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Abstract. Skew Boolean algebras (SBA) and Boolean-like algebras (nBA) are one-pointed
and n-pointed noncommutative generalisation of Boolean algebras, respectively. We show
that any nBA is a cluster of n isomorphic right-handed SBAs, axiomatised here as the variety

of skew star algebras. The variety of skew star algebras is shown to be term equivalent to
the variety of nBAs. We use SBAs in order to develop a general theory of multideals for

nBAs. We also provide a representation theorem for right-handed SBAs in terms of nBAs of
n-partitions.

1. Introduction

Boolean algebras are the main example of a well-behaved double-pointed variety - meaning a
variety V whose type includes two distinct constants 0, 1 in every nontrivial A ∈ V. Since there
are other double-pointed varieties of algebras that have Boolean-like features, in [21, 14] the
notion of Boolean-like algebra (of dimension 2) was introduced as a generalisation of Boolean
algebras to a double-pointed but otherwise arbitrary similarity type. The idea behind this
approach was that a Boolean-like algebra of dimension 2 is an algebra A such that every a ∈ A
is 2-central in the sense of Vaggione [25], meaning that θ(a, 0) and θ(a, 1) are complementary
factor congruences of A. Central elements can be given an equational characterisation through
the ternary operator q satisfying the fundamental properties of the if-then-else connective
of computer science. Algebraic analogues of the if-then-else construction have been studied
extensively in the literature; the best known of these realisations is the ternary discriminator
function t : A3 → A of general algebra [26], defined for all a, b, c ∈ A by t(a, b, c) = c if a = b
and a otherwise. Varieties generated by a class of algebras with a common discriminator term
are called discriminator varieties and are the most successful generalisation of Boolean algebras
to date ([6, Section IV.9]).

It turns out that some important properties of Boolean algebras are shared by n-pointed
algebras whose elements satisfy all the equational conditions of n-central elements through
an operator q of arity n+ 1 satisfying the fundamental properties of a generalised if-then-else
connective. These algebras, and the varieties they form, were termed Boolean-like algebras of
dimension n (nBA, for short) in [5]. Varieties of nBAs have many remarkable properties in
common with the variety of Boolean algebras. In particular, any variety of nBAs with compatible
operations is generated by the nBAs of finite cardinality n. In the pure case (i.e., when the
type includes just the generalised if-then-else q and the n constants e1, . . . , en), there is (up
to isomorphism) a unique nBA n of cardinality n, so that any pure nBA is isomorphic to a
subalgebra of nI , for a suitable set I. Another remarkable property of the 2-element Boolean
algebra is the definability of all finite Boolean functions in terms of the connectives and, or,
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not. This property is inherited by the algebra n: all finite functions on the universe of n are
term-definable, so that the variety of pure nBAs is primal. More generally, a variety of an
arbitrary type with one generator is primal if and only if it is a variety of nBAs.

Lattices and boolean algebras have been generalised in other directions: in the last decades
weakenings of lattices where the meet and join operations may fail to be commutative have
attracted the attention of various researchers. A non-commutative generalisation of lattices,
probably the most interesting and successful, is the concept of skew lattice [16] along with the
related notion of skew Boolean algebra (SBA) (the interested reader is referred to [17, 3, 15] or
[23] for a comprehensive account). Here, a SBA is a skew lattice with zero in the sense of Leech
[16], structurally enriched with an implicative BCK-difference [12] operation. Roughly speaking,
a SBA is a non-commutative analogue of a generalised Boolean algebra. The significance of
SBAs is revealed by a result of Leech [15], stating that any right-handed SBA can be embedded
into some SBA of partial functions. This result has been revisited and further explored in [1]
and [13], showing that any SBA is dual to a sheaf over a locally-compact Boolean space.

SBAs are also closely related to discriminator varieties (see [3, 7] for the one-pointed case
and [21] for the double-pointed one). Seminal results of Bignall and Leech [3] show that every
algebra in a one-pointed discriminator variety can be presented, up to term equivalence, as a
skew Boolean intersection algebra (SBIA) with compatible operations. SBIAs are closely related
to the SBAs of Leech [15]. Every SBIA has a SBA term reduct, but not conversely.

The present paper explores the connection between skew Boolean algebras and Boolean-like
algebras of dimension n. We prove that any nBA A contains a symmetric ∩-skew cluster of right-
handed SBIAs S∩1 (A), . . . , S∩n (A), called its ∩-skew reducts. Interestingly, every permutation σ
of the symmetric group Sn determines a bunch of isomorphisms

S∩1 (A) ∼= S∩σ1(A) . . . S∩n(A) ∼= S∩σn(A)

which shows the inner symmetry of the nBAs. Every nBA has also a skew cluster S1(A), . . . , Sn(A)
of isomorphic right-handed SBAs, called its skew reducts, which are the skew Boolean algebra
reducts of members of the ∩-skew cluster of A. The skew reducts of a nBA are so deeply
correlated that they allow to recover the full structure of the nBA. We introduce a new variety
of algebras, called skew star algebras, equationally axiomatising a bunch of skew Boolean
algebras and their relationships, and we prove that it is term equivalent to the variety of nBAs.
We also provide a representation theorem for right-handed skew Boolean algebras in terms
of nBAs of n-partitions. This result follows on combining Leech’s example [15] showing that
every right-handed skew Boolean algebra can be embedded in an algebra of partial functions
with codomain {1, 2} with the result given in [5] that every nBA is isomorphic to a nBA of
n-partitions.

The notion of ideal plays an important role in order theory and universal algebra. Ideals,
filters and congruences are interdefinable in Boolean algebras. In the case of nBAs, the couple
ideal-filter is replaced by multideals, which are tuples (I1, . . . , In) of disjoint skew Boolean ideals
satisfying some compatibility conditions that extend in a conservative way those of the Boolean
case. We show that there exists a bijective correspondence between multideals and congruences
on nBAs, rephrasing the well known correspondence of the Boolean case. The proof of this
result makes an essential use of the notion of a coordinate, originally defined in [5] and rephrased
here in terms of the operations of the skew reducts. Any element x of a nBA A univocally
determines a n-tuple of elements of the canonical inner Boolean algebra B of A, its coordinates,
codifying x as a “linear combination”. In the Boolean case, there is a bijective correspondence
between maximal ideals and homomorphisms onto 2. In the last section of the paper we show
that every multideal can be extended to an ultramultideal, and that there exists a bijective
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correspondence between ultramultideals and homomorphisms onto n. Moreover, ultramultideals
are proved to be exactly the prime multideals.

2. Preliminaries

The notation and terminology in this paper are pretty standard. For concepts, notations and
results not covered hereafter, the reader is referred to [6, 20] for universal algebra, to [17, 15, 23]
for skew Boolean algebras and to [21, 14, 5] for nBAs.

2.1. Algebras. If τ is an algebraic type, an algebra A of type τ is called a τ -algebra, or simply
an algebra when τ is clear from the context. An algebra is trivial if its carrier set is a singleton
set.

Superscripts that mark the difference between operations and operation symbols will be
dropped whenever the context is sufficient for a disambiguation.

Con(A) is the lattice of all congruences on A, whose bottom and top elements are, respectively,
∆ = {(a, a) : a ∈ A} and ∇ = A×A. Given a, b ∈ A, we write θ(a, b) for the smallest congruence
θ such that (a, b) ∈ θ.

We say that an algebra A is: (i) subdirectly irreducible if the lattice Con(A) has a unique
atom; (ii) simple if Con(A) = {∆,∇}; (iii) directly indecomposable if A is not isomorphic to a
direct product of two nontrivial algebras.

A class V of τ -algebras is a variety (equational class) if it is closed under subalgebras, direct
products and homomorphic images. If K is a class of τ -algebras, the variety V(K) generated by
K is the smallest variety including K. If K = {A} we write V(A) for V({A}).

Following Blok and Pigozzi [4], two elements a, b of an algebra A are said to be residually
distinct if they have distinct images in every non-trivial homomorphic image of A.

We say that a variety V is n-pointed iff it has at least n nullary operators that are distinct in
any nontrivial member of V . Boolean algebras are the main example of a double-pointed variety.

A one-pointed variety V is 0-regular if the congruences of algebras in V are uniquely determined
by their 0-classes. Fichtner [9] has shown that a one-pointed variety is 0-regular if and only if
there exist binary terms d1(x, y), . . . , dn(x, y) satisfying the following two conditions:

• di(x, x) = 0 for every i = 1, . . . , n;
• d1(x, y) = d2(x, y) = · · · = dn(x, y) = 0 ⇒ x = y.

2.1.1. Notations. If A is a set and X ⊆ A, then X denotes the set A \X.
Let n̂ = {1, . . . , n} and q be an operator of arity n+ 1. If d1, . . . , dk is a partition of n̂ and

a, b1 . . . , bk ∈ A, then

(1) q(a, b1/d1, . . . , bk/dk)

denotes q(a, c1, . . . , cn), where for all 1 ≤ i ≤ n, ci = bj iff i ∈ dj . Notice that q(a, b1/d1, . . . , bk/dk)
is well-defined as d1, . . . , dk partition n̂. If dj is a singleton {i}, then we write b/i for b/dj . If
di = n̂ \ dr is the complement of dr, then we may write b/d̄r for b/di. The notation (1) will be
used extensively throughout the paper, mainly to define derived term operations in the context
of nBAs.

2.2. Factor Congruences and Decomposition. Directly indecomposable algebras play an
important role in the characterisation of the structure of a variety of algebras. For example, if
the class of indecomposable algebras in a Church variety (see Section 3.1 and [21]) is universal,
then any algebra in the variety is a weak Boolean product of directly indecomposable algebras.
In this section we summarize the basic ingredients of factorisation: tuples of complementary
factor congruences and decomposition operators (see [20]).
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Definition 2.1. A sequence (φ1, . . . , φn) of congruences on a τ -algebra A is a n-tuple of
complementary factor congruences exactly when:

(1)
⋂

1≤i≤n φi = ∆;

(2) ∀(a1, . . . , an) ∈ An, there is u ∈ A such that aiφi u, for all 1 ≤ i ≤ n.

Such an element u such that aiφi u for every i is unique by Definition 2.1(1).
If (φ1, . . . , φn) is a n-tuple of complementary factor congruences on A, then the function

f : A →
n∏
i=1

A/φi, defined by f(a) = (a/φ1, . . . , a/φn), is an isomorphism. Moreover, ev-

ery factorisation of A in n factors univocally determines a n-tuple of complementary factor
congruences.

A pair (φ1, φ2) of congruences is a pair of complementary factor congruences if and only if
φ1 ∩ φ2 = ∆ and φ1 ◦ φ2 = ∇. The pair (∆,∇) corresponds to the product A ∼= A× 1, where 1
is a trivial algebra; obviously 1 ∼= A/∇ and A ∼= A/∆.

A factor congruence is any congruence which belongs to a pair of complementary factor
congruences. The set of factor congruences of A is not, in general, a sublattice of Con(A).

Notice that, if (φ1, . . . , φn) is a n-tuple of complementary factor congruences, then φi is a
factor congruence for each 1 ≤ i ≤ n, because the pair (φi,

⋂
j 6=i φj) is a pair of complementary

factor congruences.
It is possible to characterise n-tuple of complementary factor congruences in terms of certain

algebra homomorphisms called decomposition operators (see [20, Def. 4.32] for additional details).

Definition 2.2. An n-ary decomposition operator on an algebra A is a function f : An → A
satisfying the following conditions:

D1: f(x, x, . . . , x) = x;
D2: f(f(x11, x12, . . . , x1n), . . . , f(xn1, xn2, . . . , xnn)) = f(x11, . . . , xnn);
D3: f is an algebra homomorphism from An to A:
f(g(x11, x12, . . . , x1k), . . . , g(xn1, xn2, . . . , xnk)) = g(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk)),
for every g ∈ τ of arity k.

There is a bijective correspondence between n-tuples of complementary factor congruences
and n-ary decomposition operators, and thus, between n-ary decomposition operators and
factorisations of an algebra in n factors.

Theorem 2.1. Any n-ary decomposition operator f : An → A on an algebra A induces a
n-tuple of complementary factor congruences φ1, . . . , φn, where each φi ⊆ A×A is defined by:

a φi b iff f(a, . . . , a, b, a, . . . , a) = a (b at position i).

Conversely, any n-tuple φ1, . . . , φn of complementary factor congruences induces a decomposition
operator f on A: f(a1, . . . , an) = u iff ai φi u for all i.

We say that two functions f : Am → A and g : An → A commute (see [20, Definition 4.34]) if

f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) = g(f(x11, . . . , xm1), . . . , f(x1n, . . . , xmn)).

In this case, f is a homomorphism from (A, g)m into (A, g) and g is a homomorphism from
(A, f)n into (A, f).

The following proposition is [20, Exercise 4.38(15)].

Proposition 2.2. Let f and g be an m-ary and an n-ary decomposition operator of an algebra
A. Then f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) is a decomposition operator of A if and only
if f and g commute.
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The variables occurring in f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) may be not all distinct, as
explained in the following proposition.

Proposition 2.3. If f is a n-ary decomposition operator and d1, . . . , dk (k ≥ 2) is a partition
of n̂ = {1, . . . , n}, then the map h, defined by

h(y1, . . . , yk) = f(z1, . . . , zn), where for all 1 ≤ i ≤ n, zi = yj iff i ∈ dj,
is a k-ary decomposition operator.

2.3. Factor Elements. The notion of decomposition operator and of factorisation can some-
times be internalised: some elements of the algebra, the so called factor elements, can embody
all the information codified by a decompostion operator.

Let A be a τ -algebra, where we distinguish a (n+ 1)-ary term operation q.

Definition 2.3. We say that an element e of A is a factor element with respect to q if the n-ary
operation fe : An → A, defined by

fe(a1, . . . , an) = qA(e, a1, . . . , an), for all ai ∈ A,
is a n-ary decomposition operator (that is, fe satisfies identities (D1)-(D3) of Definition 2.2).

An element e of A is a factor element if and only if the tuple of relations (φ1, . . . , φn), defined
by a φi b iff q(e, a, . . . , a, b, a, . . . , a) = a (b at position i), constitute a n-tuple of complementary
factor congruences of A.

By [7, Proposition 3.4] the set of factor elements is closed under the operation q: if
a, b1, . . . , bn ∈ A are factor elements, then q(a, b1, . . . , bn) is also a factor element.

We notice that

• different factor elements may define the same tuple of complementary factor congruences.
• there may exist n-tuples of complementary factor congruences that do not correspond

to any factor element.

In Section 3 we describe a class of algebras, called Church algebras of dimension n, where the
(n+ 1)-ary operator q induces a bijective correspondence between a suitable subset of factor
elements, the so-called n-central elements, and the set of all n-ary decomposition operators.

2.4. Skew Boolean Algebras. We review here some basic definitions and results on skew
lattices [16] and skew Boolean algebras [15].

Definition 2.4. A skew lattice is an algebra A = (A,∨,∧) of type (2, 2), where both ∨ and ∧
are associative, idempotent binary operations, connected by the absorption law: x ∨ (x ∧ y) =
x = x ∧ (x ∨ y); and (y ∧ x) ∨ x = x = (y ∨ x) ∧ x.

The absorption condition is equivalent to the following pair of biconditionals: x ∨ y = y iff
x ∧ y = x; and x ∨ y = x iff x ∧ y = y.

In any skew lattice we define the following relations:

(1) x ≤ y iff x ∧ y = x = y ∧ x.
(2) x �D y iff x ∧ y ∧ x = x.
(3) x �L y iff x ∧ y = x.
(4) x �R y iff y ∧ x = x.

The relation ≤ is a partial ordering, while the relations �D,�L,�R are preorders. The
equivalences D, L and R, respectively induced by �D, �L and �R, are congruences.

A skew lattice is left-handed (right-handed) if L = D (R = D). The following conditions
are equivalent for a skew lattice A: (a) A is right-handed (left-handed); (b) for all a, b ∈ A,
a ∧ b ∧ a = b ∧ a (a ∧ b ∧ a = a ∧ b).

Observe that
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(i) The quotient A/D is the maximal lattice image of A. This is the skew-lattice theoretic
analogue [16, Theorem 1.7] of the well-known Clifford-McLean theorem for bands.

(ii) The algebras A/L and A/R are the maximal right-handed and left-handed images of
A respectively.

(iii) The skew lattice A is the fibered product of its maximal right-handed image A/L
with its maximal left-handed A/R over its maximal lattice image. This result is the
skew-lattice theoretic analogue [16, Theorem 1.15] of the Kimura factorisation theorem
for idempotent semigroups.

In a skew lattice elements commuting under ∨ need not commute under ∧ and vice-versa.
A skew lattice, satisfying x ∧ y = y ∧ x if and only if x ∨ y = y ∨ x for all x and y, is called
symmetric. Symmetric skew lattices form a variety characterised by the following identities (See
[24, Theorem SSL-6]):

x ∨ y ∨ (x ∧ y) = (y ∧ x) ∨ y ∨ x; x ∧ y ∧ (x ∨ y) = (y ∨ x) ∧ y ∧ x.

The two most significant classes of examples, skew lattices of idempotents in rings (see, e.g.,
[16]) and skew Boolean algebras (see [15] and Definition 2.5 below), consist of symmetric skew
lattices.

If we expand skew lattices by a subtraction operation and a constant 0, we get the following
non-commutative variant of Boolean algebras (see [15]).

Definition 2.5. A skew Boolean algebra (SBA, for short) is an algebra A = (A,∨,∧, \, 0) of
type (2, 2, 2, 0) such that:

(S1) its reduct (A,∨,∧) is a skew lattice satisfying
– Normality: x ∧ y ∧ z ∧ x = x ∧ z ∧ y ∧ x;
– Symmetry: x ∧ y = y ∧ x iff x ∨ y = y ∨ x;
– Distributivity: x ∧ (y ∨ z) ∧ x = (x ∧ y ∧ x) ∨ (x ∧ z ∧ x) and x ∨ (y ∧ z) ∨ x =

(x ∨ y ∨ x) ∧ (x ∨ z ∨ x);
(S2) 0 is left and right absorbing w.r.t. skew lattice meet;
(S3) the operation \ satisfies the identities

– (x ∧ y ∧ x) ∨ (x \ y) = x = (x \ y) ∨ (x ∧ y ∧ x);
– x ∧ y ∧ x ∧ (x \ y) = 0 = (x \ y) ∧ x ∧ y ∧ x.

Every SBA is strongly distributive, i.e., it satisfies the identities x∧ (y ∨ z) = (x∧ y)∨ (x∧ z)
and (y ∨ z) ∧ x = (y ∧ x) ∨ (z ∧ x).

It can be seen that, for every a ∈ A, the natural partial order of the subalgebra a∧A∧a = {a∧
b∧a : b ∈ A} = {b : b ≤ a} of A is a Boolean lattice. Indeed, the algebra (a∧A∧a,∨,∧, 0, a,¬),
where ¬b = a \ b for every b ≤ a, is a Boolean algebra with minimum 0 and maximum a.

Notice that

• The normal axiom implies the commutativity of ∧ and ∨ in the interval a ∧A ∧ a.
• Axiom (S2) expresses that 0 is the minimum of the natural partial order on A.
• Axiom (S3) implies that, for every b ∈ a ∧A ∧ a, the element a \ b is the complement

of b in the Boolean lattice a ∧ A ∧ a. We point out here that a \ b is in fact a kind of
relative complement that acts ‘locally’ on subalgebras of the form a ∧A ∧ a.

An element m of a SBA A is maximal if a �D m for every a ∈ A (i.e., a ∧m ∧ a = a, for
every a ∈ A). When they exist, maximal elements form an equivalence class (module D) called
the maximal class. If A is a SBA, then A/D, where D is the Clifford-McLean congruence on A,
is a Boolean algebra iff A has a maximal class. Skew Boolean algebras with a maximal class
thus constitute a very specialised class of skew Boolean algebras. It is known that every skew
Boolean algebra embeds into a skew Boolean algebra with a maximal class.
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A nonempty subset I of a SBA A closed under ∨ is an ideal of A (see [18, Section 4]) if it
satisfies one of the following equivalent conditions:

• a ∈ A, b ∈ I and a � b imply a ∈ I;
• a ∈ A and b ∈ I imply a ∧ b, b ∧ a ∈ I;
• a ∈ A and b ∈ I imply a ∧ b ∧ a ∈ I.

Given a congruence φ on a SBA, the equivalence class 0/φ is an ideal. However, congruences on
a SBA are not in general in 1-1 correspondence with ideals.

2.5. Skew Boolean algebras with intersection. Skew Boolean algebras such that every
finite set of their universe has an infimum w.r.t. the underlying natural partial ordering of the
algebra stand out for their significance. We denote the infimum of a and b w.r.t. the natural
partial order by a ∩ b and refer to the operation ∩ as intersection in order to distinguish it from
the skew lattice meet ∧. It turns out that SBAs with the additional operation ∩ can be given
an equational characterisation provided we include the operation ∩ into the signature.

Definition 2.6. A skew Boolean ∩-algebra (SBIA, for short) is an algebra A = (A;∨,∧,∩, \, 0)
of type (2, 2, 2, 2, 0) such that:
(i) The reduct (A;∨,∧, \, 0) is a SBA and the reduct (A;∩) is a meet semilattice;
(ii) A satisfies the identities x ∩ (x ∧ y ∧ x) = x ∧ y ∧ x and x ∧ (x ∩ y) = x ∩ y = (x ∩ y) ∧ x.

The next theorem by Bignall and Leech [3], which we present in its simplest form, provides a
powerful bridge between the theories of SBAs and pointed discriminator varieties.

Theorem 2.4. The variety of type (3, 0) generated by the class of all one-pointed discriminator
algebras (A; t, 0), where t is the discriminator function on A and 0 is a constant, is term
equivalent to the variety of right handed SBIAs.

2.6. A term equivalence result for skew Boolean algebras. In [7] Cvetko-Vah and the
second author have introduced the variety of semicentral right Church algebras (SRCA) and
have shown that the variety of right-handed SBAs is term equivalent to the variety of SRCAs.
It is worth noticing that, in SRCAs, a single ternary operator q replaces all the binary operators
of SBAs.

An algebra A = (A, q, 0) of type (3, 0) is called a right Church algebra (RCA, for short) if it
satisfies the identity q(0, x, y) = y.

Definition 2.7. Let A = (A, q, 0) be a RCA. An element a ∈ A is called semicentral if it is a
factor element (w.r.t. q) satisfying q(a, a, 0) = a.

Lemma 2.5. [7, Proposition 3.9] Let A = (A, q, 0) be an RCA. Every semicentral element
e ∈ A determines a pair of complementary factor congruences:

φe = {(a, b) : q(e, a, b) = a} and φ̄e = {(a, b) : q(e, a, b) = b}
such that φe = θ(e, 0), the least congruence of A equating e and 0.

Definition 2.8. An algebra A = (A, q, 0) of type (3, 0) is called a semicentral RCA (SRCA,
for short) if every element of A is semicentral.

To help the reader in understanding the term equivalence of SRCAs and right-handed SBAs,
it is perhaps useful to provide an explicit axiomatisation of SRCAs. Such an axiomatisation is
not long:

(1) q(0, x, y) = y;
(2) q(w,w, 0) = w;
(3) q(w, y, y) = y;
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(4) q(w, q(w, x, y), z) = q(w, x, z);
(5) q(w, x, q(w, y, z)) = q(w, x, z);
(6) q(w, q(y1, y2, y3), q(z1, z2, z3)) = q(q(w, y1, z1), q(w, y2, z2), q(w, y3, z3)).

The last five identities equationally formalise that the element w is semicentral.

Theorem 2.6. [7] The variety of right-handed SBAs is term equivalent to the variety of SRCAs.

The proof is based on the following correspondence between the algebraic similarity types of
SBAs and of SRCAs:

q(x, y, z)  (x ∧ y) ∨ (z \ x)
x ∨ y  q(x, x, y)
x ∧ y  q(x, y, 0)
y \ x  q(x, 0, y).

The natural partial order and preorders of a SRCA are the partial order ≤ and the preorders
�D,�L,�R of its corresponding SBA.

Example 1. (see [8, 7]) Let F(X,Y ) be the set of all partial functions from X into Y . The
algebra F = (F(X,Y ), q, 0) is a SRCA, where

• 0 = ∅ is the empty function;
• For all functions f : F → Y , g : G→ Y and h : H → Y (F,G,H ⊆ X),

q(f, g, h) = g|G∩F ∪ h|H∩F .

By Theorem 2.6 F is term equivalent to the right-handed SBA of universe F(X,Y ), whose
operations are defined as follows:

f ∧ g = g|G∩F ; f ∨ g = f ∪ g|G∩F ; g \ f = g|G∩F .

3. Boolean-like algebras of finite dimension

Some important properties of Boolean algebras are shared by n-pointed algebras whose
elements satisfy all the equational conditions of n-central elements through an operator q of
arity n+ 1 satisfying the fundamental properties of a generalised if-then-else connective. These
algebras, and the varieties they form, were termed Boolean-like algebras of dimension n in [5].

3.1. Church algebras of finite dimension. In this section we recall from [5] the notion of
a Church algebra of dimension n. These algebras have n nullary operations e1, . . . , en (n ≥ 2)
and an operation q of arity n+ 1 (a sort of “generalised if-then-else”) satisfying the identities
q(ei, x1, . . . , xn) = xi. The operator q induces, through the so-called n-central elements, a
decomposition of the algebra into n factors.

Definition 3.1. Algebras of type τ , equipped with at least n nullary operations e1, . . . , en
(n ≥ 2) and a term operation q of arity n+ 1 satisfying q(ei, x1, . . . , xn) = xi, are called Church
algebras of dimension n (nCA, for short); nCAs admitting only the (n+ 1)-ary q operator and
the n constants e1, . . . , en are called pure nCAs.

If A is an nCA, then A0 = (A, q, e1, . . . , en) is the pure reduct of A.
Church algebras of dimension 2 were introduced as Church algebras in [19] and studied

in [21]. Examples of Church algebras of dimension 2 are Boolean algebras (with q(x, y, z) =
(x ∧ y) ∨ (¬x ∧ z)) or rings with unit (with q(x, y, z) = xy + z − xz). Next, we present some
examples of Church algebra having dimension greater than 2.
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Example 2. (Semimodules) Let R be a semiring and V be an R-semimodule generated by
a finite set E = {e1, . . . , en}. Then we define an operation q of arity n + 1 as follows (for all
v =

∑n
j=1 vjej and wi =

∑n
j=1 w

i
jej):

q(v,w1, . . . ,wn) =

n∑
i=1

viw
i.

Under this definition, V becomes a nCA. As a concrete example, if B is a Boolean algebra, Bn is a
semimodule (over the Boolean ring B) with the following operations: (a1, . . . , an)+(b1, . . . , bn) =
(a1 ∨ b1, . . . , an ∨ bn) and b(a1, . . . , an) = (b ∧ a1, . . . , b ∧ an). Bn is also called a Boolean vector
space (see [10, 11]).

Example 3. (n-Sets) Let I be a set. A n-subset of I is a sequence (Y1, . . . , Yn) of subsets
Yi of I. We denote by Setn(I) the family of all n-subsets of I. Setn(I) becomes a pure nCA
if we define an (n + 1)-ary operator q and n constants e1, . . . , en as follows, for all n-subsets
yi = (Y i1 , . . . , Y

i
n):

q(y0,y1, . . . ,yn) = (

n⋃
i=1

Y 0
i ∩ Y i1 , . . . ,

n⋃
i=1

Y 0
i ∩ Y in); e1 = (I, ∅, . . . , ∅), . . . , en = (∅, . . . , ∅, I).

In [25], Vaggione introduced the notion of central element to study algebras whose comple-
mentary factor congruences can be replaced by certain elements of their universes. Central
elements coincide with central idempotents in rings with unit and with members of the centre
in ortholattices.

Theorem 3.1. [5] If A is a nCA of type τ and c ∈ A, then the following conditions are
equivalent:

(1) c is a factor element (w.r.t. q) satisfying the identity q(c, e1, . . . , en) = c;
(2) the sequence of congruences (θ(c, e1), . . . , θ(c, en)) is a n-tuple of complementary factor

congruences of A;
(3) for all a1, . . . , an ∈ A, q(c, a1, . . . , an) is the unique element such that

ai θ(c, ei) q(c, a1, . . . , an),

for all 1 ≤ i ≤ n;
(4) The function fc, defined by fc(a1, . . . , an) = q(c, a1, . . . , an) for all a1, . . . , an ∈ A, is a

n-ary decomposition operator on A such that fc(e1, . . . , en) = c.

Definition 3.2. If A is a nCA, then c ∈ A is called n-central if it satisfies one of the equivalent
conditions of Theorem 3.1. A n-central element c is nontrivial if c /∈ {e1, . . . , en}.

Every n-central element c ∈ A induces a decomposition of A as a direct product of the
algebras A/θ(c, ei), for i ≤ n.

The set of all n-central elements of a nCA A is a subalgebra of the pure reduct of A. We
denote by Cen(A) the algebra (Cen(A), q, e1, . . . , en) of all n-central elements of an nCA A.

Factorisations of arbitrary algebras in n factors may be studied in terms of n-central elements
of suitable nCAs of functions, as explained in the following example.

Example 4. Let A be an arbitrary algebra of type τ and F be a set of functions from An into
A, which includes the projections eFi and all constant functions fb (b ∈ A):

(1) eFi (a1, . . . , an) = ai, for every a1, . . . , an ∈ A;
(2) fb(a1, . . . , an) = b, for every a1, . . . , an ∈ A;

and it is closed under the following operations (for all f, hi, gj ∈ F and all a1, . . . , an ∈ A):
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(3) qF(f, g1 . . . , gn)(a1, . . . , an) = f(g1(a1, . . . , an) . . . , gn(a1, . . . , an)).
(4) σF(h1, . . . , hk)(a1, . . . , an) = σA(h1(a1, . . . , an), . . . , hk(a1, . . . , an)), for every σ ∈ τ of

arity k.

The algebra F = (F, σF, qF, eF1 , . . . , e
F
n )σ∈τ is a nCA. It is possible to prove that a function

f ∈ F is a n-central element of F if and only if f is a n-ary decomposition operator on the
algebra A commuting (see Section 2.2) with every function g ∈ F . The reader may consult [22]
for the case n = 2.

3.2. Boolean-like algebras. Boolean algebras are Church algebras of dimension 2 all of whose
elements are 2-central. It turns out that, among the n-dimensional Church algebras, those
algebras all of whose elements are n-central inherit many of the remarkable properties that
distinguish Boolean algebras. We now recall from [5] the notion of Boolean-like algebras of
dimension n, the main subject of study of this paper.

In [5] nBAs are studied in the general case of an arbitrary similarity type. Here, we restrict
ourselves to consider the pure case, where q is the unique operator of the algebra.

Definition 3.3. A pure nCA A = (A, q, e1, . . . , en) is called a Boolean-like algebra of dimension
n (nBA, for short) if every element of A is n-central.

The class of all nBAs is a variety axiomatised by the following identities:

(B0) q(ei, x1, . . . , xn) = xi (i = 1, . . . , n).
(B1) q(y, x, . . . , x) = x.
(B2) q(y, q(y, x11, x12, . . . , x1n), . . . , q(y, xn1, xn2, . . . , xnn)) = q(y, x11, . . . , xnn).
(B3) q(y, q(x10, . . . , x1n), . . . , q(xn0, . . . , xnn)) = q(q(y, x10, . . . , xn0), . . . , q(y, x1n, . . . , xnn)).
(B4) q(y, e1, . . . , en) = y.

In the following lemma we show that every nontrivial nBA has at least n elements.

Lemma 3.2. The constants ei (1 ≤ i ≤ n) are pairwise residually distinct in every nontrivial
nBA.

Proof. Let A be a non trivial nBA such that ek = ej for some k 6= j. If a1, . . . , an ∈ A with
ak 6= aj , then ak = q(ek, a1, . . . , an) = q(ej , a1, . . . , an) = aj , providing a contradiction. �

Boolean-like algebras of dimension 2 were introduced in [21] with the name “Boolean-like
algebras”. Inter alia, it was shown in that paper that the variety of Boolean-like algebras of
dimension 2 is term-equivalent to the variety of Boolean algebras.

Example 5. The algebra Cen(A) of all n-central elements of a nCA A of type τ is a canonical
example of nBA (see the remark after Definition 3.2).

Example 6. The algebra n = ({e1, . . . , en}, qn, en1 , . . . , enn), where qn(ei, x1, . . . , xn) = xi for
every i ≤ n, is a nBA.

Example 7. (n-Partitions) Let I be a set. An n-partition of I is a n-subset (Y 1, . . . , Y n) of I
such that

⋃n
i=1 Y

i = I and Y i ∩ Y j = ∅ for all i 6= j. The set of n-partitions of I is closed under
the q-operator defined in Example 3 and constitutes the algebra of all n-central elements of the
pure nCA Setn(I) of all n-subsets of I. Notice that the algebra of n-partitions of I, denoted
by Parn(I), can be proved isomorphic to the nBA nI (the Cartesian product of I copies of the
algebra n).

The variety BA of Boolean algebras is semisimple as every A ∈ BA is subdirectly embeddable
into a power of the 2-element Boolean algebra, which is the only subdirectly irreducible member
of BA. This property finds an analogue in the structure theory of nBAs.
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Theorem 3.3. [5] The algebra n is the unique subdirectly irreducible nBA and it generates the
variety of nBAs.

The next corollary shows that, for any n ≥ 2, the nBA n plays a role analogous to the
Boolean algebra 2 of truth values.

Corollary 3.4. Every nBA A is isomorphic to a subdirect power of nI , for some set I.

A subalgebra of the nBA Parn(I) of the n-partitions on a set I, defined in Example 7, is
called a field of n-partitions on I. The Stone representation theorem for nBAs follows.

Corollary 3.5. Any nBA is isomorphic to a field of n-partitions on a suitable set I.

One of the most remarkable properties of the 2-element Boolean algebra, called primality in
universal algebra [6, Sec. 7 in Chap. IV], is the definability of all finite Boolean functions in
terms of the connectives and, or, not. This property is inherited by nBAs. An algebra of
cardinality n is primal if and only if it admits the nBA n as subreduct.

Definition 3.4. Let A be a nontrivial algebra. A is primal if it is of finite cardinality and,
for every function f : Ak → A (k ≥ 0), there is a k-ary term t such that for all a1, . . . , ak ∈ A,
f(a1, . . . , ak) = tA(a1, . . . , ak).

A variety V is primal if V = V(A) for a primal algebra A.

Theorem 3.6. [5]

(i) The variety nBA = V(n) is primal;
(ii) Let A be a finite algebra of cardinality n. Then A is primal if and only if it admits the

algebra n as subreduct.

We would like to point out here that when an algebra A is primal, the choice of fundamental
operations is a matter of taste and convenience (since any set of functionally complete operations
would serve), and hence is typically driven by applications.

4. Skew Boolean algebras and nBAs

In this section we prove that any nBA A contains a symmetric ∩-skew cluster of right-
handed SBIAs S∩1 (A), . . . , S∩n (A). The algebra S∩i (A), called the ∩-skew i-reduct of A, has
ei as a bottom element, and the other constants e1, . . . , ei−1, ei+1, . . . , en as maximal elements.
Rather interestingly, every permutation σ of the symmetric group Sn determines a bunch of
isomorphisms

S∩1 (A) ∼= S∩σ1(A) . . . S∩n(A) ∼= S∩σn(A)

which shows the inner symmetry of the nBAs. Every nBA has also a skew cluster S1(A), . . . , Sn(A)
of isomorphic right-handed SBAs, which are the skew Boolean algebra reducts of members of
the ∩-skew cluster of A. We conclude the section with a general representation theorem for
right-handed SBAs in terms of nBAs of n-partitions.

4.1. The skew reducts of a nBA. In [7] it is shown that the variety of SBAs is term equivalent
to the variety of SRCAs (see Section 2.6), whose type contains only a ternary operator and a
nullary operator. Here we use the n+ 1-ary operator q of a nBA A to define ternary operators
t1, . . . , tn such that the reducts (A, ti, ei) are isomorphic SRCAs. Their term equivalent SBAs
are all isomorphic reducts of A, too. We also show that these isomorphic SBAs are in their turn
reducts of isomorphic SBIAs.

For every i ∈ n̂, we denote by ī the set n̂ \ {i}.
In the following definition we use the (n+ 1)-ary operator q of nBAs to introduce some term

operations needed to define the above described reducts of nBAs.
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Definition 4.1. Let A = (A, q, e1, . . . , en) be a nBA. Given 1 ≤ i ≤ n, we define the following
term operations:

• ti(x, y, z) = q(x, y/̄i, z/i);
• x ∧i y = ti(x, y, ei);
• x ∨i y = ti(x, x, y);
• x \i y = ti(y, ei, x);
• di(x, y) = q(x, t1(y, x ∨i y, ei), t2(y, x ∨i y, ei), . . . , tn(y, x ∨i y, ei));
• x ∩i y = q(x, t1(y, ei, x), t2(y, ei, x), . . . , tn(y, ei, x)).

We now define three reducts of a nBA A, for each 1 ≤ i ≤ n.

Definition 4.2. Let A be a nBA. We define the following three reducts of A:

(i) The right Church i-reduct Ri(A) = (A, ti, ei).
(ii) The skew i-reduct Si(A) = (A,∧i,∨i, \i, ei).
(iii) The ∩-skew i-reduct S∩i (A) = (A,∧i,∨i, \i, ei,∩i).

In the remaining part of this subsection we will prove that Ri(A) is a SRCA, S∩i (A) is a
ei-regular (w.r.t. di) right-handed SBIA, and Si(A) is a right-handed SBA.

In the following lemmas we prove some properties of the term operations introduced in
Definition 4.1.

Lemma 4.1. The term operations of Definition 4.1 satisfy the following conditions when they
are interpreted in the generator n of the variety nBA:

ti(a, b, c) =

{
c if a = ei

b if a 6= ei
; a ∧i b =

{
ei if a = ei

b if a 6= ei
; a ∨i b =

{
b if a = ei

a if a 6= ei
;

a \i b =

{
b if a = ei

ei if a 6= ei
; di(a, b) =

{
ei if a = b

a ∨i b if a 6= b
; a ∩i b =

{
a if a = b

ei if a 6= b
.

Proof. The proof is trivial for ti,∧i,∨i, \i. We now prove the relation for di(a, b). We distinguish
three cases.

• (a = b): di(a, a) = q(a, t1(a, a∨i a, ei), . . . , tn(a, a∨i a, ei)) =(B2) q(a, ei, . . . , ei) =(B1) ei.
• (a = ek and a 6= b): di(ek, b) = q(ek, t1(b, ek ∨i b, ei), . . . , tn(b, ek ∨i b, ei)) = tk(b, ek ∨i
b, ei) =(b6=ek) ek ∨i b = a ∨i b.

By definition of ∩i it is trivial to prove a ∩i a = a. If a = ek 6= b, then we have: a ∩i b =
q(a, t1(b, ei, a), t2(b, ei, a), . . . , tn(b, ei, a)) =(a=ek) tk(b, ei, a) =(b 6=ek) ei. �

Lemma 4.2. The following identities hold in every nBA:

(1) ti(ei, x, y) = y and ti(ej , x, y) = x, for every j 6= i;

(2)
q(x, y1, . . . , yn) = t1(x, t2(x, t3(x, . . . tn(x, z, yn) . . . , y3), y2), y1)

= t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1).
(3) ∧i and ∨i are idempotents;
(4) di(x, x) = ei and x ∩i x = x;
(5) ti(di(x, y), x, y) = x and ti(x ∩i y, y, x) = x;
(6) (A,∩i, ei) is a meet semilattice with bottom ei;
(7) x ∩i (x ∧i y ∧i x) = x ∧i y ∧i x and x ∧i (x ∩i y) = x ∩i y = (x ∩i y) ∧i x;
(8) di(x, y) = (x ∨i y) \i (x ∩i y);
(9) x ∩i y = (x ∧i y) \i di(x, y).
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Proof. The identities are checked in the generator n of the variety nBA.
(2) First we have: t1(ei, t2(ei, t3(ei, . . . tn(ei, c, bn) . . . , b3), b2), b1) =

t2(ei, t3(ei, . . . tn(ei, c, bn) . . . , b3), b2) = · · · = ti(ei, . . . tn(ei, c, bn) . . . , bi) = bi = q(ei, b1, . . . , bn).
If i 6= n, a similar computation gives t1(ei, t2(ei, t3(ei, . . . tn−1(ei, bn, bn−1) . . . , b3), b2), b1) = bi.
If i = n, then t1(en, t2(en, t3(en, . . . tn−1(en, bn, bn−1) . . . , b3), b2), b1) = · · · = tn−1(en, bn, bn−1) =
bn.

(3)-(4) Trivial by Lemma 4.1.
(5) If a = b, then the conclusion is trivial by (4). Let now a 6= b.

• ti(a ∩i b, b, a) =L.4.1 ti(ei, b, a) = a.
• If a = ei then ti(di(ei, b), ei, b) =L.4.1 ti(b, ei, b) =(b 6=ei) ei = a.
• If a 6= ei, then ti(di(a, b), a, b) =L.4.1 ti(a, a, b) =(a6=ei) a.

(8) (a∨i b)\i (a∩i b) = ti(a∩i b, ei, a∨i b) =

(
ti(a, ei, a) = ei if a = b
ti(ei, ei, a ∨i b) = a ∨i b if a 6= b

)
= di(a, y).

(9) First we have: (a ∧i a) \i di(a, a) = ti(ei, ei, a) = a = a ∩i a.
If a 6= b, then (a∧i b)\i di(a, b) = ti(di(a, b), ei, a∧i b) = ti(a∨i b, ei, a∧i b) = ei = a∩i b, because
by Lemma 4.1, a ∨i b 6= ei if a 6= b.

(6) and (7) can be similarly checked in the generator n of the variety nBA by using Lemma
4.1. �

Lemma 4.3. Let A be a nBA, and a, b ∈ A. Then we have:

(i) ti(a,−,−) is a 2-ary decomposition operator on A.
(ii) di(a, b) = ei ⇒ a = b.

Proof. (i) The binary operator ti(a,−,−) is a decomposition operator, because it is obtained by
the n-ary decomposition operator q(a,−, . . . ,−) equating some of its coordinates (see [20] and
Proposition 2.3).

(ii) Let di(a, b) = ei. Then a =L.4.2(5) ti(di(a, b), a, b) = ti(ei, a, b) = b. �

We now characterise the reducts Ri(A), Si(A) and S∩i (A) of a nBA A (see Definition 4.2).

Proposition 4.4. Let A be a nBA. Then the following conditions hold:

(i) The right Church i-reduct Ri(A) = (A, ti, ei) of A is a SRCA;
(ii) The skew i-reduct Si(A) = (A,∧i,∨i, \i, ei) of A is a right-handed SBA.

Proof. By Lemma 4.2(3) and Lemma4.3(i) every element of A is a factor element (w.r.t. ti)
that is ∧i-idempotent. Then every element of A is semicentral, so that Ri(A) is a SRCA. By
Theorem 2.6 the skew i-reduct Si(A) is a right-handed SBA. �

Hereafter, we denote by �iD,�iL,�iR and ≤i the natural preorders and order of the SBA
Si(A) (see Section 2.4). Since Si(A) is right-handed �iD and �iR coincide.

Proposition 4.5. The elements e1, . . . , ei−1, ei+1, . . . , en are maximal elements of Si(A).

Proof. We show the maximality of the elements e1, . . . , ei−1, ei+1, . . . , en with respect to the
natural preorder �iD of the SBA Si(A), defined by a �iD b iff a∧i b∧i a = a. If k 6= i and a ∈ A,
then a ∧i ek ∧i a = a ∧i a = a, because ek ∧i a = ti(ek, a, ei) = a by Lemma 4.2(1). �

By Proposition 4.5 the skew i-reduct Si(A) has a maximal class M with e1, . . . , ei−1, ei+1,
. . . , en ∈M . Then the algebra Si(A)/Di is a Boolean algebra.

Proposition 4.6. The ∩-skew i-reduct S∩i (A) = (A,∧i,∨i, \i, ei,∩i) of A is a ei-regular right-
handed SBIA.
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Proof. By Proposition 4.4 the skew i-reduct Si(A) = (A,∧i,∨i, \i, ei) is a right-handed SBA.
By Lemma 4.2(6,7) and by Definition 2.6 the ∩-skew i-reduct S∩i (A) is a right-handed SBIA.
By Lemma 4.2(8) we have that di(x, y) = (x ∨i y) \i (x ∩i y) is a term operation in the type
of SBIAs. Then the ei-regularity w.r.t. di follows from Lemma 4.2(4) and Lemma 4.3(ii) (see
Section 2.1 for the definition of regularity). �

Remark 1. Skew Boolean algebras, whose underlying natural partial ordering is a meet semilattice,
cannot be equationally axiomatised in the type of SBAs. Therefore, skew Boolean ∩-algebras of
Definition 2.6 are equationally axiomatised in the type of SBAs enriched with a binary operator
∩ of intersection. Rather interestingly, if A is a nBA the term operation ∩i is definable in terms
of ∧1,∨1, \1, e1, . . . ,∧n,∨n, \n, en. This follows from Definition 4.1, Lemma 4.2(2) and Theorem
2.6. Then the following question is natural. Let A = (A,∧,∨, \, 0) be a SBA, whose underlying
natural partial ordering is a meet semilattice (A,∩, 0) with bottom. Does it exist a bunch of
SBAs A1 = (A,∧1,∨1, \1, 01), . . . ,Ak = (A,∧k,∨k, \k, 0k) such that the meet operation ∩ is
definable in terms of the skew Boolean operations of A1, . . . ,Ak? A further analysis of this
question will be given in Section 5.

4.2. A bunch of isomorphisms. It turns out that all the ∩-skew reducts of a nBA A are
isomorphic. In order to prove this, we study the action of the symmetric group Sn on A. The
first part of this section is rather technical.

Let A be a nBA. For every permutation σ of the symmetric group Sn and a, b1, . . . , bn ∈ A,
we define a sequence us (1 ≤ s ≤ n+ 1) parametrised by another permutation τ :

un+1 = bτn; us = tτs(a, us+1, bστs) (1 ≤ s ≤ n).

In the following lemma we prove that u1 is independent of the permutation τ .
Notice that un = q(a, bτn/τn, bστn/τn) and us = q(a, us+1/τs, bστs/τs).

Lemma 4.7. For every 1 ≤ s ≤ n we have:

us = q(a, bτn/{τ1, τ2 . . . , τ(s− 1)}, bστs/τs, bστ(s+1)/τ(s+ 1), . . . , bστn/τn).

Then u1 = q(a, bστ1/τ1, bστ2/τ2, . . . , bστn/τn) = q(a, bσ1, bσ2, . . . , bσn).

Proof. Assume that

us+1 = q(a, bτn/{τ1, τ2 . . . , τs}, bστ(s+1)/τ(s+ 1), . . . , bστn/τn).

Then we have:

us = tτs(a, us+1, bστs)
= q(a, us+1/τs, bστs/τs)
=(B2) q(a, bτn/{τ1, τ2 . . . , τ(s− 1)}, bστs/τs, bστ(s+1)/τ(s+ 1), . . . , bστn/τn).

�

We define
aσ = q(a, eσ1, eσ2, . . . , eσn).

The transposition (ij) exchanges i and j: (ij)(i) = j and (ij)(j) = i.

Lemma 4.8. The following conditions hold in every nBA, for all permutations σ, τ and indices
i 6= j:

(1) The 2-ary decomposition operators ti(x,−,−) and tj(x,−,−) commute:

ti(x, tj(x, y, z), tj(x, u, w)) = tj(x, ti(x, y, u), ti(x, z, w)) = q(x, y/{i, j}, z/j, u/i);

(2) ti(x, tj(x, y, z), u) = tj(x, ti(x, y, u), z) = q(x, y/{i, j}, z/j, u/i);
(3) q(x, yσ1, . . . , yσn) = tτ1(x, tτ2(x, tτ3(x, . . . tτn(x, yτn, yστn) . . . , yστ3)), yστ2), yστ1);
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(4) xσ = tτ1(x, tτ2(x, tτ3(x, . . . tτn(x, eτn, eστn) . . . , eστ3)), eστ2), eστ1);
(5) q(xσ, y1, . . . , yn) = q(x, yσ1, . . . , yσn);
(6) x(ij) = ti(x, tj(x, x, ei), ej) = tj(x, ti(x, x, ej), ei);
(7) xτ◦σ = (xσ)τ ;
(8) q(x, y1, . . . , yn)σ = q(x, (y1)σ, . . . , (yn)σ).

Proof. Let A be a nBA and a, b, c, d, e, b1, . . . , bn be elements of A.
(1)

ti(a, tj(a, b, c), tj(a, d, e)) = q(a, tj(a, b, c)/̄i, tj(a, d, e)/i)
= q(a, q(a, b/j̄, c/j)/̄i, q(a, d/j̄, e/j)/i)

=(B2) q(a, b/{i, j}, c/j, d/i).

By symmetry we also get tj(a, ti(a, b, d), ti(a, c, e)) = q(a, b/{i, j}, c/j, d/i).
(2) ti(a, tj(a, b, c), d) = ti(a, tj(a, b, c), tj(a, d, d)) =(1) q(a, b/{i, j}, c/j, d/i), and similarly

tj(a, ti(a, b, d), c) = tj(a, ti(a, b, d), ti(a, c, c)) = q(a, b/{i, j}, c/j, d/i).
(3) By Lemma 4.7 u1 = q(a, bσ1, . . . , bσn). Then the conclusion follows from the unfolding of

the definition of u1:

u1 = tτ1(a, u2, bστ1) = tτ1(a, tτ2(a, u3, bστ2), bστ1) = . . .

(4) follows from (3) by putting yτi = eτi.
(5) q(aσ, b1, . . . , bn) = q(q(a, eσ1, . . . , eσn), b1, . . . , bn) =(B3) q(a, bσ1, . . . , bσn).
(6)

ti(a, tj(a, a, ei), ej) = tj(a, ti(a, a, ej), ei) by (1)

= q(a, a/{i, j}, ei/j, ej/i) by (1)

= q(a, q(a, e1, . . . , en)/{i, j}, ei/j, ej/i) by (B4)
= a(ij) by (B2)

(8)

q(a, b1, . . . , bn)σ = q(q(a, b1, . . . , bn), eσ1, eσ2, . . . , eσn)
=(B3) q(a, q(b1, eσ1, eσ2, . . . , eσn), . . . , q(bn, eσ1, eσ2, . . . , eσn))
= q(a, (b1)σ, . . . , (bn)σ).

�

Theorem 4.9. For every transposition (rk) ∈ Sn, the map x 7→ x(rk) defines an isomorphism
from S∩r (A) onto S∩k (A).

Proof. Let σ = (rk) in this proof. The map x 7→ xσ is bijective, because (aσ)σ =L.4.8(7) a
σ◦σ =

aId = q(a, e1, . . . , en) =(B4) a, for every a ∈ A. We now prove that x 7→ xσ is a homomorphism
of SBIAs. We recall from Definition 4.1 that the operations ∧r,∨r, \r are defined in terms of tr.
Then to get the conclusion it is sufficient to prove the following equalities, for all a, b, c ∈ A:
tr(a, b, c)

σ = tk(aσ, bσ, cσ), (a ∩r b)σ = aσ ∩k bσ and eσr = ek:

• tr(a, b, c)σ =L.4.8(8) tr(a, b
σ, cσ) = tr((a

σ)σ, bσ, cσ) = q((aσ)σ, bσ/r, cσ/r) =L.4.8(5)

q(aσ, bσ/k, cσ/k) = tk(aσ, bσ, cσ).
• (er)

σ = eσr = ek.
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•
(a ∩r b)σ = q(a, t1(b, er, a), . . . , tn(b, er, a))σ

= q(a, t1(b, er, a)σ, . . . , tn(b, er, a)σ)
= q(a, t1(b, eσr , a

σ), . . . , tn(b, eσr , a
σ))

= q(a, t1(b, ek, a
σ), . . . , tn(b, ek, a

σ))
= q((aσ)σ, t1((bσ)σ, ek, a

σ), . . . , tn((bσ)σ, ek, a
σ))

= q((aσ)σ, . . . , tr((b
σ)σ, ek, a

σ), . . . , tk((bσ)σ, ek, a
σ), . . . )

= q(aσ, . . . , tk((bσ)σ, ek, a
σ), . . . , tr((b

σ)σ, ek, a
σ), . . . )

= q(aσ, . . . , tr(b
σ, ek, a

σ), . . . , tk(bσ, ek, a
σ), . . . )

= aσ ∩k bσ.
�

4.3. A general representation theorem for right-handed SBAs. In this section we show
that, for every n ≥ 3, there is a representation of an arbitrary right-handed SBA within the
skew i-reduct of a suitable nBA of n-partitions (described in Example 7). The theorem also
provides a new proof that every SBA can be embedded into a SBA with a maximal class (see
Proposition 4.5).

Theorem 4.10. Let n ≥ 3. Then every right-handed SBA can be embedded into the skew
i-reduct Si(A) of a suitable nBA A of n-partitions.

Proof. (a) By [15, Corollary 1.14] every right-handed SBA can be embedded into an algebra
of partial functions with codomain the set {1, 2} (see Example 1), where 0 = ∅ is the empty
function, f ∧ g = g|G∩F , f ∨ g = f ∪ g|G∩F and g \ f = g|G∩F (with F,G and H the domains of
the functions f, g, h, respectively).

(b) By Corollary 3.5 every nBA is isomorphic to a nBA of n-partitions of a suitable set I
(see Examples 3 and 7). If P = (P1, . . . , , Pn) and Q = (Q1, . . . , Qn) are n-partitions of I, then

(2) P ∧i Q = ti(P,Q, ei) = q(P,Q/̄i, ei/i) = (Pi ∩Q1, . . . , Pi ∪ (Pi ∩Qi), . . . , Pi ∩Qn).

The other operations can be similarly defined.
(c) We define an injective function ∗ between the set of partial functions from a set I into {1, 2}

and the set of n-partitions of I. If f : I ⇀ {1, 2} is a partial function, then f∗ = (P1, . . . , Pn) is
the following n-partition of I: P1 = f−1(1), P2 = f−1(2), Pi = I \ dom(f) and Pk = ∅ for any
k 6= 1, 2, i.

(d) The map ∗ preserves the meet. Let f : F → {1, 2} and g : G → {1, 2} (F,G ⊆ I) be
functions. Then we derive (f ∧ g)∗ = f∗ ∧i g∗ as follows:

f∗ = (f−1(1), f−1(2), ∅, . . . , ∅, F , ∅, . . . , ∅); g∗ = (g−1(1), g−1(2), ∅, . . . , ∅, G, ∅, . . . , ∅)

(f ∧ g)∗ = (g|G∩F )∗

= (F ∩ g−1(1), F ∩ g−1(2), ∅, . . . , ∅, G ∪ F , ∅, . . . , ∅)
= (F ∩ g−1(1), F ∩ g−1(2), ∅ . . . , F ∪ (F ∩G), ∅, . . . , ∅)
= f∗ ∧i g∗.

Similarly for the other operations. �

5. Skew star algebras

The skew reducts of a nBA are so deeply related that they allow to recover the full structure
of the nBA. It is worthy to introduce a new variety of algebras, called skew star algebras,
equationally axiomatising n isomorphic SBAs and their relationships. In the main result of this
section we prove that the variety of skew star algebras is term equivalent to the variety of nBAs.
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By Lemma 4.2(2) we have that the identity

q(x, y1, . . . , yn) = t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1)

holds in every nBA. It follows that

tn(x, y, z) = t1(x, t2(x, t3(x, . . . tn−1(x, z, y) . . . , y), y), y),

so that tn is term definable by the remaining ti (1 ≤ i ≤ n− 1). This is one of the reasons for
introducing n− 1 (and not n) ternary operators in the following definition. Another reason is
technical simplification.

Definition 5.1. An algebra B = (B, t1, . . . , tn−1, 01, . . . , 0n), where ti is ternary and 0j is
a nullary operator, is called a skew star algebra if the following conditions hold, for every
1 ≤ i, k ≤ n− 1 and 1 ≤ j ≤ n:

(N0) (B, ti, 0i) is a SRCA.
(N1) ti(0j , y, z) = y (i 6= j).
(N2) t1(x, t2(x, t3(x, (. . . tn−1(x, 0n, 0n−1) . . . ), 03), 02), 01) = x.
(N3) ti(x, tk(x, y, z), tk(x, u, w)) = tk(x, ti(x, y, u), ti(x, z, w)) (i 6= k).
(N4) ti(x, tk(x, y, z), u) = tk(x, ti(x, y, u), z) (i 6= k).
(N5) ti(x,−,−) is a homomorphism of the algebra (B, tk, 0k)× (B, tk, 0k) into (B, tk, 0k):

ti(x, tk(y1, y2, y3), tk(z1, z2, z3)) = tk(ti(x, y1, z1), ti(x, y2, z2), ti(x, y3, z3)).

Skew star algebras constitute a variety of algebras.

The identities characterising skew star algebras deserve some explanation. Let Bi = (B, ti, 0i)
(i = 1, . . . , n− 1) be a family of SRCAs having the same universe B and such that 01, . . . , 0n−1
are distinct elements of B. Let 0n be another element of B distinct from 01, . . . , 0n−1. Let
B = (B, t1, . . . , tn−1, 01, . . . , 0n) be the algebra collecting the basic operations of the algebras
Bi and the constant 0n. Roughly speaking, the structure of an nBA on B with respect to the
term operation qt, defined by

(3) qt(x, y1, . . . , yn) := t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1),

can be recovered from the cluster of SRCAs Bi if (N1)-(N5) hold:

(i) (N1) implies that B is a nCA with respect to the operation qt.
(ii) Since Bi is a SRCA, then, for every b ∈ B, the function ti(b,−,−) satisfies conditions

(D1) and (D2) of Definition 2.2. Then, axiom (N5) implies that, for every b ∈ B, the
binary functions t1(b,−,−), . . . , tn−1(b,−,−) are 2-ary decomposition operators of the
nCA B.

(iii) (N3) means that the decomposition operators t1(b,−,−), . . . , tn−1(b,−,−) are pairwise
commuting. Hence, by Proposition 2.2 and by Proposition 2.3 the n-ary operator
qt(b,−, . . . ,−) (see (3) above) is a n-ary decomposition operator of the nCA B.

(iv) (N2) implies that the factor element b satisfies the identity qt(b, 01, . . . , 0n) = b. Then b
is a n-central element of the nCA B, for every b ∈ B. We conclude that axioms (N1),
(N2), (N3) and (N5) collectively imply that B is a nBA (w.r.t. qt).

(v) Axiom (N4) is used to recover the ternary operations ti (1 ≤ i ≤ n − 1) from qt, i.e.,
ti(b, y, z) = qt(b, y/̄i, z/i).

We now are going to prove that the variety of skew star algebras and of nBAs are term
equivalent. Consider the following correspondence between the algebraic similarity types of
nBAs and of skew star algebras.
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• Beginning on the nBA side: ti(x, y, z) := q(x, y/̄i, z/i) (1 ≤ i ≤ n − 1) and 0j := ej
(1 ≤ j ≤ n).
• Beginning on the skew star algebra side:

qt(x, y1, . . . , yn) := t1(x, t2(x, t3(x, . . . tn−1(x, yn, yn−1) . . . , y3), y2), y1); ej := 0j .

If B is a skew star algebra, then B• = (B; qt, e1, . . . , en) denotes the corresponding algebra in
the similarity type of nBAs. Similarly, if A is a nBA, then A∗ = (A; t1, . . . , tn−1, 01, . . . , 0n)
denotes the corresponding algebra in the similarity type of skew star algebras.

It is not difficult to prove the following theorem.

Theorem 5.1. The above correspondences define a term equivalence between the varieties of
nBAs and of skew star algebras. More precisely,

(i) If A is a nBA, then A∗ is a skew star algebra;
(ii) If B is a skew star algebra, then B• is a nBA;
(iii) (A∗)• = A;
(iv) (B•)∗ = B.

Proof. (i) (N0) derives from Proposition 4.4, while (N1) from Lemma 4.2(1). (N2) follows
from t1(x, t2(x, t3(x, . . . tn(x, 0n−1, 0n) . . . , 03), 02), 01) =(B2) q(x, 01, . . . , 0n) = x. (N3) is a
consequence of Lemma 4.8(1). For (N4) we apply Lemma 4.8(2). (N5) follows from (B3).

(ii) (B0) derives from (N0) and (N1). By (N0) and (N5), ti(x,−,−) (1 ≤ i ≤ n) is a
decomposition operator on B. Then, for every b ∈ B, qt(b,−, . . . ,−) is a n-ary decomposition
operator on B• (i.e., (B1)-(B3) hold), because commuting decomposition operators are closed
under composition (see [20], Proposition 2.2 and Proposition 2.3). (B4) is a consequence of
(N2).

(iii) Let A be a nBA. Since ti(x, y, z) = q(x, y/̄i, z/i), then by (B2) we have qt(x, y1, . . . , yn) =
q(x, t2(x, . . . )/1̄, y1/1) = q(x, y1, t2(x, . . . ), . . . , t2(x, . . . )) = q(x, y1, y2, t3(x, . . . ), . . . , t3(x, . . . )) =
· · · = q(x, y1, . . . , yn).

(iv) Let B = (B, t1, . . . , tn−1, 01, . . . , 0n) be a skew star algebra. The conclusion (B•)∗ = B
follows because by (N4) we obtain that ti(x, y, z) = qt(x, y/̄i, z/i) for every 1 ≤ i ≤ n− 1. �

6. Multideals

The notion of ideal plays an important role in order theory and universal algebra. Ideals,
filters and congruences are interdefinable in Boolean algebras. For every Boolean ideal I, we
have that a ∈ I if and only if ¬a ∈ ¬I if and only if aθI0 if and only if ¬aθI1. In the case
of nBAs, the couple (I,¬I) is replaced by a n-tuple (I1, . . . , In) satisfying some compatibility
conditions that extend in a conservative way those of the Boolean case.

Definition 6.1. Let A be a nBA. A multideal is a n-partition (I1, . . . , In) of a subset I of A
such that

(m1) ek ∈ Ik;
(m2) a ∈ Ir, b ∈ Ik and c1, . . . , cn ∈ A imply q(a, c1, . . . , cr−1, b, cr+1, . . . , cn) ∈ Ik;
(m3) a ∈ A and c1, . . . , cn ∈ Ik imply q(a, c1, . . . , cn) ∈ Ik.

The set I is called the carrier of the multideal. A ultramultideal of A is a multideal whose
carrier is A.

The following Lemma, whose proof is straightforward, shows the appropriateness of the
notion of multideal. In Section 7 we show that there exists a bijective correspondence between
multideals and congruences.
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Lemma 6.1. If θ is a proper congruence on a nBA A, then I(θ) = (e1/θ, . . . , en/θ) is a
multideal of A.

Multideals extend to the n-ary case the fundamental notions of Boolean ideal and filter, as
shown in the following Proposition.

Recall from [21] that a 2BA A = (A, q, e1, e2) is term equivalent to the Boolean algebra
A∗ = (A,∧,∨,¬, 0, 1), where 0 = e2, 1 = e1, x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y), ¬x = q(x, 0, 1).

Proposition 6.2. Let A be a 2BA, and I1, I2 ⊆ A. Then (I1, I2) is a multideal of A if and
only if I2 is an ideal of A∗, and I1 = ¬I2 is the filter associated to I2 in A∗.

Proof. If (I1, I2) is a multideal, then 0 = e2 ∈ I2 and 1 = e1 ∈ I1. Moreover, if a, b ∈ I2 then
a ∨ b = q(a, 1, b) ∈ I2 by (m2), and if a ∈ I2 and b ∈ A, then b ∧ a = q(b, a, 0) ∈ I2 by (m3). It
follows that I2 is a Boolean ideal. By (m2) and the definition of ¬ we have I1 ⊇ {¬a | a ∈ I2}
and I2 ⊇ {¬a | a ∈ I1}. Then from ¬¬a = a it follows that I1 = {¬a | a ∈ I2}.

Conversely, if I2 is a Boolean ideal of A∗ and I1 = ¬I2, then the condition (m1) is clearly
satisfied. Concerning (m2), it is worth noticing that q(a, c, b) = (a ∧ c) ∨ (¬a ∧ b). Then if
a ∈ I2, b ∈ I1, c ∈ A (for instance, the other 3 cases being similar to this one), we have that
¬a ∈ I1, so that ¬a∧ b ∈ I1 and we conclude that (a∧ c)∨ (¬a∧ b) = q(a, c, b) ∈ I1. Concerning
(m3), if a, b ∈ I2 and c ∈ A then c ∧ a,¬c ∧ b ∈ I2, hence (c ∧ a) ∨ (¬c ∧ b) = q(c, a, b) ∈ I2. If
a, b ∈ I1 and c ∈ A, then (c∧a)∨(¬c∧b) ≥ (c∧(a∧b))∨(¬c∧(a∧b)) = (c ∨¬c)∧(a∧b) = a∧b ∈ I1,
so that (c ∧ a) ∨ (¬c ∧ b) = q(c, a, b) ∈ I1. �

In the n-ary case, multideals of A may be characterised as n-tuples of ideals in the skew
i-reducts Si(A) of A, satisfying the conditions expressed in the following Proposition.

Proposition 6.3. Let A be a nBA and (I1, . . . , In) be a n-partition of a subset I of A. Then
(I1, . . . , In) is a multideal if and only if the following conditions are satisfied:

(I1) er ∈ Ir;
(I2) a ∈ Ir, b ∈ Ik and c ∈ A imply tr(a, c, b) ∈ Ik.
(I3) a, b ∈ Ir and c ∈ A imply tk(c, a, b) ∈ Ir, for all k.

Proof. Showing that a multideal satisfies I1, I2 and I3 is straightforward. A n-partition satisfying
I1, I2 and I3, trivially verifies (m1). Concerning (m2), let us suppose that a ∈ Ir, b ∈ Ik and
c1, . . . , cn ∈ A. In order to show that q(a, c1, . . . , cr−1, b, cr+1, . . . , cn) ∈ Ik, we apply Lemma
4.8(4): q(x, cσ1, . . . , cσn) = tτ1(x, tτ2(x, tτ3(x, . . . tτn(x, cτn, cστn) . . . , cστ3)), cστ2), cστ1) in the
case σ = Id, τ = (1r), and we get

q(a, c1, . . . , cr−1, b, cr+1, . . . , cn) = tr(a, t2(a, . . . , c2), b) ∈ Ik, by I2.

Concerning (m3), let a1, . . . , an ∈ Ik and b ∈ A. By Lemma 4.2(2) we have

q(b, a1, . . . , an) = t1(b, t2(b, t3(b, . . . tn−1(b, an, an−1) . . . , a3), a2), a1).

By applying I3 n times, we conclude that q(b, a1, . . . , an) ∈ Ik, since tn−1(b, an, an−1) ∈ Ik,
hence tn−2(b, tn−1(b, an, an−1), an−2) ∈ Ik, and so on. �

By using the characterisation of Proposition 6.3 it is easy to see that the components of a
multideals are ideals of the SBA corresponding to their index.

Recall from Section 2.4 the notion of an ideal of a SBA.

Corollary 6.4. If (I1, . . . , In) is a multideal of a nBA A and 1 ≤ i ≤ n, then Ii is an ideal of
the skew i-reduct Si(A) = (A,∧i,∨i, \i, ei).
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Proof. Since Si(A) is right-handed, a non empty set K ⊆ A is an ideal of Si(A) if and only if,
for all a, b ∈ K and c ∈ A, a∨i b ∈ K and a∧i c ∈ K (see Section 2.4). Given a, b ∈ Ii and c ∈ A,
we have a∨i b = ti(a, a, b) ∈ Ii and a∧i c = ti(a, c, ei) ∈ Ii, by using in both cases condition (I2)
of Proposition 6.3 (notice that ei ∈ Ii, by (I1)). �

Lemma 6.5. The carrier I of a multideal (I1, . . . , In) of a nBA A is a subalgebra of A.

Proof. The constants e1, . . . , en belong to I by (m1).
If a ∈ Ir and b ∈ Ik, then q(a, c1, . . . , cr−1, b, cr+1, . . . , cn) ∈ Ik, for all c1, . . . , cn ∈ A, by (m2).
Hence I is a subalgebra of A. �

Any component Ii of a multideal (I1, . . . , In) determines the multideal completely, as shown
in the following lemma.

Lemma 6.6. If (I1, . . . , In) is a multideal of a nBA A, then Ik = I
(rk)
r for all r, k.

Proof. Let a ∈ Ir. Then a(rk) = tr(a, tk(a, a, er), ek) ∈ Ik by Lemma 4.8(5) and Proposition
6.3(I2). Then we have

I(rk)r ⊆ Ik; I
(rk)
k ⊆ Ir.

The conclusion follows because (a(rk))(rk) = a, by Lemma 4.8(6) and (B4). �

Multideals are closed under arbitrary nonempty componentwise intersection. The minimum
multideal is the sequence ({ek})k∈n̂. Given a nBA A, and A1, . . . , An ⊆ A, let us consider the set
A of multideals containing (A1, . . . , An). The ideal closure of (A1, . . . , An) is the componentwise
intersection of the elements of A, if A 6= ∅. Otherwise, the ideal closure of (A1, . . . , An) is the
constant n-tuple I> = (A, . . . , A), that we consider as a degenerate multideal, by a small abuse
of terminology.

As a matter of fact, I> is the only degenerate multideal.

Lemma 6.7. Let A be a nBA and I = (I1, . . . , In) be a tuple of subsets of A satisfying the
closure properties of Definition 6.1. The following are equivalent:

(i) there exist a ∈ A and r 6= k such that a ∈ Ir ∩ Ik.
(ii) there exist r 6= k such that ek ∈ Ir.
(iii) I = I>.

Proof. (i)⇒(ii): since a ∈ Ik, by Lemma 6.6 we have that a(rk) ∈ Ir. By Definition 6.1(m2), we
conclude that q(a, ek/r, a

(rk)/r) =(B2) q(a, ek, . . . , ek) = ek ∈ Ir.
(ii)⇒(iii): given b ∈ A, we have b = q(ek, b/r, er/r) ∈ Ir by Definition 6.1(m2). Hence Ir = A
and the result follows from Lemma 6.6 since A(rk) = A for all 1 ≤ k ≤ n.
(iii)⇒(i): trivial. �

7. The relationship between multideals and congruences

For any congruence θ on a nBA, the equivalence classes ei/θ form a multideal (see Lemma
6.1), exactly as in the Boolean case 0/θ is an ideal and 1/θ the corresponding filter. Conversely,
in the Boolean case, any ideal I (resp. filter F ) defines the congruence xθIy ⇔ x⊕ y ∈ I (resp.
xθF y ⇔ x ↔ y ∈ F ). Rephrasing this latter correspondence in the n-ary case is a bit more
complicated.
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7.1. The Boolean algebra of coordinates. Let A be a nBA, a ∈ A and i ∈ n̂. We consider
the factor congruence θia = θ(a, ei) = {(x, y) : ti(a, x, y) = x} generated by a. By Lemma 6.1
the tuple

(e1/θ
i
a, . . . , en/θ

i
a)

is a multideal of A.
We recall that 4iR and ≤i denote the right preorder and the partial order of the SBA

Si(A) = (A,∧i,∨i, \i, ei), respectively (see Section 2.4).

Lemma 7.1. ei/θ
i
a = {b ∈ A : b 4iR a}.

Proof. By definition of θia, we have bθiac iff ti(a, b, c) = b. Then b ∈ ei/θ
i
a iff b = ti(a, b, ei) = a∧ib

iff b 4iR a (by definition of 4iR). �

The following proposition is a consequence of [7, Proposition 4.15].

Proposition 7.2. (i) The set ei/θ
i
a is a subalgebra of the right Church i-reduct (A, ti, ei).

(ii) The algebra (ei/θ
i
a, ti, ei, a) is a 2CA.

(iii) The set ↓ia = {b : b ≤i a} is the Boolean algebra of 2-central elements of (ei/θ
i
a, ti, ei, a).

Proof. (i) Let b, c, d ∈ ei/θ
i
a. Then bθiaei, cθ

i
aei and dθiaei. By applying the properties of the

congruences, we derive ti(b, c, d)θiati(ei, ei, ei) = ei.
(ii) By ti(a, b, c) = b and ti(ei, b, c) = c, for every b, c ∈ ei/θ

i
a.

(iii) By Lemma 4.3(i) b is a factor element for every b ∈ ei/θ
i
a. Then b is 2-central iff

ti(b, a, ei) = b iff b ∧i a = b iff b ≤i a, because a ∧i b = ti(a, b, ei) = b for all b ∈ ei/θ
i
a. �

Notice that a is maximal (w.r.t. ≤i) because, if a ≤i b ∈ ei/θ
i
a, then a = a∧ib = ti(a, b, ei) = b.

We now specialise the above construction to the case a = ej for a given j 6= i.

Definition 7.1. Let A be a nBA and i 6= j. The Boolean centre of A, denoted by Bij , is the
Boolean algebra of 2-central elements of the 2CA (A, ti, ei, ej).

By Proposition 7.2 the carrier set of Bij is the set ↓iej = {b ∈ A : b ≤i ej} and we call
Boolean any element of Bij .

Remark 2. The Boolean algebra Bij was defined in [5] in a different but equivalent way (see [5,
Section 6.1, Lemma 7(iii)]).

Lemma 7.3. Let A be a nBA, Bij be the Boolean centre of A, Si(A) = (A,∧i,∨i, \i, ei) be
the skew i-reduct of A, and i 6= j. Then, for all b, c ∈ Bij, we have b ∨i c = ti(b, ej , c).

Proof. b ∨i c = ti(b, b, c) =(b≤iej) ti(b, ti(b, ej , ei), c) =(B2) ti(b, ej , c). �

By Lemma 7.3 and by [21] the Boolean operations on Bij are ∧i,∨i,¬ij , where ∧i,∨i are the
corresponding operation of Si(A) restricted to Bij , and ¬ij(b) = ti(b, ei, ej) for every b ∈ Bij .

In [5] a representation theorem is proved, showing that any given nBA A can be embedded
into the nBA of the n-central elements of the Boolean vector space Bij × . . . × Bij = Bnij
(see Example 2). The proof of this result makes an essential use of the notion of coordinates
of elements of A, that are n-tuples of elements of Bnij , codifying the elements of A as linear
combinations (see Lemma 7.9(5)). In this paper, the notion of coordinate is again a central
one, being used to define the congruence associated to a multideal. In order to highlight their
relationship with the skew reducts of A, here we define the coordinates in terms of the tk
operations.

Definition 7.2. The coordinates of a ∈ A are the elements ak = tk(a, ei, ej), for 1 ≤ k ≤ n.
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Notice that ak ∈ Bij for every 1 ≤ k ≤ n, because ak ≤i ej :

ak ∧i ej = ti(tk(a, ei, ej), ej , ei) =(B3) q(a, ei/k̄, ej/k) = tk(a, ei, ej) = ak.

Lemma 7.4. Let a, b, b1, . . . , bn ∈ A. We have:

(i) ak ∧i ar = ei for all k 6= r.
(ii) a1 ∨i a2 ∨i · · · ∨i an = ej.
(iii) q(a, b1, . . . , bn)k = q(a, (b1)k, . . . , (bn)k) = (a1 ∧i (b1)k) ∨i · · · ∨i (an ∧i (bn)k).
(iv) (a ∧i b)k = a ∧i bk, for every k 6= i.
(v) ak ∧i a = ak ∧i ek, for every k 6= i.
(vi) ai ∧i a = ei.

(vii) If a ∈ Bij, then

ak =


¬ij(a) if k = i

a if k = j

ei otherwise

Proof. (i)-(vi) It is sufficient to check in the generator n of the variety nBA, where Bij = {ei, ej},
(er)r = ej and (er)k = ei if r 6= k.

(vii) (k = i): By definition of ¬ij : ai = ti(a, ei, ej) = ¬ij(a).
(k 6= i, j): ak = tk(a, ei, ej) = tk(a ∧i ej , ei, ej) = tk(ti(a, ej , ei), ei, ej) = ti(a, ei, ei) = ei.
(k = j): aj = tj(a, ei, ej) = tj(a ∧i ej , ei, ej) = tj(ti(a, ej , ei), ei, ej) = ti(a, ej , ei) = a. �

Proposition 7.5. The following conditions are equivalent for an element a ∈ A:

(a) a is Boolean;
(b) a ∧i ej = a;
(c) a = bk, for some b ∈ A and index 1 ≤ k ≤ n;
(d) a = aj;
(e) ak = ei, for every k 6= i, j;
(f) a = (ai)i.

Proof. (a) ⇔ (b): We have that a ≤i ej iff a ∧i ej = a and ej ∧i a = a. The conclusion is
obtained because the latter equality is trivially true.

(c) ⇒ (b): bk ∧i ej = ti(tk(b, ei, ej), ej , ei) =(B3) q(b, ei/k̄, ej/k) = tk(b, ei, ej) = bk.
(b)⇒ (d): If a∧i ej = a, then aj = tj(a, ei, ej) = tj(a∧i ej , ei, ej) = tj(ti(a, ej , ei), ei, ej) =(B3)

ti(a, ej , ei) = a ∧i ej = a.
(d) ⇒ (c): Trivial.
(a) ⇒ (e): By Lemma 7.4(vii).
(e) ⇒ (d): By Lemma 7.4(ii) the join of all coordinates of a ∈ A in Bij is the top element

ej . By hypothesis (e) we derive ai ∨i aj = ej . Then, by applying the strong distributive
property of ∧i w.r.t. ∨i in the SBA Si(A), we obtain: a = ej ∧i a =L.7.4(ii) (ai ∨i aj) ∧i a =
(ai ∧i a) ∨i (aj ∧i a) =L.7.4(vi) ei ∨i (aj ∧i a) = aj ∧i a =L.7.4(v) aj ∧i ej =(aj≤iej) aj.

(f) ⇔ (b): (ai)i = ti(ti(a, ei, ej), ei, ej) =(B3) ti(a, ej , ei) = a ∧i ej . Then (ai)i = a iff
a ∧i ej = a. �

By Lemma 7.4(iv) and Lemma 7.5(d) a∧i b is a Boolean element, for every a ∈ A and b ∈ Bij .

7.2. The congruence defined by a multideal. Let A be a nBA and Bij be the Boolean
centre of A.

Lemma 7.6. Let I be a multideal on A. Then I∗ = Bij ∩Ii is a Boolean ideal and I∗ = Bij ∩Ij
is the Boolean filter complement of I∗.
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Proof. Recall that, in Bij , ei is the bottom element, ej is the top element and b ∈ Bij iff
b ∧i ej = b. We prove that I∗ is a Boolean ideal. First ei ∈ I∗. If b, c ∈ I∗ and d ∈ Bij , then we
prove that b ∨i c and b ∧i d belong to I∗. By Proposition 6.3(I2) b ∨i c and b ∧i d belong to Ii.
Moreover, since b, c, d ∈ Bij and ∧i, ∨i are respectively the meet and the join of Bij , then b∨i c
and b ∧i d also belong to Bij . We now show that I∗ is the Boolean filter complement of I∗.

(b ∈ I∗ ⇒ ¬ijb ∈ I∗): As b ∈ Ii∩Bij , then by Proposition 6.3(I2) ¬ijb = ti(b, ei, ej) ∈ Ij∩Bij .
(¬ijb ∈ I∗ ⇒ b ∈ I∗): As ti(b, ei, ej) ∈ Ij , then b = ¬ij¬ijb = ti(ti(b, ei, ej), ei, ej) ∈ Ii. �

The following lemma characterises multideals in terms of coordinates.

Lemma 7.7. Let (I1, . . . , In) be a multideal on a nBA A and let b ∈ A. Then we have:

(a) b ∈ Ir if and only if the coordinate br of b belongs to Ij.
(b) If b ∈ Ii, then the coordinate bk of b belongs to Ii, for every k 6= i.

Proof. (a) We start with r = i.
(⇒) Let b ∈ Ii. By Proposition 6.3(I2) we have bi = ti(b, ei, ej) ∈ Ij , because b ∈ Ii and ej ∈ Ij .
(⇐) By hypothesis bi ∈ Ij . Then by Lemma 6.6 b

(ij)
i ∈ Ii. Now b

(ij)
i = q(bi, e(ij)1, . . . , e(ij)n) =

q(ti(b, ei, ej), e(ij)1, . . . , e(ij)n) =(B3) ti(b, ej , ei) = b ∧i ej ∈ Ii. We conclude b ∈ Ii by applying
Proposition 6.3(I2) to ti(b ∧i ej , b, ei), because b ∧i ej ∈ Ii and b =L.4.2(3) b ∧i b =(b=ej∧ib)

b ∧i ej ∧i b = ti(b ∧i ej , b, ei).
We analyse r 6= i. Let σ be equal to the transposition (ir). By definition of bσ we derive

(bσ)i = ti(q(b, eσ1, . . . , eσn), ei, ej) =(B3) q(b, ej/r, ei/r̄) = tr(b, ei, ej) = br. Then, br ∈ Ij ⇔ br =
(bσ)i ∈ Ij ⇔ bσ ∈ Ii ⇔L.6.6 b = (bσ)σ ∈ Ir.

(b) By Proposition 6.3(I2), k 6= i and b ∈ Ii we get bk = tk(b, ei, ej) ∈ Ii. �

We consider the homomorphism fI : Bij → Bij/I∗ and we define on A the following
equivalence relation:

bθIc⇔ ∀k.fI(bk) = fI(ck),

where bk, ck are the k-coordinates of b and c, respectively (see Definition 7.2).

Proposition 7.8. θI is a congruence on A.

Proof. Let a, b, c1, d1, . . . , cn, dn be elements of A such that aθIb and ckθIdk, for every k.
Then q(a, c1, . . . , cn)θIq(b, d1, . . . , dn) iff ∀k.fI(q(a, c1, . . . , cn)k) = fI(q(b, d1, . . . , dn)k). The
conclusion follows, because fI is a Boolean homomorphism and q(a, c1, . . . , cn)k =L.7.4(iii)

q(a, (c1)k, . . . , (cn)k) =L.7.4(iii) (a1 ∧i (c1)k) ∨i · · · ∨i (an ∧i (cn)k). �

We define a new term operation to be used in Theorem 7.10:

x+i y = q(x, ti(y, ei, e1), . . . , ti(y, ei, ei−1), y, ti(y, ei, ei+1), . . . , ti(y, ei, en)); (y at position i).

Lemma 7.9. Let a, b ∈ A and a1, a2, . . . , an be the coordinates of a. Then

(1) a+i ei = ei +i a = a;
(2) a+i b = b+i a;
(3) a+i ek = ek +i a = ai ∧i ek (k 6= i).
(4) a+i a = ei;
(5) The value of the expression E ≡ (a1 ∧i e1) +i ((a2 ∧i e2) +i (· · · +i (an ∧i en)) . . . )

is independent of the order of its parentheses. Without loss of generality, we write
(a1 ∧i e1) +i (a2 ∧i e2) +i · · ·+i (an ∧i en) for the expression E. Then we have:

(a1 ∧i e1) +i (a2 ∧i e2) +i · · ·+i (an ∧i en) = a.

(6) If a and b have the same coordinates, then a = b.
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Proof. (1) a +i ei = q(a, ti(ei, ei, e1), . . . , ti(ei, ei, ei−1), ei, ti(ei, ei, ei+1), . . . , ti(ei, ei, en)) =
q(a, e1, . . . , en) =(B4) a.

(2)

a+i b = q(a, ti(b, ei, e1), . . . , ti(b, ei, ei−1), b, ti(b, ei, ei+1), . . . , ti(b, ei, en))
=(B4) q(ti(b, a, a), ti(b, ei, e1), . . . , ti(b, ei, ei−1), q(b, e1, . . . , en), ti(b, ei, ei+1), . . . , ti(b, ei, en))
=(B3) q(b, ti(a, ei, e1), . . . , ti(a, ei, ei−1), q(a, e1, . . . , en), ti(a, ei, ei+1), . . . , ti(a, ei, en))
= b+i a.

(3) a +i ek = q(a, ti(ek, ei, e1), . . . , ti(ek, ei, ei−1), ek, ti(ek, ei, ei+1), . . . , ti(ek, ei, en)) =(k 6=i)
q(a, ei, . . . , ei, ek, ei, . . . , ei) = ti(a, ei, ek) = ek+ia. Moreover, ai∧iek = ti(ti(a, ei, ej), ek, ei) =(B3)

ti(a, ei, ek).
(4) a+i a = q(a, ti(a, ei, e1), . . . , ti(b, ei, ei−1), a, ti(a, ei, ei+1), . . . , ti(a, ei, en)) =(B2)

q(a, ei, . . . , ei, a, ei, . . . , ei) =B4) q(a, ei, . . . , ei, q(a, e1, . . . , en), ei, . . . , ei) = q(a, ei, . . . , ei) = ei.
(5) It is easy to check the identity in the generator n of the variety nBA.
(6) is a consequence of (5). �

Theorem 7.10. Let φ be a congruence, I(φ) = (e1/φ, . . . , en/φ) be the multideal of A determined
by φ, H = (H1, . . . ,Hn) be a multideal and θH be the congruence on A determined by H. Then

θI(φ) = φ and I(θH) = H.

Proof. We first prove I(θH)k = Hk, for all k. Recall that ej = (ei)i is the i-coordinate of ei and
ei = (ei)k is the k-coordinate of ei for every k 6= i.

(1) First we provide the proof for k = i. Let a ∈ I(θH)i. If aθHei then fH(ai) = fH((ei)i) =
fH(ej), that implies ai ∈ H∗. By Lemma 7.7(a) we get the conclusion a ∈ Hi.

For the converse, let a ∈ Hi. By Lemma 7.7(a) we have ai ∈ H∗ and by Lemma 7.7(b)
ak ∈ H∗ for all k 6= i. This implies fH(ai) = fH(ej) = fH((ei)i) and fH(ak) = fH(ei) = fH((ei)k)
for all k 6= i, that implies aθHei. Since I(θH)i = ei/θH , we conclude.

(2) Let now k 6= i. By Lemma 6.6 we have Hk = H
(ik)
i . Let a ∈ Hk. Then a = b(ik) for

some b ∈ Hi. As, by (1), bθHei, then we have a = b(ik)θH(ei)
(ik) = ek. Since I(θH)k = ek/θH ,

we conclude. Now, assuming aθHek, we have: b = (a)(ik)θH(ek)(ik) = ei. Then b ∈ Hi and
a = b(ik) ∈ Hk.

Let φ be a congruence.
(a) Let aφb. Then ∀h. ahφbh. Since φ restricted to Bij is also a Boolean congruence,

then we obtain (ah ⊕ij bh)φei, where ⊕ij denotes the symmetric difference in the Boolean
centre Bij . We now prove that aθI(φ)b. We have aθI(φ)b iff ∀h. fI(φ)(ah) = fI(φ)(bh) iff
∀h. ah⊕ij bh ∈ I(φ)∗ = Bij ∩ ei/φ iff ∀h. ah⊕ij bh ∈ ei/φ iff ∀h. (ah⊕ij bh)φei. This last relation
is proved above and we conclude aθI(φ)b.

(b) Let aθI(φ)b. Then ∀h. ah ⊕ij bh ∈ ei/φ that implies ∀h. ahφbh, because φ restricted
to Bij is a Boolean congruence. Since by Lemma 7.9(5) there is a n-ary term u such that
a = u(a1, . . . , an) and b = u(b1, . . . , bn), then we conclude aφb by using ∀h. ahφbh. �

7.3. Ultramultideals. In the Boolean case, there is a bijective correspondence between maximal
ideals and homomorphisms onto 2. In this section we show that every multideal can be extended
to an ultramultideal, and that there exists a bijective correspondence between ultramultideals
and homomorphisms onto n. We also show that prime multideals coincide with ultramultideals.

Let (I1, . . . , In) be a multideal of a nBA A and U be a Boolean ultrafilter of Bij that extends
I∗ = Bij ∩ Ij , and so the maximal ideal Ū = Bij \ U extends I∗ = Bij ∩ Ii.

Lemma 7.11. For all a ∈ A, there exists a unique k such that ak ∈ U .



ON NONCOMMUTATIVE GENERALISATIONS OF BOOLEAN ALGEBRAS 25

Proof. By Lemma 7.4(ii) the meet of two distinct coordinates is the bottom element ei. Then
at most one coordinate may belong to U . On the other hand, if all coordinates belong to Ū ,
then the top element ej belong to Ū . �

Let (Gk)k∈n̂ be the sequence such that Gk = {a ∈ A : ak ∈ U}, which, by Lemma 7.11, is
well defined.

Lemma 7.12. (Gk)k∈n̂ is a ultramultideal which extends (Ik)k∈n̂.

Proof. (m1) ek ∈ Gk because (ek)k = ej ∈ U .
(m2): let a ∈ Gr, b ∈ Gk, and c1, . . . , cn ∈ A. By Lemma 7.4(ii),

q(a, c1, . . . , cr−1, b, cr+1 . . . , cn)k = [
∨
s6=r

(as ∧i (cs)k)] ∨i (ar ∧i bk).

Since ar, bk ∈ U , then ar ∧i bk ∈ U , and so ar ∧i bk v [
∨
s6=r(as ∧i (cs)k)] ∨i (ar ∧i bk) ∈ U , where

v is the Boolean order of the Boolean algebra Bij . Hence, q(a, c1, . . . , cr−1, b, cr+1 . . . , cn) ∈ Gk.
(m3) can be proved similarly.
We now prove that (Gk)k∈n̂ extends (Ik)k∈n̂. It is sufficient to show that, for every x ∈ Ik, we
have that xk ∈ U . We get the conclusion by Lemma 7.7(a). �

Theorem 7.13. (i) Every multideal can be estended to an ultramultideal.
(ii) There is a bijective correspondence between ulramultideals and homomorphisms onto n.

Proof. (i) follows from Lemma 7.12. Regarding (ii), we remark that the algebra n is the unique
simple nBA. �

We conclude this section by characterising prime multideals.

Definition 7.3. We say that a multideal (I1, . . . , In) is prime if, for every i, a ∧i b ∈ Ii implies
a ∈ Ii or b ∈ Ii.
Proposition 7.14. A multideal is prime iff it is an ultramultideal.

Proof. (⇒) Let (I1, . . . , In) be a prime ideal. If a ∈ Bij , then a ∧i ¬ij(a) = ei ∈ Ii. Then either
a or ¬ij(a) ∈ Ii. This implies that I∗ = Bij ∩ Ii is a maximal Boolean ideal and the complement
I∗ = Bij ∩ Ij is a Boolean ultrafilter.
Let now b ∈ A such that b /∈ I =

⋃n
k=1 Ik. By Lemma 7.7(a) we have that b ∈ Ir iff br ∈ I∗. Then

br /∈ I∗ for all r. Since I∗ is a Boolean ultrafilter, then br ∈ I∗ for all r. Hence ej =
∨n
r=1 br ∈ I∗,

contradicting the fact that the top element does not belong to a maximal ideal. In conclusion,
b ∈ I =

⋃n
k=1 Ik for an arbitrary b, so that I = A.

(⇐) Let I be an ultramultideal. Let a∧i b ∈ Ii with a ∈ Ir and b ∈ Ik (with r 6= i and k 6= i).
Tthen by property (m2) of multideals we get a ∧i b = ti(a, b, ei) = q(a, b, . . . , b, ei, b, . . . , b) ∈ Ik.
Contradiction. �

Conclusion

Boolean-like algebras have been introduced in [21, 5] as a generalisation of Boolean algebras to
any finite number of truth values. Boolean-like algebras provide a new characterisation of primal
varieties exhibiting a perfect symmetry of the values of the generator of the variety. In this
paper we have investigated the relationships between skew Boolean algebras and Boolean-like
algebras. We have shown that any n-dimensional Boolean-like algebra is a skew cluster of n
isomorphic right-handed skew Boolean algebras, and that the variety of skew star algebras is
term equivalent to the variety of Boolean-like algebras. Moreover, we have got a representation
theorem for right-handed skew Boolean algebras, and developed a general theory of multideals
for Boolean-like algebras. Several further works are worth mentioning:
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(1) How the duality theory of SBAs and BAs are related to a possible duality theory of
nBAs (a Stone-like topology on ultramultideals).

(2) Find a more satisfactory axiomatisation of skew star algebras.
(3) Each SBA living inside a nBA has a bottom element 0 and several maximal elements.

The construction could be made symmetric, by defining “skew-like” algebras having
several minimal and several maximal elements.

(4) For each nBA A, the algebras S1(A), . . . , Sn(A), constituting the skew cluster of A,
are isomorphic. This result is also of technical interest for the following open problem
in the theory of skew Boolean algebras:

Problem 1. Given a SBA A with a maximal class M ⊇ {m1,m2}, let Am1
and Am2

be the algebras obtained from A on distinguishing the elements m1 and m2 respectively.
Are the algebras Am1

and Am2
isomorphic?

This problem is part of the folklore and it does not appear in any published work to
date. It is implicit in Leech [15], where both skew Boolean algebras (as they are now
understood) and skew Boolean algebras possessing a maximal class are introduced.

The difficulty in obtaining a solution to Problem 1 evidently lies in constructing
the required isomorphism. For skew Boolean ∩-algebras, a related problem has been
considered and resolved in the positive by Bignall [2]. The proof exploits sheaf (Boolean
product) representations to obtain the desired isomorphism; as skew Boolean algebras
admit only a weak Boolean product representation, the proof does not seem readily
adaptable.

Problem 1 is of purely technical interest in the theory of skew Boolean algebras.
However, it assumes greater prominence in logics arising from (structurally enriched)
skew Boolean algebras. Very roughly speaking, let S be an algebraisable logic arising
from a quasivariety K of 1-regular (necessarily structurally enriched) skew Boolean
algebras. Given n residually distinct constant terms of K, 1 < n < ω (working with the
finite case for simplicity), S admits n− 1 negation connectives via implication into m,
for each m a constant term distinct from 1. A positive solution to Problem 1 would
imply that these n−1 negations are not essentially different, and hence that it is enough
to fix a single such negation univocally when studying S; whereas a negative solution to
Problem 1 would imply that these n− 1 negations are all distinct, and hence that they
must all be accounted for in any study of S.

References

[1] Bauer, A., Cvetko-Vah, K., “Stone duality for skew Boolean algebras with intersections”, Houston J. Math.,
39, 2013, pp. 73–109.

[2] Bignall R.J., Quasi primal Varieties and Components of Universal Algebras, Ph.D.thesis, The Flinders

University of South Australia, 1976.
[3] Bignall R.J., Leech J., “Skew Boolean algebras and discriminator varieties”, Algebra Universalis, 33, 1995,

pp. 387–398.
[4] Blok W. J., Pigozzi D., “On the structure of varieties with equationally definable principal congruences III”,

Algebra Universalis 32, 1994, pp. 545–608.

[5] Bucciarelli A., Ledda A., Paoli F., Salibra A., “Boolean-like algebras of finite dimension”, Preprint, 2018,

arXiv:1806.06537 [cs.LO].
[6] Burris S.N., Sankappanavar H.P., A Course in Universal Algebra, Springer, Berlin, 1981.

[7] Cvetko-Vah K., Salibra A., “The connection of skew Boolean algebras and discriminator varieties to Church
algebras”, Algebra Universalis, 73, 2015, pp. 369-390.

[8] Cvetko-Vah K., Leech J., Spinks M., “Skew lattices and binary operations on functions”, Journal of Applied

Logic, 11(3), 2013, pp. 253–265.
[9] Fichtner, K., “Fine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen”, Monatsb.

Deutsch. Akad. Wiss. Berlin, 12, 1970, pp. 21–25.



ON NONCOMMUTATIVE GENERALISATIONS OF BOOLEAN ALGEBRAS 27

[10] Gudder S., Latrémolière F., “Boolean inner-product spaces and Boolean matrices”, Linear Algebra and its
Applications, 431, 2009, pp. 274–296.

[11] Gudder S., “Boolean vector spaces”, Preprint, 2014.
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