
SPARQL/T

A query language with SPARQL’s syntax for semantic mining of textual complaints

Bruno Quintavalle†
 Università Ca’ Foscari

 Venezia, Italy
 bruno.quintavalle@unive.it

Salvatore Orlando
 Università Ca’ Foscari

 Venezia, Italy
 orlando@unive.it

ABSTRACT
Extracting information from complaints, either scraped from the
Web or received directly from the client, is a necessity of many
companies nowadays. The aim is to find inside them some
actionable knowledge. To this purpose, verbal phrases must be
analyzed, as many complaints refer to actions improperly
performed. The Semantic Roles of the actions (who did what to
whom) and the Named Entities involved need to be extracted.
Moreover, for the correct interpretation of the claims, the
software should be able to deal with some background knowledge
(for example, a product’s ontology). Although there are already
many libraries and out of the shelf tools that allow tackling these
problems singularly, it may be hard to find one that includes all
the needed tasks. We propose here a query language that adopts
the syntax of SPARQL to extracts information from natural
language documents, pre-annotated with NLP information. The
language provides the user with a simple and uniform interface to
the most useful NLP tasks, isolating him or her from the details of
the specific implementation. We argue that a query language is
much easier and intuitive (from a laymen point of view) than an
imperative one. Moreover, the adoption of the SPARQL syntax
allows to seamlessly mix, inside the same query, NLP patterns
with traditional RDF/OWL ones, simplifying the integration with
Semantic Web technologies.

KEYWORDS
SPARQL, Information Extraction, Complaints, Forums, Semantic
Web

1. INTRODUCTION
Complaints are usually convoluted descriptions of complex
problems. To correctly retrieve them and extract from them all the
interesting details, the structure of the sentence cannot be
disregarded.
Special attention must be given to verbal phrases, as complaints
are usually descriptions of actions that have been performed
whilst they shouldn’t (or the other way around). From most
actions we probably need to extract at least the performer and the
object (Semantic Role Labeling), to be tracked along the discourse
(Co-reference Resolution). Sometimes we may need to refer to
very specific entities (products, services, companies), whose name
can be highly ambiguous and hard to detect precisely (Named

Entity Recognition). Other times we may want to refer to concepts
in general terms, allowing synonyms (WordNet) or trusting some
measure of similarity (Word Embedding). Finally, some
background knowledge may also need to be considered, like for
example ontologies that describe products and services, with their
reasonable ranges of prices, performances, delivery times and so
on.
It is often hard to find a library or tool that cover all the necessary
tasks, and this sometimes forces the user to also employ different
programming languages. Moreover, imperative programming
languages like Python or Java requires specific skills, which may
rule out many potentially interested users. The solution we
propose is the query language SPARQL/T (SPARQL over Text)
that adopts the syntax of the popular SPARQL query language
(avoiding the introduction of another language or dialect), but that
acts not only on RDF graphs, but also directly on texts by
exploiting their NLP annotations. NLP tasks are available in the
form of specific Triple Patterns (TPs), recognizable by the prefix
of the predicate function. This provides a level of abstraction from
the tools or libraries actually involved in the extraction. Having
the same syntax, TP involving NLP task can be seamlessly
intermixed with the traditional ones that refer to RDF triples and
graphs, thus allowing us to design a SPARQL-like language that
supports the so-called Hybrid Queries. Another important feature
of SPARQL/T is its ability to deal with uncertainty and similarity.
Uncertainty comes from the well-known ambiguity of natural
languages, and vector similarity by the exploitation of Word and
Sentence Embeddings.

In general, a query language is expected to be more intuitive and
easier to use than an imperative one, as it focuses on what needs
to be extracted instead on how to extract it. SPARQL/T specifically
aims at making Information Retrieval and Extraction from
complaints a task achievable by almost anyone, possibly with the
aid of a suitable User Interface. Moreover, although we focused on
company complaints, indeed SPARQL/T can be used to other form
of text documents that present similar degrees of complexity, like
for example clinical narratives [Zhang. et al. 2018].

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 the SPARQL/T based on NLP
techniques, and Section 4 the Hybrid Queries allowed by
SPARQL/T. Section 5 the role of relation algebra to process
queries, while Section 6 summarizes the function currently
implemented in SPARQL/T. Finally, Section 7 and 8 discuss the
system architecture and some performance figures, and Section 9
draws some conclusions and future work.

Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

2. RELATED WORK
The related work considered here are of two kinds. First, we
explore an obvious alternative to SPARQL/T: extract all possible
useful triples from the documents into a triple store, and then
employ a standard SPARQL engine. Second, we have a look at
other tools that employ SPARQL’s syntax for purposes like ours.

2.1 Knowledge Extractors tools
Knowledge Extractors (KE) tools transform Natural Language
documents into machine-interpretable formats, often into
RDF/OWL graphs than can be stored into standard triple stores
(and thus efficiently indexed) and queried in standard SPARQL
FRED [8] automatically generates RDF/OWL ontologies from
(multilingual) natural language text. It employs Named Entity
Recognition (NER) to link its output to semantic web knowledge
and Word Sense Disambiguation (WSD) to align with WordNet
and BabelNet. Among FRED points of strength is its ability to
represent the structure of the discourse, according to the
Discourse Representation Theory [9].

PIKES [6] extracts entities and relations between them by
identifying semantic frames, i.e., events and situations describing
n-ary relations between entities. In the resulting knowledge
graph, each node uniquely identifies an entity of the world, event
or situation, and arcs represent relations between them. The
PIKES tool implements a rule-based knowledge distillation
technique using SPARQL-like rules formulated as SPARQL
Update INSERT. . . WHERE. . . statements that are repeatedly
executed until a fixed-point is reached.

OpenIE is an Information Extraction paradigm that aims at
avoiding human intervention like hand crafted extraction rules or

large hand annotated training sets [2]. See [10] for a recent
survey of the different implementations. The result of an OpenIE
extraction is a set of triples of strings (subject, predicate, object), a
textual approximation to an entity-relationship graph called
Extraction Graph [5]. The elements of an Extraction Graph are
just strings. Many entities and relations may appear in different
forms (“Einstein” / “Albert Einstein”). No effort is spent to relate
entities to some ontology, nor to put relations into a canonical
form (like invented(X, Y)). Also, it is accepted that the
extractor makes errors, and inconsistent information contained in
the source text is not tried to be solved. However, a confidence
degree of each triple is calculated based on the number of times it
has been extracted from the corpus.

Compared with SPARQL/T approach, pre-extracted knowledge
can be indexed, and thus has the advantage of speed. However,
the KE task is still a very difficult one. Similar documents do not
always result in structurally similar graphs as desired, making it
difficult to write queries with reasonable recall. With SPARQL/T
similarity-based approach it is much easier to achieve good recall,
although precision often suffers. However, KE results, and in
particular OpenIE triples, are going to be implemented in the
future release of SPARQL/T.

2.2 Tools that employ SPARQL syntax
iDocument [1] is an Ontology Based Information Extraction tool
(OBIE) that employs SPARQL syntax in the extraction templates
in place of the traditional regular expressions. The annotations,

that are pre-extracted by a NLP pipeline, are potentially quite rich,
and include Named Entity Recognition, Structured Entity
Recognition, Fact Extraction and Scenario Extraction. iDocument
is perhaps the tool closer to ours due to the adoption of the
SPARQL syntax for Information Extraction using templates.

QLever SPARQL+Text [4] is another tool that employs SPARQL
syntax. It allows to efficiently search on text corpus combined
with an RDF knowledge base. It only considers Named Entities
annotations, that are linked to some Knowledge Bases (Freebase
Easy [3], Clue-Web 2012). QLever can mix standard SPARQL
triple patterns, referring to the knowledge base, with others that
can reference the text and its NE annotations (with two built-in
predicates: ql:contains-entity and ql:contains-

word). QLever approach for joining results employs the notion of
co-occurrence: the results of each triple pattern are joined when
they occur inside the same text segment (i.e. a crispy version of
SPARQL/T approach). Different kinds of text segmentations are
expected to give different results.

Mìmir [13] is an open-source framework for integrated semantic
search over text, document structure, linguistic annotations, and
formal semantic knowledge. It allows search constraints against a
knowledge base, by accessing at run time a predefined SPARQL
endpoint.

All these tools share aims and ideas with SPARQL/T. However,
none of them seem to be able to deal with similarity and
uncertainty.

3 PURE NLP QUERIES
To illustrate the use of SPARQL/T, we start with a query that
addresses only the text and its NLP annotations (i.e. it does not
refer to any ontology). Let our information need be to find
mentions of the following concept: “A company has increased the
cost of its services without the customer's knowledge”.

This complex concept can be split into two parts:

1. Increase the price of something

2. Not knowing something

The query in Figure 1 shows a possible approach, with the two
parts extracted separately with two groups of triple patterns
enclosed in curly braces (i.e.: two Basic Graph Patterns, or BGP in
SPARQL terminology). In SPARQL/T everything that is specified
inside a BGP must be found inside the same sentence of the
document (according to the sentence splitting available in the
annotations). The first part is further broken down into four
components, extracted into four variables:

1. who (a company name)

2. inc (a verb like ‘increase’ or ‘rise’)

3. pri (a word like ‘price’ or ‘cost’, which must
be the subject of inc)

4. ser (the name of the service)

About the second part, we only care about its presence. Moreover,
notice that its negation may be stated just implicitly, for example
with a sentence like “I only discovered that in the bill”. For these
reasons, for part 2 we rely on Sentence Embedding, using the
variable knw.

 SPARQL/T Query NLP Task
1 SELECT ?who ?ser WHERE {
2 { ?who NLP:NER “ORGANIZATION” . NER
3 ?inc EMB:ANY “increase raise”. Word Emb.
4 ?inc NLP:POS “VERB” . POS Tag.
5 ?inc DEP:DOBJ ?what Dep. Par.
6 ?pri EMB:ANY “price cost” . Word Emb.
7 ?ser NLP:NER “SERVICE” . NER
8 }
9 { ?knw SEN:ANY “I know”

 }

}

Sentence
Embedding

Figure 1: A SPARQL/T query that looks for organization
that increase the cost of their services without notifying

the clients

Notice that, when compared with a traditional SPARQL queries,
the query in Figure 1 can be seen as acting on a virtual graph that
has partially been extracted into various NLP annotations, but that
is still partially embedded inside the text. Figure 2 depicts this
idea, i.e.: Text + Annotations  Virtual Graph.

Figure 2: A SPARQL/T query acts at the same time on the
text and on its annotations. Together they may be seen as
a sort of virtual semantic graph, only partially extracted.

The query in Figure 1 for example, if interpreted in
SPARQL instead of SPARQL/T, would perfectly match the
RDF graph in the upper part of the figure, which can be

seen as the virtual graph of the sentence below1.

1 Dependency tree obtained with Stanford CoreNLP 3.9.2 https://corenlp.run/
2 https://jena.apache.org/

4 HYBRID QUERIES
SPARQL/T allows to mix NLP BGP with standard RDF ones. The

latter are redirected, exactly as they are, to Apache Jena2, together
with the values of the variables previously extracted. On return,
the Jena results are joined to form a single relation. An example
of hybrid query is illustrated in Figure 3.

5 RELATIONAL ALGEBRA
SPARQL/T Triple Patterns (TPs) are of two kinds: the NLP ones,
that extracts snippets of text and URIs from the document and its
annotations, and the RDF ones, that exactly as in the SPARQL case
extracts URIs and Literals from an RDF graph. Both kinds of TPs
return a relation, i.e., a table of elements that can have up to three
columns (one for each variable in the TP). The elements of the
columns however, may represent three different things,
depending on the kind of TPs: snippets of text (a range S = [begin,
end] of tokens extracted), URI U and literals L3.

pref tel: <http://sparqlt.com/ontology/tel>

SELECT ?sen ?off ?pri

WHERE {

 { ?sen LEM:ANY ‘love like hate’.

 ?off NLP:EL ‘TEL_OFFER’.

 }

 { ?off tel:hasUnlimited tel:social .

 ?off tel:monthlyRate ?pri .

 }

}

Figure 3: SPARQL/T Hybrid Query that returns a table of
three columns: a word that express a sentiment (sen), the
name of a telephone offer (off) and its price (pri). Here
the first two TPs extracts things from the documents and
its annotation, whilst the last two refers to an RDF/OWL
ontology (not shown). Specifically, the LEM:ANY function
extracts from the text any word whose lemma is in the list

{love, like, hate}, whilst TEL_OFFER is the id of a class of
Named Entities, pre-annotated by an Entity Linking tool

and extracted with the NLP:EL function. sen and off are
required to be inside the same sentence, and the score is

inversely proportional to their distance. The last two TPs
are passed to a SPARQL endpoint (Apache Jena), together
with the values of off found in the text. The distinction

between NLP and RDF TPs is made using the prefixes: LEM
and NLP are reserved SPARQL/T prefixes. An URIs with
any other prefix, or without prefix at all, is assumed to

refer to the RDF/OWL graph.

Moreover, each row of the relations has a score  that indicates
the degree of truth of the extraction.  is in the range [0,1], and
can be for example a similarity measure in case of Word
Embeddings, a degree of confidence in case of Named Entity
Recognition or Entity Linking, or be simply equal to 1 for a crispy
TP.

3 In the case of NLP TPs, S is always present, L is the concatenation of the tokens in
S, whilst U is only present in case of Named Entity or Entity Linking TPs. In the case
of RDF TPs, S is always empty, the URI are stored into U and the literals into L.

https://jena.apache.org/

Relations extracted by TP are combined using Relational Algebra
operators similar to those adopted in SPARQL (see [7] for a
theoretical exposition, and the W3C recommendations for the
actual approach). The main difference is that in SPARQL/T we
need to combine the score  of the rows of the relations,
considering both the scores of the source rows and the way their
elements relates to each other (proximity, co-occurrences, …). For
example, in combining rows that share variables (NATURAL JOIN
operation), we cannot rely on exact match between elements,
because snippets of text extracted by different annotation
algorithms are unlikely to be exactly the same, and strings of the
document may not match exactly the literals in the ontology. A
similarity measure is used instead, calculated in a way that
depends on the values available. Priority is given to URI: if they
are present in both elements a crispy match is performed.
Otherwise, when present, snippets of text are compared, in terms
of their degree of overlapping. Finally, when comparing RDF
literals with text, robustness is sought through an edit distance
function (although this practice is discouraged, it allows to search
inside the document literals stored in an ontology. NER should be
used instead, whenever possible).

The score of the combination of a couple of rows R1 and R2 is
calculated using a Fuzzy Logic approach: if R1 and R2 are the
scores of the two rows and (V1, … VN) are the scores of each
couple of elements involved in the join operation (i.e. pertaining
to each common variable V), the score of the output row TO is:

𝜏𝑂 = 𝜏𝑅1⨂𝜏𝑅2⨂𝜏𝑉1⨂ ∙∙∙ ⨂𝜏𝑉𝑁
where ⊗ is any Fuzzy t-norm, typically the min() function (see for
example [12])

For the CROSS-PRODUCT operation, i.e. when the two relations
share no common variables, the output relation is formed by all
the possible couples of rows from the two input ones, scored
according to their distance in the document. We thus assume that
the closer two concepts are expressed in the documents, the
highest are the chances that they are related. However, CROSS
PRODUCT operations potentially lead to the exponentially
growth of the relations’ size, especially in those cases that
involves similarity measures (as any word is similar to any other,
albeit by a very small amount). This forced the introduction of a
memory constrained approach: after each join, the relation is
sorted according to the score and cropped to its first best N
elements. This beam-search approach to relational algebra, similar
to early termination in IR posting list merging, brings linear
execution time (proportional to the number of TPs), but also risks
losing correct results. So N is an hyperparameter of query
processing that needs to be properly tuned on the specific case.

6 FUNCTIONS LIST
Table 1 and Table 2 summarize the predicates of SPARQL/T triples
that apply to words, lemmas, sentences and their respective
embeddings. They have all the same syntax:

?var PREFIX:FUNCTION <list of words>.

The PREFIX of each predicate specifies the unit to consider
(word, lemmas, …), whilst the FUNCTION code specifies how to
use the list of words that follows (words are separated by spaces,
n-grams can be specified by joining words with the hyphen char).
For example, the first of the following TPs extracts all the words

whose lemma is either ‘love’ or ‘like’ (with score=1), whilst the
second extracts (almost) all the words in the document and score
them accordingly to the distance from their Word Embedding and
the average of the Word Embeddings of ‘buy’ and ‘rent’.

?x LEM:ANY ‘love like’ .

?y EMB:AVG ‘buy rent’ .

This first set of predicate function is quite homogeneous, meaning
most of the possible combinations of PREFIX and FUNCION
codes are valid, allowing users to quickly experiment different
variations. The remaining SPARQL/T functions are listed in Table
3. The Part Of Speech (POS), the Named Entity Recognition (NER)
and the Entity Linking (EL) functions extracts the respective
annotations, restricted to the kind specified in the literal (object)
part. NER accepts the name of a class of entities, which is
generally quite broad (persons, organizations, …), and returns
snippets of text. EL also accepts the name of a class of entities, but
it is normally narrower and context dependent (telephone-offer,
mobile-phones, …). Moreover, it associates the entity URI with the
snippet of text.

The Dependency Parsing (DEP) and the Semantic Role Labeling
(SRL) functions employ two variables and operates on the
respective annotation trees. For example, if x is already bound to
a verb, the following TP binds y to its object (according to the
dependency tree of the sentence):

?x DEP:DOBJ ?y

Finally, the Information Retrieval (IR) function allows to restrict
the rest of the SPARQL/T query to the results of an initial classical
IR query (redirected to Apache Lucene). Its purpose is to speed up
the query execution by limiting the data, whenever possible, and
it must appear as the first TP of the query itself.

PREFIX Units of text considered

WRD Words
LEM Lemmas
EMB Word Embedding
EML Word Embedding of Lemmas
SEN Sentence

Table 1: Possible prefixes of the homogeneous set of TPs,
that apply to sequences of tokens. The prefix indicates the

units to consider.

FUNCTION

ANY Match any of the listed elements

SEQ Match the entire sequence

PER Allows Permutation in the sequence

SUM Sum of the Word Embedding vectors

AVG Average of the Word Embedding vectors

REX Regular Expression

Table 2: Possible functions of the homogeneous set of TPs.
They indicate how to use the sequence of tokens specified

in the object position of the TPs.

Syntax NLP Task Func. & Param.
?x

NLP:POS

“lit”

POS
Tagging

lit{verb,noun, …}

?x

NLP:NER

“lit”

NER lit{person,

location,

organization …}

?x

NLP:EL

“lit”

Entity
Linking

lit=URI|entity_set

?x

DEP:FUN

?y

Dependency
Parsing

FUN{nsubj, dobj,

neg, …}

?x

SRL:FUN

?y

SRL FUN{ARG0,ARG1, …}

?x

IR:QRY

“query”

Information
Retrieval

query = Lucene

query string

Table 3: Other (non-homogeneous) SPARQL/T Triple
Patterns

7 ARCHITECTURE
The current version of the SPARQL/T engine does not focus on
speed. The dataset we expect to deal with may be big, but not huge
(certainly not the size of the web), and from the perspective of a
company that is mining its client problems, results are not
necessarily expected in real time (few hours of computation are
easily acceptable). The Corpus of documents in SPARQL/T is thus
divided into units of relatively small size (called segments) that
the query engine considers as a whole. Queries can run on a single
or a group of segments. Moreover, a mechanism is provided to
extract a small Working Segment from the corpus, using a Lucene
query, to be used to test and trim the queries before running the
full job. Each segment is made of two parts: one containing the
text and its annotations (ANN), serialized in JSON, and a binary
one containing the Sentence Embeddings (EMB). SPARQL/T also
employs the Apache Jena framework, for the RDF/OWL part, and
the Apache Lucene search engine, that is mainly involved in the
creation of the Working Segment but that can also be evoked
inside a SPARQL/T query.

SPARQL/T is written entirely in Java, using Antlr 4 library4 [11]
to parse query strings.

8 PERFORMANCE EVALUATION
Concerning the experimental setting, we used a dataset consisting
of 20,293 complaint messages downloaded from a single Italian
forum on Telephony, mostly regarding the TIM telephone
company, and related to the year 2018. We employed Word
Embedding vectors with 300 dimensions, downloaded from the

fastText5 web site. The tests were performed on a PC mounting
an AMD Athlon X4 880k at 4GHz, with 16 GB of RAM and SSD

4 https://www.antlr.org/

disk (GPU not used). Finally, we report execution time measured
in millisecond, and averaged over 10 trials.

Figure 4: SPARQL/T Architecture

In SPARQL/T most NLP annotations are pre-computed, and Word
Embedding comparisons only require a dictionary search and a
vector product. The bottleneck, if present, should be the algebra
operations, especially the CROSS PRODUCT for large relations.
To evaluate this bottleneck, we consider lists of TPs, build a
SPARQL/T query incrementally adding one TP at a time, and
measure its processing time. Specifically, Table 4 contains the five
Word Embedding TPs of our test query, each referring to a distinct
variable xi. The information need of the complete query is very
simple: find complaints that approximately mean “yesterday
(someone) requested to activate a Vodafone SIM” (i.e.: all the listed
words, or words similar to them, must be present inside the same
sentence and be close to each other).

i Triple Pattern (TP)
Cum. Time

(ms)

1 ?x1 EMB:ANY "attivare". 777
2 ?x2 EMB:ANY "richiesta" . 1885
3 ?x3 EMB:ANY "sim" . 2903
4 ?x4 EMB:ANY “vodafone” 3694
5 ?x5 EMB:ANY “ieri” 4516

Table 4: A sequence of TPs sharing no common variables.
The relations extracted by each TP are combined with a

sequence of CROSS-PRODUCT operations. The third
column report the execution time of the query (in ms)

when the TPs are added one at a time. As can also be seen
in Figure 7, time grows linearly with the number of TP.

This particularly simple query is translated into a sequence of
CROSS PRODUCT operations. The pseudo-code is depicted in
Figure 5. The third column on Table 4 reports the cumulative

5 https://fasttext.cc/

https://fasttext.cc/

execution time of the TPs, i.e. the time spent to execute the first i
TPs, for i = 1…5. The graph in Figure 7 clearly shows that the trend
is linear, thanks to the application of the top-k function that
avoids exponential behavior.

R=Extract(TP[1])
for i=2 to N
 R=CrossProduct(TopK(R), TopK(Extract(TP[i]))

Figure 5: Pseudo-code for the execution of the query in
Table 4: for each textual complaint, each TPi extracts its

relation, that is truncated to its top-k results and
combined (CROSS_PRODUCT) with the top-k results of

the relation at step i-1, to form the relation at step i.

The second set of TPs used in another test query is illustrated in
Table 5. Note that in this case the TPs are connected to each other
by common variables, and give rise to a sequence of JOIN
operations (the pseudo-code is reported in Figure 6. The
information need of the full query is now: “find complaints stating
that someone activated something Y, where Y is the object of a verb
like ‘activate’ (and thus it is not forced to be similar to anything in
particular)”.

i Triple Pattern (TP) Cum. Time (ms)

1 ?x LEM:ANY "attivare" . 109

2 ?x NLP:POS "verb" . 129

3 ?x DEP:NSUBJ ?y . 117

4 ?y NLP:POS "noun" . 118

5 ?y DEP:DET ?z . 138

Table 5: A sequence of TPs connected by variables. The
relations extracted by each TP are combined with a

sequence of JOIN operations. The third column report the
execution time of the query (in ms) when the TPs are

added one at a time.

Joiny(Joiny(Joinx(Joinx(Extract(tp1), Extract(tp2)),
 Extract(tp3)
),
 Extract(tp4)
),
 Extract(tp5))
)

Figure 6: Pseudo-code for the execution of the query in
Table 5: the relation extracted by each TP are combined by

JOIN operations. In this case the results of all TPs are
crispy (there is no similarity measure involved), so they

are not truncated by a top-k functions.

Figure 7: Cumulative execution time of a sequence of TPs
in the case of CROSS PRODUCT (Table 4) and JOIN (Table

2)

9 CONCLUSIONS AND FUTURE WORK
We discussed the main features of SPARQL/T and the current
prototype engine. We plan to include in the language many other
NLP tasks. Among the most urgent ones, there is the detection of
the negations in texts, as most complaints are about things that do
not work or have not been done. Sentiment Analysis would also
help in identifying the issues raised by customers, which are
probably stated in proximity of negative sentiment expressions.

REFERENCES
[1] B. Adrian, J. Hees, L. van Elst and A. Dengel, iDocument: using ontologies for

extracting and annotating information from unstructured text. In: Proceedings
of the 32nd Annual German Conference on AI, (Springer-Verlag, Heidelberg,
2009).

[2] M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni, Open
information extraction from the Web, in: Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January
2007, pp. 2670–2676.

[3] H. Bast, F. Baurle, B. Buchhold, and E. Haußmann. 2014. Easy access to the
Freebase dataset. In WWW. 95–98

[4] Bast, H., Buchhold, B.: Qlever: A query engine for efficient sparql+text search.
In:CIKM. pp. 647–656. ACM (2017)

[5] Cafarella, M. J., Banko, M., & Etzioni, O. (2006). Relational web search. Tech.
rep., University of Washington, Department of Computer Science and
Engineering. Technical Report 2006-04-02.

[6] Corcoglioniti, F., Rospocher, M., Palmero Aprosio, A.: A 2-phase frame-
based knowledge extraction framework. In: Proc. of ACM Symposium on
Applied Computing (SAC'16)

[7] Cyganiak, R. 2005. A relational algebra for sparql. Tech. rep. HPL-2005-170, HP-
Labs. http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html

[8] A. Gangemi, V. Presutti, D. R. Recupero, A. G. Nuzzolese, F. Draicchio, and M.
Mongiovì. Semantic web machine reading with FRED. Semantic Web, 8(6) 2017.

[9] H. Kamp. A theory of truth and semantic representation. In J. A. G. Groenendijk,
T. M. V. Janssen, and M. B. J. Stokhof, editors, Formal Methods in the Study of
Language, Part I, pages 277–322. Mathematisch Centrum, 1981.

[10] Niklaus C, Cetto M, Freitas A, Handschuh S, A Survey on Open Information
Extraction, arXiv:1806.05599

[11] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf,2013.
[12] U. Straccia, Foundations of Fuzzy Logic and Semantic Web Languages, CRC

Studies in Informatics Series, Chapman & Hall, 2013.
[13] Tablan, V., K. Bontcheva, I. Roberts, and H. Cunningham (2015). Mímir: An

open-source semantic search framework for interactive information seeking
and discovery. In: J. Web Sem. 30, pp. 52–68.

