieve bootstrap (Bühlmann, 1997) approximates a general linear invertible 

process by a finite autoregressive model of order 𝑝 = 𝑝(𝑛), where 𝑝(𝑛) → ∞, then 

it resamples from the approximated autoregression. This method takes up the older 

idea of fitting parametric models first and then resampling from the residuals, but 

instead of considering a fixed finite-dimensional model, an infinite-dimensional, 

non-parametric model is approximated by a sequence of finite-dimensional models. 

This method can be considered non parametric because it is model-free in the class 

of the linear invertible processes.  

The properties of the sieve bootstrap have been rigorously investigated, among 

other, by Kreiss (1992), Paparoditis (1996), Bühlmann (1997), Bickel and 

Bühlmann (1999) who established its asymptotic validity for several statistics 

assuming that the data generating process is an infinite order autoregressive. 

Kapetanios and Psaradakis (2006) and Poskitt (2008) proved that under regularity 

conditions (satisfied by stationary long memory processes) the sieve bootstrap 

provides and asymptotically valid approximation to the distributions of several 

statistics. The following is the algorithm: 

 

1) Given a time series  𝑋𝑡, t =1,...,n, fit an AR(h) model h > 0. Obtain the 

residuals of the AR(h) model and standardize them, denote by 𝜁𝑡 

2) Create a new randomly resampled residuals set, denoted by 𝜁 𝑡

∗
 

3) Generate the bootstrap time series 𝑋𝑡
∗ as 

 

𝑋𝑡
∗ = 𝛼̂1𝑋𝑡−1

∗ + + ⋯ + 𝛼̂ℎ𝑋𝑡−ℎ
∗ + 𝜁 𝑡

∗
 (7) 

4) By repeating the above procedure a number of times B we obtain a 

bootstrap approximation to the distribution of the desired statistic 

 

                                                      
1 We emphasize that (6) holds for stationary long  memory, i.e.  |d|<1/2, the nonstationary area 

(d>1/2) has not been investigated yet. 
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For stationary long memory time series Poskitt (2008) proved that the 

distribution of 𝑛𝜃/2(𝑋̅𝑛 − 𝜇) will be approximated as follows: 

 

𝑠𝑢𝑝𝑥∈𝑅 |𝑃∗ (𝑛
𝜃

2(𝑋̅𝑛
∗ − 𝑋̅𝑛) ≤ 𝑥) − 𝑃 (𝑛

𝜃

2(𝑋̅𝑛 − 𝜇))|
𝑝
→ 0 (8) 

Note that the SB performance depends on the order h of the AR model fitted to 

the data. A reasonable choice is to adopt the Akaike criterion as suggested in 

Bühlmann (1997).  

 

 

4. Bootstrapping nonstationary long memory time series 

 

When, 𝑋𝑡 is nonstationary, i.e. 𝑑 > 1/2, bootstrapping is an even more 

complex issue. Inspired by the literature of bootstrap for unit root-test, the idea we 

propose here is to preliminarily first difference the nonstationary long memory 

time series (Palm et al. 2008), in order to bring it back to the stationary area; then 

we apply the chosen bootstrap to  𝑍𝑡 = Δ𝑋𝑡. This is also in line with Psaradakis 

(2001) and Chang and Park (2003) who proved that applying the sieve bootstrap to 

first difference is a valid bootstrap approach to nonstationary I(1) time series.2 

So, the chosen bootstrap algorithm is augmented by two additional steps, before 

and after the implementation of the bootstrap itself: 

 

[Add 1]: Take the first difference 𝑍𝑡 = Δ𝑋𝑡 

[Boot]: Obtain a bootstrap sample 𝑍𝑡
∗ with the chosen bootstrap 

[Add 2]: Obtain 𝑋𝑡
∗ = 𝑋𝑡−1

∗ + 𝑍𝑡
∗ 

 

By preliminarily differentiate the time series, the conditions required to guarantee 

the validity of the bootstrap are respected. Indeed, the series which is effectively 

bootstrapped is 𝑍𝑡 = Δ𝑋𝑡, whose long memory parameter is 𝑑𝑍 = 𝑑 − 1, will be 

|dz|<1/2, so stationary long memory. 

  

                                                      
2 Palm et al. (2008) also showed that for some data generating processes (not our case), residuals 

from a first order autoregression can lead to an even better performance of the sieve bootstrap in 

terms of asymptotic validity, compared to first difference. 
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5. Monte Carlo experiment 

 

The aim of the experiment is to investigate the performance of block bootstrap 

and sieve bootstrap to obtain confidence intervals for 𝜇 the mean of the process for 

a variety of long memory DPGs, both stationary and nonstationary. The number of 

MC replications is S=5000. Both stationary (d=0.25, 0.45) and nonstationary 

(d=0.65, 0.80) FARIMA models have been considered, in four versions (that 

include or not the short-range components): 

DGP1: FARIMA(1,d,1), 𝜙=0.3, 𝜓=0.4 

DGP2: FARIMA(0,d,1), 𝜓=0.4 

DGP3: FARIMA(1,d,0), 𝜙=0.3 

DGP4: FARIMA(0,d,0)  

A further DGP has been included for benchmarking with the short memory case. 

DGP5: ARMA(1,0,1), 𝜙=0.3, 𝜓=0.4  

The sample size is n =100, 250, 500, innovations are 𝜖𝑡~𝑁(0,1). The 

considered methods are block bootstrap (BB) and sieve bootstrap (SB) both in the 

stationary and revised version for nonstationarity.  

The BB is implemented in the overlapping version, the block length is 𝑙 =

[√𝑛], in line with, for instance Kim and Nordman (2011). The SB is implemented 

using Yule walker estimates, the AR order h is set adopting the Akaike criterion as 

in Bühlmann (1997). B=500 is the number of bootstrap samples. 

 The performance is expressed in terms of empirical coverage of (symmetric) 

bootstrap intervals at 90%: 𝑋̅𝑛
∗ ± 𝑛−𝜃/2𝑞0.90

∗ , where 𝑞0.90
∗  is defined as 

𝑃∗ (𝑏
1

2𝑙
𝜃

2|𝑋̅𝑛
∗ − 𝐸∗𝑋̅𝑛

∗| ≤ 𝑞0.90
∗ ) = 0.9 for the block boostrap  

𝑃∗ (𝑛
𝜃

2|𝑋̅𝑛
∗ − 𝑋̅𝑛| ≤ 𝑞0.90

∗ ) = 09 for the sieve bootstrap  

Note that  𝜃 = 1 − 2𝑑. Bootstrap interval are computed without knowledge on 

d and it is adopted the Whittle or GPH estimate, so that 𝜃 = 1 − 2𝑑̂.  

Results are presented in the following Tables 1, 2, 3. The performance, i.e. the 

empirical coverage, should be read in the sense that the closer it is to 0.90, the 

more satisfactory it the behavior of the bootstrap.  
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Table 1  Empirical coverage of bootstrap confidence intervals at 90% - stationarity. 

DGP 

(𝜙,d, 𝜓) 

Bootstrap 
 

N=100 

𝑑̂𝑤ℎ  𝑑̂𝑔𝑝ℎ 

N=250 

𝑑̂𝑤ℎ 𝑑̂𝑔𝑝ℎ 

N=500 

𝑑̂𝑤ℎ 𝑑̂𝑔𝑝ℎ 

DGP 1, d=0.25 BB 0.648    0.773 0.779    0.756 0.810    0.820 
(0.3, d ,0.4) SB 0.635    0.607 0.788    0.848 0.813    0.884 

DGP 2, d=0.25 BB 0.621    0.735 0.746    0.790 0.800    0.842 

(0.0, d ,0.4) SB 0.632    0.687 0.722    0.854 0.823    0.862 

DGP 3, d=0.25 BB 0.638    0.766 0.745    0.784 0.815    0.822 
(0.3, d ,0.0) SB 0.612    0.683 0.732    0.871 0.821    0.893 

DGP 4, d=0.25 BB 0.786    0.758 0.826    0.789 0.892    0.839 

(0.0, d ,0.0) SB 0.808    0.689 0.851    0.845 0.901    0.883 

DGP 1, d=0.45 BB 0.489    0.594 0.530    0.601 0.569    0.619 

(0.3, d ,0.4) SB 0.565    0.615 0.540    0.628 0.581    0.763 

DGP 2, d=0.45 BB 0.501    0.565 0.527    0.584 0.551    0.604 
(0.0, d ,0.4) SB 0.544    0.581 0.550    0.799 0.561    0.861 

DGP 3, d=0.45 BB 0.523    0.576 0.539    0.598 0.581    0.611 

(0.3, d ,0.0) SB 0.534    0.505 0.547    0.823 0.590    0.857 

DGP 4, d=0.45 BB 0.588    0.566 0.632    0.570 0.670    0.606 

(0.0, d ,0.0) SB 0.649    0.532 0.700    0.815 0.748    0.821 

DPG 5, short mem. BB 0.833 0.843 0.874 

(0.3, 0 ,0.4) SB 0.801 0.822 0.855 

 

Table 1, shows the performance of BB and SB in case of stationary long 

memory. We see that, as expected, the performance improves with the increase of 

n. Not surprisingly it tends to worsen when d=0.45, as a consequence of the 

closeness to the nonstationarity region. There is no large difference between the SB 

and the BB method, however, especially for d=0.45 it seems that the SB performs 

slightly better.  As for the type of  DGP, the presence of short memory components 

in DGP 1-3 slightly affects the performance of the method. Indeed, in case of 

fractional noise, DGP 4, BB and SB perform better, especially if the estimate of d 

is obtained via Whittle method. Nevertheless, the GPH method is still a very good 

option, especially in those case where there is no exact knowledge about the short 

memory components. The short memory DGP (DGP 5) has been included as a 

benchmark, to show how effectively this methods work in case of weak 

dependence, i.e. what they have been created for. The performance is on average 

better, but encouragingly not too far from that of the long memory DGP. 

Table 2 and 3 focus on nonstationary versions of DGPs 1-4. In the table the 

original version of the SB and BB has been coupled with the revised versions (Rev-

BB. Rev-SB) proposed in the previous section. 

  



Rivista Italiana di Economia Demografia e Statistica 13 

 

 

Table 2  Empirical coverage of bootstrap confidence intervals at 90% - nonstationarity 

d=0.65  

DGP 

(𝜙,d, 𝜓) 

Bootstrap 

 

N=100 

𝑑̂𝑤ℎ  𝑑̂𝑔𝑝ℎ 

N=250 

𝑑̂𝑤ℎ 𝑑̂𝑔𝑝ℎ 

N=500 

𝑑̂𝑤ℎ 𝑑̂𝑔𝑝ℎ 

DGP 1, d=0.65 BB 0.499    0.537 0.600    0.622 0.679    0.744 
(0.3, d ,0.4) Rev-BB 0.548    0.638 0.676    0.682 0.700    0.781 

 SB 0.500    0.589 0.619    0.711 0.758    0.806 

 Rev-SB 0.589    0.658 0.700    0.803 0.850    0.886 

DGP 2, d=0.65 BB 0.500    0.578 0.600    0.634 0.659    0.754 

(0.0, d ,0.4) Rev-BB 0.623    0.703 0.639    0.689 0.700    0.980 

 SB 0.526    0.586 0.623    0.708 0.717    0.808 
 Rev-SB 0.684    0.754 0.678    0.779 0.779    0.891 

DGP 3, d=0.65 BB 0.528    0.588 0.598    0.681 0.676    0.671 

(0.3, d ,0.0) Rev-BB 0.589    0.685 0.739    0.709 0.719    0.773 

 SB 0.550    0.595 0.628    0.739 0.709    0.821 
 Rev-SB 0.723    0.644 0.747    0.777 0.801    0.847 

DGP 4, d=0.65 BB 0.686    0.593 0.706    0.601 0.714    0.694 

(0.0, d ,0.0) Rev-BB 0.729    0.637 0.829    0.717 0.841    0.780 
 SB 0.734    0.622 0.801    0.770 0.856    0.807 

 Rev-SB 0.778    0.648 0.852    0.810 0.890    0.880 

 

Table 3  Empirical coverage of bootstrap confidence intervals at 90% - nonstationarity 

d=0.80  

DGP 

(𝜙,d, 𝜓) 

Bootstrap 

 

N=100 

𝑑̂𝑤ℎ  𝑑̂𝑔𝑝ℎ 

N=250 

𝑑̂𝑤ℎ 𝑑̂𝑔𝑝ℎ 

N=500 

𝑑̂𝑤ℎ 𝑑̂𝑔𝑝ℎ 

DGP 1, d=0.80 BB 0.469    0.515 0.584    0.628 0.688    0.744 
(0.3, d ,0.4) Rev-BB 0.539    0.600 0.581    0.678 0.676    0.774 

 SB 0.500    0.523 0.504    0.572 0.605    0.706 

 Rev-SB 0.564    0.617 0.629    0.713 0.717    0.805 

DGP 2, d=0.80 BB 0.477    0.538 0.536    0.604 0.588    0.699 

(0.0, d ,0.4) Rev-BB 0.615    0.674 0.585    0.683 0.677    0.789 

 SB 0.518    0.529 0.512    0.573 0.590    0.620 
 Rev-SB 0.674    0.701 0.658    0.746 0.731   0.818 

DGP 3, d=0.80 BB 0.500    0.515 0.533    0.623 0.595    0.683 

(0.3, d ,0.0) Rev-BB 0.564    0.633 0.617    0.705 0.686    0.747 

 SB 0.529    0.584 0.544    0.632 0.660    0.700 
 Rev-SB 0.660    0.717 0.698    0.761 0.773    0.821 

DGP 4, d=0.80 BB 0.678    0.569 0.663    0.602 0.729    0.701 

(0.0, d ,0.0) Rev-BB 0.724    0.629 0.729    0.667 0.834    0.786 
 SB 0.708    0.607 0.710    0.654 0.800    0.720 

 Rev-SB 0.756    0.676 0.784    0.758 0.876    0.835 

 

By reading Table 2 and 3, also in comparison with Table 1, we see that the 

performance of the BB and SB worsens, the more deeply we enter into the 

nonstationary areas. However, the revised versions (Rev-BB. Rev-SB) improve 

with respect to the unrevised ones, as their performance resembles in magnitude 

order the performance in case of stationary long memory. The improvement is 

more evident for the SB, that was better performing also in the original version. 
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Also in this nonstationary case, both Whittle and GPH are very reasonable tool to 

estimate d. 

Future research lines are to consider the same issues with respect to resampling 

the periodogram ordinates for long memory, also outside the case when the 

analytical expression of the spectral density function is known. 
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. 

SUMMARY 

Bootstrap methods for long-range dependence: Monte Carlo evidence 
 

In this paper we present a review of some well-known bootstrap methods for time series 

data. We concentrate on block bootstrap and sieve bootstrap, whose validity has been 

proved to be extended to stationary long memory time series. 

We will start by reviewing briefly the peculiar features of the bootstrap methods and the 

issues raised in case of long range dependent data; then we present a Monte Carlo 

experiment to compare the performance of the methods for a variety of ARFIMA 

processes. Comments about the finite sample performance of the methods will be provided 

also in light of the established theoretical properties of the methods 
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