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Abstract

Rationale: Fine particulate matter air pollution of 2.5 mm or less in
diameter (PM2.5) has been associated with an increased risk of
respiratory disease, but assessments of specific respiratory infections
in adults are lacking.

Objectives: To estimate the rate of respiratory infection healthcare
encounters in adults associated with acute increases in PM2.5

concentrations.

Methods: Using case–crossover methods, we studied
498,118 adult New York State residents with a primary diagnosis of
influenza, bacterial pneumonia, or culture-negative pneumonia
upon hospitalization or emergency department (ED) visit
(2005–2016). We estimated the relative rate of healthcare
encounters associated with increases in PM2.5 in the previous 1–7
days and explored differences before (2005–2007), during (2008–
2013), and after (2014–2016) implementation of air quality
policies and economic changes.

Results: Interquartile range increases in PM2.5 over the previous
7 days were associated with increased excess rates (ERs) of

culture-negative pneumonia hospitalizations (2.5%; 95% confidence
interval [CI], 1.7–3.2%) and ED visits (2.5%; 95% CI, 1.4–3.6%), and
increased ERs of influenza ED visits (3.9%; 95% CI, 2.1–5.6%).
Bacterial pneumonia hospitalizations, but not ED visits, were
associated with increases in PM2.5 and, though imprecise, were
of a similar magnitude to culture-negative pneumonia (Lag Day 6
ER, 2.3%; 95% CI, 0.3–4.3). Increased relative rates of influenza ED
visits and culture-negative pneumonia hospitalizations were
generally larger in the “after” period (P, 0.025 for both outcomes),
compared with the “during” period, despite reductions in overall
PM2.5 concentrations.

Conclusions: Increased rates of culture-negative pneumonia
and influenza were associated with increased PM2.5 concentrations
during the previous week, which persisted despite reductions
in PM2.5 from air quality policies and economic changes.
Though unexplained, this temporal variation may reflect altered
toxicity of different PM2.5 mixtures or increased pathogen
virulence.
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Influenza and bacterial pneumonia are a
leading cause of adult morbidity and
mortality in the United States (1), and their
risk factors are actively being studied (2, 3).
Although fine particulate matter air
pollution of 2.5 mm or less in diameter
(PM2.5) has previously been associated with
general cardiopulmonary morbidity and
mortality worldwide (4), studies have also
identified it as a potential contributor to
respiratory infection in both adults and
children (5–9), specifically, influenza
(5, 6) and bacterial pneumonia (7, 9). An
increased risk of respiratory infection
associated with PM2.5 exposure has been
reported in Utah (6, 8), and in a study
of four other U.S. cities (10). Recent
studies examined PM2.5 associations with
respiratory viral infections in children
(0–17 yr old) and adults (>18 yr old) (6),
lower respiratory infection severity in older
adults (>65) (8), and respiratory disease in
general, including pneumonia in children
and adults (10). Although specific
respiratory infections (e.g., respiratory
syncytial virus) have been studied in
children, it is unclear whether specific
respiratory infections (e.g., culture-negative
pneumonia, influenza, and bacterial
pneumonia) in adults are associated with
short-term PM2.5 exposure.

Changes in the ambient concentration
and composition of PM2.5 provide a unique
opportunity to investigate whether these
changes in ambient PM2.5 composition
result in changes in the rate of respiratory
infection associated with each IQR increase
in PM2.5 concentration (i.e., is the same
PM2.5 mass more or less toxic?). Policy
initiatives to improve air quality in New
York State and the Northeast Region of
the United States over the past 10 years
were summarized by Squizzato and
colleagues (11). These initiatives included
requirements for ultralow sulfur (,15 ppm S)
fuel for on-road and nonroad diesel, and
after July 1, 2012, for home heating.
Pollution controls were required for
on-road, heavy-duty, diesel vehicles.
Ontario, Canada has closed its coal-fired
power plants, and emission controls were
installed on Ohio River Valley plants,
reducing NOx and SO2 emissions upwind
of New York State. The 2008 recession
and the change in relative prices of natural
gas and coal and oil resulted in a shift
in generation to gas (11). PM2.5, NOx, and
SO2 concentrations have decreased across
New York State after these policies were

implemented and the 2008 recession
occurred (11). However, the composition of
PM changed, with increased concentrations
of secondary organic carbon (SOC) (12),
which might modify the rate of respiratory
infections associated with PM2.5.

To address the relative lack of studies of
specific respiratory infections in adults, we
used a large, multiyear (2005–2016) New
York state–wide database to separately
estimate the rates of hospital admissions and
emergency department (ED) visits for
influenza, bacterial pneumonia, and culture-
negative pneumonia, among New York
adult residents, associated with short-term
increases in mean PM2.5 concentrations in
the previous 1–7 days. We hypothesized that
increased PM2.5 concentrations would be
associated with increased rates of all
outcomes. We then explored whether each
relative rate differed before (2005–2007),
during (2008–2013), and after (2014–2016)
the changes in air quality described
previously here.

Methods

Study Population
From the SPARCS (Statewide Planning and
Research Cooperative System) database,
respiratory infection hospital admissions
and ED visits (patients treated and released
home) were retained for all adult New York
residents (>18 yr of age) who lived within
15 miles of the Buffalo, Rochester, Albany,
Bronx, Manhattan, or Queens, New York,
PM2.5 monitoring sites from January 1, 2005
to December 31, 2016 (n = 319,570
hospitalizations and n = 178,548 ED visits
were available for analysis). We included
subjects with a primary diagnosis (at time of
hospitalization or ED visit) of influenza
(International Classification of Disease
[ICD] 9 = 487.0, 487.8, 488.0, 488.01,
488.02, 488.1, 488.11, 488.12, 488.8, 488.81,
488.82; ICD10 = J09, J09.X1, J09.X2, J10.0,
J10.00, J10.01, J10.08, J10.1, J11.0, J11.00,
J11.08, J11.1), bacterial pneumonia (ICD9 =
481, 482, 483.0, 483.1; ICD10 = J13, J14, J15,
J16, A48.1), or culture-negative pneumonia
(ICD9 = 485, 486; ICD10 = J18). Culture-
negative pneumonia is a common diagnosis,
as modern culture techniques only identify a
causative pathogen in under 50% of the
patients diagnosed with pneumonia (13, 14).
Culture-negative pneumonia is best viewed
as an undifferentiated infection, as it can be
bacterial or viral in origin. This study was

reviewed and approved by the Institutional
Review Board at the University at Albany,
State University of New York.

Air Pollution and Weather
Hourly PM2.5 concentrations at the six
urban air-monitoring stations (Buffalo,
Rochester, Albany, the Bronx, Manhattan,
and Queens, NY) were retrieved from the
U.S. Environmental Protection Agency
(https://aqs.epa.gov/api). Further details on
measurement of PM2.5, temperature, and
relative humidity have been described
previously (12). For each subject, daily
PM2.5, temperature, and relative humidity
values were assigned from the monitoring
station closest to their residence.

Statistical Analysis
To estimate the rate of respiratory infection
hospital admissions and ED visits associated
with each interquartile range (IQR) increase
in PM2.5 concentration on the same day (Lag
Day 0), we used a time-stratified, case–
crossover design (15, 16). For all influenza
hospital admissions from all six urban sites
(assuming a common slope across sites), we
fit a conditional logistic regression model
stratified on each respiratory infection
hospital admission matched set (one case
and three to four control periods per
subject), and regressed case–control status
(i.e., case = 1, control = 0) against the mean
PM2.5 concentration on case and control
days. Because case periods and their
matched control periods are derived
from the same person, and a conditional
analysis is conducted, non–time-varying
confounders, such as underlying medical
conditions, long-term time trends, and
season, are controlled by design. As is
standard in case–crossover studies, from
this statistical model, the odds ratio is a
direct estimate of the rate ratio and its
95% confidence interval (CI). The excess
rate (ER) is the percent increase in the
rate per unit of exposure (i.e., [rate
ratio2 1.0]3 100%).

We included natural splines for
temperature and relative humidity (4 df),
which were determined using Akaike’s
information criterion (17). This same model
was run for the PM2.5 means of Lag Days
0–1, 0–2, 0–3, 0–4, 0–5, and 0–6, and then
separately for ED visits and hospitalizations
for influenza, bacterial pneumonia, and
culture-negative pneumonia. Because we
examined seven lag times for each disease
subgroup, statistical significance for slopes
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was defined as P less than 0.007 (0.05/7).
The lag times averaged over increasing
lag days rather than segmental lag days
(i.e., Day 1, Day 2, Day 3) were used to more
accurately view the ER pattern across lag
times. In the RESULTS section, we present the
largest lagged effect, and then describe
whether other lag times had similar effects.
Furthermore, inference was made
considering several factors, including the
pattern of response across these lag
averaging times, the precision of each
estimate, as well as statistical significance.

Next, we explored whether the
association between PM2.5 and each
respiratory infection admission rate differed
by period (before = 2005–2007, during =
2008–2013, after = 2014–2016), by adding
indicator variables for period and two
interaction terms of period and PM2.5 to the
model. The significance of the difference of
the PM2.5 effect across periods was evaluated
by a 2-df test for interaction. If statistically
significant, we examined whether the ER in
the after period was different from the ER
in the during and before periods, using a
P value of 0.025 to define statistical
significance. All analyses were done using R
version 3.0.1 (https://www.r-project.org/).

Results

Subjects who were hospitalized or required
ED evaluation for respiratory infection were
predominantly older in the before period
(mean age, 65 yr) compared with the during
and after periods (59 yr old). The race/
ethnicity of the subject population changed
from the before to the after period with a
decreased proportion of white subjects (54%
down to 43%) and a larger proportion of
black and Hispanic subjects (24% up to 27%
and 15% up to 18%, respectively). The race
and sex of subjects (53–54% female)
remained stable across the multiple periods.

The majority of patients in the before,
during, and after periods had health care
encounters (hospitalizations or ED visits)
for culture-negative pneumonia (89%, 77%,
and 68%, respectively). The most common
comorbidities for subjects included
hypertension (20–38%), fluid and electrolyte
disorders (15–28%), diabetes (13–22%), and
heart failure (13–22%) (Table 1). The mean
(6SD) length of stay for subjects decreased
from the before period (5.6 d) to the after
period (3.3 d) (Table 1). The overall number
of yearly hospitalizations steadily decreased

(from 34,458 to 21,735), whereas the
number of ED visits increased (from 9,799
to 20,874) from 2005 to 2016. The
distributions of PM2.5 concentrations for
case and control periods are shown in
Figure 1 and in Table E1 in the online
supplement. Overall, case and control
period concentrations were similar. We did
not observe a difference in the seasonal
patterns for respiratory infection
hospitalizations or ED visits from 2005 to
2016 (see Table E2). For influenza, the
highest proportion of admissions and ED
visits were present in winter and spring,
whereas the lowest proportion of admissions
was present in summer and fall.

For culture-negative pneumonia, IQR
increases in PM2.5 concentration in the
previous 2–7 days (Lag Days 0–1, 0–2, 0–3,
0–4, 0–5, and 0–6) were associated with
increased rates of hospitalizations, with the
largest in the previous 5 days (ER, 2.5%; 95%
CI, 1.8–3.2%) and 6 days (ER, 2.5%; 95% CI,
1.7–3.2%) (Figure 2; Table 2). Similarly, IQR
increases in PM2.5 in the previous 4–7 days
were associated with increased rates of
culture-negative pneumonia ED visits, with
the largest in the previous 6 days (ER, 2.5%;
95% CI, 1.4–3.6%). Although there were no
associations between PM2.5 and influenza
hospitalizations, IQR increases in the
previous 5–7 days were associated with
increased rates of ED visits for influenza, with
the largest at 7 days (ER, 3.9%; 95% CI, 2.1–
5.6%). Though imprecise due to low sample
size, the ER of bacterial pneumonia
hospitalizations in the previous 1–7 days
were of similar magnitude to those of culture-
negative pneumonia (Lag Day 6 ER, 2.3%;
95% CI, 0.3–4.3). No association was
observed between PM2.5 and ED visits for
bacterial pneumonia (Table 2 and Figure 2).

Next, we explored whether the relative
rates of hospitalizations for each outcome
associated with IQR increases in ambient
PM2.5 concentrations in the before, during,
and after periods were different to
determine whether changes in PM
concentration and composition may have
differentially triggered these respiratory
infections (Table 3). The rate of culture-
negative pneumonia hospitalizations, but
not ED visits, associated with each 6.2-mg/
m3 increase in PM2.5 concentration in the
previous 3 days (Lag Days 0–2) was different
across periods (P = 0.002), with the largest
ERs in the before period (2.9%; 95% CI, 2.0–
3.8%) and after period (3.5%; 95% CI,
1.5–5.5%) compared with the during period

(1.0%; 95% CI, 0.1–1.9%) (Figure 3). There
were also generally similar patterns in the
previous 2, 4, and 5 days. Similarly, the
increased rate of influenza ED visits
associated with each 6.4-mg/m3 increase in
PM2.5 concentration in the previous 3 days
was different across periods (P, 0.001), with
the largest ERs in the before period (3.0%;
95% CI, 0.5–5.6%) and after period (5.7%;
95% CI, 2.6–8.8%) compared with the during
period (20.7%; 95% CI, 22.5% to 1.1%)
(Figure 3). There were similar patterns in the
previous 1, 2, 4, and 5 days (Table 3).

Although inconsistent with the
pattern of relative rates of influenza ED
visits, the rate of influenza hospital
admissions associated with increased PM2.5

concentrations was largest in the before
period, with lower rates in the during and
after periods. Although not significantly
different, the rate of ED visits for bacterial
pneumonia was substantially larger in the
after period than in the during and before
periods. There were no patterns in the
relative rate of hospital admissions for
bacterial pneumonia (Table 3).

Discussion

As hypothesized, we found that increased
relative rates of hospital admissions and ED
visits for culture-negative pneumonia
(1–2%) were significantly associated with
increased PM2.5 concentrations in the
previous 2–7 days, whereas increased
relative rates of influenza ED visits (3–4%),
but not hospital admissions, were associated
with increased PM2.5 concentrations in the
previous 5–7 days. Increased relative rates of
bacterial pneumonia hospitalizations were
also associated with increased PM2.5

concentrations in the previous 1–7 days. These
increased relative rates were independent of
temperature and relative humidity changes, as
well as subject characteristics (e.g., age, race,
sex, socioeconomic status, previous health
events) that were controlled by design in the
case–crossover study.

A few studies have previously reported
positive associations between short-term
ambient air pollution exposures and
hospitalizations for pneumonia (8),
outpatient clinic visits for pneumonia (18),
viral respiratory infections (5, 6), and
general lower respiratory tract infections in
subjects with asthma (19), with some
associations reported in children (5, 6, 20)
and others in adults (5, 8, 19). The Global
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Burden of Disease estimated a 50–100%
increased risk of lower respiratory tract
infection associated with 50- to 150-mg/m3

increases in PM2.5 concentration (9). A
recent study of adults in the Wasatch Valley

of Utah reported a 7% (95% CI, 4–11%)
increased odds of lower respiratory tract
infection associated with each 10-mg/m3

increase in PM2.5 in the previous 7 days (6).
These results are consistent with our finding

of an ER of hospitalization and ED visits for
culture-negative pneumonia (1–2%) and ED
visits for influenza (1–4%) (Table 2). The
increased association of air pollution with
ED visits for influenza in the previous 5–7

Table 1. Characteristics of respiratory infectious hospital admissions and emergency department visits (2005–2016), by study
site/city

Characteristic Before (n = 125,817) During (n = 250,845) After (n = 121,456)

n % n % n %

Infection
Culture-negative pneumonia 111,450 89 193,713 77 83,060 68
Influenza 6,057 5 38,745 15 27,484 23
Bacterial pneumonia 8,310 7 18,387 7 10,912 9

Male 59,377 47 116,344 46 55,530 46
Age, yr, mean (SD) 65 (21) 59 (22) 59 (21)
>18–39 18,016 14 54,975 22 26,979 22
>40–49 14,296 11 30,407 12 14,092 12
>50–59 15,689 12 36,159 14 19,416 16
>60–69 16,988 14 34,098 14 18,126 15
>70–79 23,160 18 36,110 14 17,173 14
>80 37,668 30 59,096 24 25,670 21

Race/ethnicity
White 67,804 54 121,693 49 52,563 43
Black 30,181 24 65,887 26 32,924 27
American Indian 790 1 1,267 1 335 —
Asian 4,150 3 9,945 4 — —
Native Hawaiian 47 — 161 — — —
Hispanic 18,260 15 43,293 17 21,699 18

Year
2005 44,257 35 — — — —
2006 41,569 33 — — — —
2007 39,991 32 — — — —
2008 — — 40,894 16 — —
2009 — — 51,487 21 — —
2010 — — 36,711 15 — —
2011 — — 39,736 16 — —
2012 — — 39,260 16 — —
2013 — — 42,757 17 — —
2014 — — — — 40,412 33
2015 — — — — 38,438 32
2016 — — — — 42,606 35

Season
Spring 27,126 22 57,659 23 22,744 19
Summer 33,880 27 61,976 25 35,484 29
Fall 25,263 20 49,191 20 20,553 17
Winter 39,548 31 82,019 33 42,675 35

Length of stay, d, mean (SD) 5.6 (9.0) 4.3 (8.2) 3.3 (5.6)
Comorbidity
Hypertension 47,285 38 83,298 33 24,610 20
Fluid, electrolyte, acid–base 35,774 28 64,010 26 17,990 15
Diabetes mellitus 28,161 22 53,119 21 16,164 13
Heart failure 25,652 20 54,113 22 15,616 13
Disorders of lipoid metabolism 17,523 14 46,396 19 16,689 14
Other chronic heart disease 22,705 18 39,104 16 10,642 9
Cardiac arrhythmia 21,918 17 38,262 15 11,269 9
Cardiac pacemaker 15,035 12 34,835 14 12,665 10
Anemia 15,964 13 31,175 12 8,598 7
Asthma 14,260 11 31,187 12 9,856 8
Other diseases of the lung 12,535 10 28,939 12 8,204 7
Nondependent abuse of drugs 9,996 8 27,455 11 9,923 8
Dyspnea 7,265 6 27,688 11 9,232 8
Exposures to health hazards 6,158 5 24,215 10 13,482 11
Constitutional Symptoms 9,898 8 23,967 10 9,634 8

Definition of abbreviation: SD = standard deviation.
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days is consistent with the clinical
expectation that 95% of patients with
influenza become symptomatic within
2 days (21) and may present for care
over the next several days as symptoms
worsen. A recent large epidemiologic study
of respiratory disease and PM2.5 in four U.S.
cities reported increased ERs (0.6–0.8%) of
ED visits for respiratory disease (chronic
obstructive pulmonary disease, upper
respiratory infection, pneumonia, asthma
and/or wheeze, and bronchiolitis) per
IQR increase in PM2.5 in the previous 2
days. There were similar effect sizes for
pneumonia ED visits associated with
increased PM2.5 concentrations in the
previous 1–4 days in each city (10).
However, the lack of specificity in the type of
infection makes comparisons between
studies more difficult. Our inclusion of
culture-negative pneumonia (in addition to
bacterial pneumonia and influenza) may
begin to address this issue. Culture-negative
pneumonia is a common clinical diagnosis,
due to the limitations in modern culture
techniques to accurately establish a
microbiologic diagnosis for pneumonia
(14). Due to current diagnostic limitations,
such as obtaining adequate samples,
differentiating infection from colonization,
and the difficulty of growing organisms
on artificial media, making even a basic
differentiation between broad categories of
infection (bacterial vs. viral) is difficult (13).

We found the rate of culture-negative
pneumonia hospitalizations associated
with each 6.2-mg/m3 increase in PM2.5

concentration in the previous 3 days, and
the rate of influenza ED visits associated
with each 6.4-mg/m3 increase in PM2.5

concentration in the previous 3 days, were
increased after air quality changes occurred
from 2008–2013 (11) compared with the
during period. Although concentrations
of PM2.5 and several other pollutants
subsequently decreased, changes in PM
composition (e.g., proportionally more SOC)
also occurred (12). Similarly, although
pollutant concentrations generally decreased
in a recent study in Los Angeles, increases in
oxidant concentrations were also observed
(22). The pattern of PM2.5/culture-negative
pneumonia associations across time periods
suggests that these changes in PM
composition and air pollution mixture may
indicate that, by some mechanism, the same
mass of PM is more toxic in the after period
than in earlier periods.

Mechanistically, air pollution’s
negative impact on local airways leading
to inflammation and disruption of the
lung’s innate immune system, including
mucociliary clearance, macrophage
function, or epithelial barrier disruption, is
well studied in cell and rodent models (23–
25). The cellular signaling pathways of
cytokine-mediated inflammation directed
by specific signaling proteins (i.e., Toll-like

receptors) appear to be a common response
to both air pollution exposure and infectious
pathogens, leading to the hypothesis that air
pollution can alter the innate immune
system’s response to infection (26). A study
of diesel exhaust exposure’s effect on human
respiratory epithelial cells observed an
upregulation of the interferon (IFN) gene
production via a Toll-like receptor pathway
(27), indicating a downstream effect of
particulate air pollution on the genetic
response to viral infection (28). The
increased IFN activity from PM2.5 exposure
may lead to a priming effect on the immune
system, thereby producing a more severe
response to viral infections (26).
Furthermore, a recent double-blind crossover
study of diesel exhaust exposure in humans
observed reductions in two antimicrobial
peptides (a-defensin 1 and S100A7) in
bronchoalveolar lavage fluid, indicating an
impaired ability to resolve inflammation
from infections (29). The potential for PM2.5

to increase the immune/inflammatory
response to infection and decrease the
ability to clear this inflammation is likely
to lead to a severe course of infection
requiring an ED visit or hospitalization.
Further mechanistic research to elucidate the
impact of specific components of PM2.5 on
the innate immune response to infection is
needed.

In our New York State study, SOC
is one component observed in higher
concentrations in the after period compared
with the during period (12). SOCs are
a PM2.5 component formed from the
atmospheric oxidation of biogenic
and anthropogenic volatile organic
compounds to form reactive particles
(30). In the online supplement, we
describe the methods for estimating the
concentrations of SOC (see Equation E1
and Figure E1) and the statistical analysis
of the differences in concentrations
among the periods (see Figures E2 and E3,
Tables E3 and E4). Similar to overall PM2.5,
the broad mechanism of SOC-mediated
injury is thought to involve the creation
or delivery of reactive oxygen species,
leading to oxidative stress and inflammation
in the lungs and other organs (31, 32). It is
currently unknown to what degree the
mechanism of SOC-induced injury overlaps
with that of injury from other pollutants.
Though speculative, the similar general
pattern of relative rates of healthcare
encounters for infection observed in our
study to the pattern of SOC concentrations
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(both higher in the after period compared
with the during period) may indicate that
PM2.5 rich in SOC may alter the body’s
immune response to infection.

Other possible explanations for the
increased relative rates of health care
encounters for influenza in the after
period in relation to PM2.5 compared
with earlier periods could be an increase
in the virulence of infections, changes in
the use or efficacy of the flu vaccine, or
an overall change in clinical care. Despite
stability in vaccination rates (33), the
Influenza Vaccine Effectiveness Network
has observed significant variability in the
estimated efficacy of the flu vaccine each
year (34), thought to be related to genetic
changes (antigenic drifts and shifts), which
change an individual strain’s virulence (35,
36). The nationwide trend for influenza
infection over the course of the during and
after periods of our study (2010–2016) was
one of increasing rates of hospitalizations
and total numbers of medical visits (37).
Similarly, across New York State, the
proportion of patients hospitalized
for influenza infection increased from
the before to after period (from 17% to
27%, respectively). Thus, the increasing

virulence of influenza infection over
time may contribute to the increased
relative rate of influenza ED visits
associated with PM2.5. An explanatory
hypothesis is that, even if the impairment
of the immune system is lessened in the
setting of lower levels of PM2.5, the
virulence of the organism may lead to a
proportionally increased severity in course,
increasing the relative rate of clinically
significant infection over time. Finally, the
trend of increasing numbers of ED visits
and decreasing numbers of hospitalizations
for culture-negative pneumonia and
bacterial pneumonia may reflect an overall
change in medical practice, in part due
to accountable care organization–driven
hospital policies facilitating treatment in
the ED and discharge to outpatient care,
rather than hospital admission (38).

Although this study could be
generalized to most of the eastern half
of the United States, where there were
decreases in the burning of high sulfur
bituminous coal resulting in reductions
of SO2 concentrations (39), there were
also several limitations to consider. First,
although multiple national and New York
State air quality and energy policies

were implemented in the during period
(2008–2013), a global recession also
occurred in 2008. This economic downturn
decreased demand for energy that, in turn,
contributed to the reduction in NO2 levels in
the United States (40). This economic
downturn also added to the decreased air
pollutant concentrations, due to a slowing of
industrial production and reduced energy
consumption (41). Thus, any change in the
rate of respiratory infection associated with
air pollutant concentrations cannot be
attributed to individual policies or economic
events. Second, all study subjects from
each site were assigned the same PM2.5

concentrations for a specific day, regardless
of how close they lived to a monitoring
site, which likely resulted in exposure
misclassification. This error is likely a
combination of Berkson and classical error,
resulting in a bias toward the null and
underestimates of effect (42, 43). It is also
possible that the observed differences in
period-specific rate ratios may be due to
differences in the degree of exposure
misclassification and underestimation by
period (i.e., the ambient PM2.5 concentration
is a better proxy for individual subject’s
PM2.5 exposure in the after period than

Table 2. Excess rate of respiratory infectious hospital admissions and emergency department visits associated with interquartile
range increases in fine particulate matter air pollution of 2.5 mm or less in diameter concentration, by lag time, and outcome*

Outcome Lag Days Hospital Admissions Emergency Department Visits

IQR (mg/m3) n Cases Excess Rate %
(95% CI)

P Value IQR (mg/m3) n Cases Excess Rate %
(95% CI)

P Value

Culture-negative
pneumonia

0 7 267,905 0.7 (0.2 to 1.3) 0.01 6.6 110,982 20.1 (21.0 to 0.8) 0.78
0–1 6.5 269,968 1.5 (0.9 to 2.2) ,0.001 6.1 112,113 0.6 (20.4 to 1.6) 0.22
0–2 6.2 272,191 2.1 (1.5 to 2.8) ,0.001 5.8 113,187 1.3 (0.3 to 2.3) 0.01
0–3 5.7 272,681 2.3 (1.7 to 3.0) ,0.001 5.3 113,382 1.8 (0.7 to 2.8) ,0.001
0–4 5.5 273,017 2.5 (1.8 to 3.2) ,0.001 5.1 113,521 2.2 (1.1 to 3.2) ,0.001
0–5 5.2 273,266 2.5 (1.7 to 3.2) ,0.001 4.9 113,623 2.5 (1.4 to 3.6) ,0.001
0–6 5 273,430 2.4 (1.6 to 3.1) ,0.001 4.8 113,679 2.4 (1.3 to 3.6) ,0.001

Influenza 0 6.4 14,072 0.5 (21.8 to 2.9) 0.67 6.7 55,819 0.5 (20.8 to 1.8) 0.47
0–1 6.5 14,388 20.2 (22.8 to 2.5) 0.88 6.4 56,573 0.6 (20.7 to 2.0) 0.36
0–2 6.4 14,690 20.8 (23.6 to 2.0) 0.56 6.2 57,308 1.1 (20.3 to 2.6) 0.14
0–3 5.7 14,729 20.7 (23.3 to 2.1) 0.63 6 57,365 1.9 (0.4 to 3.5) 0.01
0–4 5.6 14,738 20.8 (23.7 to 2.1) 0.58 5.9 57,399 2.9 (1.3 to 4.6) ,0.001
0–5 5.5 14,750 20.3 (23.3 to 2.8) 0.86 5.7 57,430 3.6 (1.9 to 5.3) ,0.001
0–6 5.5 14,758 20.6 (23.8 to 2.6) 0.71 5.4 57,455 3.9 (2.1 to 5.6) ,0.001

Bacterial
pneumonia

0 6.5 29,774 1.1 (20.4 to 2.7) 0.16 6.2 6,862 1.6 (21.9 to 5.1) 0.37
0–1 6 30,066 1.9 (0.2 to 3.6) 0.03 6 6,925 1.4 (22.4 to 5.3) 0.48
0–2 5.7 30,378 2.1 (0.4 to 3.9) 0.02 5.2 7,002 1.5 (22.2 to 5.3) 0.44
0–3 5.3 30,442 1.8 (0.0 to 3.6) 0.05 5.5 7,007 0.2 (24.0 to 4.5) 0.94
0–4 5.2 30,484 1.7 (20.2 to 3.6) 0.07 5 7,010 0.0 (24.1 to 4.3) 0.99
0–5 5.2 30,509 2.3 (0.3 to 4.3) 0.03 5 7,019 0.4 (24.0 to 5.0) 0.87
0–6 5 30,518 2.1 (0.1 to 4.2) 0.04 5 7,020 0.5 (24.2 to 5.4) 0.83

Definition of abbreviations: CI = confidence interval; IQR = interquartile range.
*Models adjusted for temperature (4 df) and relative humidity using natural splines (4 df).
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the during period, resulting in a greater
underestimation in the during period).
Although similar patterns were not observed
with all outcomes, future analyses are

needed to investigate this further. Third, the
diagnosis classification codes were changed
mid-study from the 9th version of the ICD
(ICD9) to the 10th version (ICD-10) on

October 1, 2015 (in the after period).
However, all ICD9 and ICD10 codes were
reviewed by study physicians to ensure
consistency of disease groups included and
excluded from the study. Therefore, any
outcome misclassification and downward
bias should be minimal. To minimize the
degree of overlap between case and control
periods, we performed a standard case–
crossover analysis limited to 7-day lag
periods rather than including longer lag
periods. In addition, we did not include
multiple lag days of temperature and
relative humidity in our models, and thus,
it is possible that this, in part, could be
an explanation for the smaller effect
sizes observed at Lag Day 0 compared
with other lag days. Finally, SOC values
could only be estimated every third or sixth
day, depending on the monitoring site,
because of the sampling and analysis
schedule and time. Thus, a comparable
analysis with SOC is not possible with
these data.

In summary, increased rates of culture-
negative pneumonia healthcare encounters,
ED visits for influenza and hospitalizations
for bacterial pneumonia were associated
with increased concentrations of PM2.5

over the previous few days. Changing
pollutant mixtures, resulting from air
quality policies and decreased energy
demand and consumption during the
recession, may have changed the toxicity of
the PM2.5 in this study. The complex
relationship between different types of
respiratory infections and changing
compositions of air pollution mixtures
during and after periods of improved air
quality requires further study. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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