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This paper investigates the role that risk attitudes play in the evolution of conventions 
in the long run. Risk aversion is shown to be associated with the evolution of maximin 
conventions, and risk seeking with the evolution of payoff dominant conventions.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

An important item on the agenda of stochastic evolutionary game theory1 since the pioneering works of Foster and Young 
(1990); Kandori et al. (1993); Young (1993) has been to study dynamics based on strategy updating rules with a firm 
grounding in human behavior, thus providing a constructive reply to the Bergin and Lipman (1996) critique that different 
behavioral rules may lead to different outcomes.2 A recent innovation in this literature comes from Sawa and Wu (2018a), 
who explore the consequences of individuals being averse to experiences of losses, a well-documented behavioral regularity 
in decision theory dating back to Kahneman and Tversky (1984). Sawa and Wu find a relationship between (i) loss aversion 
in a perturbed best response dynamic at the individual level, and (ii) the long run stability of outcomes in strategies that 
are both risk dominant and maximin.

The current paper takes a simpler approach that turns out to be more general, considering the effect of different risk 
attitudes on risk dominance and long run behavior in two-strategy games. Specifically, we show that if a strategy is risk 
dominant and maximin (i.e. what Sawa and Wu refer to as ‘loss dominant’), then the risk dominance of that strategy is 
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preserved when payoffs are subjected to concave utility transformations (i.e. under risk aversion). This is true even when 
utility is state-independent, in which case there is no reference-dependent choice and no loss aversion. Consequently, the 
relationship between loss dominance and loss aversion discovered by Sawa and Wu (2018a) holds because the loss averse 
utilities which they consider are concave at every state. That is, concavity is what drives these results.

An analogous set of results can be proven for convex utility transformations (i.e. under risk seeking). Specifically, if a strat-
egy is risk dominant and payoff dominant, then the risk dominance of that strategy is preserved when payoffs are subjected 
to convex utility transformations. Each of these results is bidirectional in the sense that, if a strategy is not risk dominant 
and maximin (respectively, payoff dominant), then there exists a concave (respectively, convex) utility transformation such 
that the strategy in question is not risk dominant after the transformation.

The next step is to consider state-dependent utility functions. We show that if a strategy is risk dominant at every state, 
then the convention at which every player plays that strategy is stochastically stable (Foster and Young, 1990) under the 
best response dynamic with uniform errors, even when utilities are state-dependent. The reason for this robustness is that 
choice probabilities depend on the sign but not the magnitude of payoff differences, and, in a two-strategy population game, 
this implies that the basin of attraction of the risk dominant convention remains larger than the basin of attraction of the 
alternative.

Insofar as the current paper studies the consequences of risk attitudes for stochastic stability, it can be interpreted as an 
evolutionary analogue of Weinstein (2016), who explores the consequences of risk attitudes for games’ rationalizable sets, 
Nash equilibria and correlated equilibria. In particular, we give conditions for the robustness of stochastic stability to risk 
attitudes when utility functions are not perfectly known. For example, if all that is known about players’ utility is that it 
is concave, then, whenever risk dominance is a condition for stochastic stability under linear utility, we must also add a 
maximin condition.3 For choice rules such as the best response dynamic with uniform errors, this additional condition will 
suffice to guarantee stochastic stability.

There exists other work that has examined two-strategy coordination games and identified relationships between 
stochastic stability under perturbed best response dynamics and qualities other than risk dominance.4 Perhaps most closely 
related, Maruta (2002) considers best response rules with elements of imitation, under which the resulting conditions for 
stochastic stability incorporate maximin and payoff dominance as well as risk dominance. A similar result is obtained by 
Bilancini and Boncinelli (2019), who consider best response with ‘condition dependence’, that is, under switching rates that 
decrease in realized payoffs.5

2. Model

Let N = {1, . . . , n} be a set of players. Assume that n is even.6 Every player has strategy set S = {A, B}. The payoff from 
playing s ∈ S against s′ ∈ S equals ass′ ∈ R. It is assumed that aA A > aB A and aB B > aAB . These payoffs are illustrated in 
Fig. 1[i]. A state x ∈ X := {0, 1n , . . . , 1} represents the share of players who play strategy B . At state x, payoffs are transformed 
by a strictly increasing utility function ux(·), as illustrated in Fig. 1[ii]. The expected utility U x(s) from playing strategy s
against a randomly chosen opponent at state x is thus given by

U x(s) = (1 − x) ux(asA) + x ux(asB). (2.1)

To keep exposition as clean as possible, assume U x(A) �= U x(B) for any x ∈ X , which holds generically.
Strategies are updated according to a perturbed best response rule parameterized by a small deviation probability ε ∈

(0, 1). Every period, a single player is selected at random. With probability (1 − ε), this player best responds, choosing 
the strategy that maximizes U x(·). However, with probability ε, he deviates and randomizes uniformly over both strategies. 
Formally, the process evolves according to the Markov process on X with transition kernel Pε given by

Pε

(
x, x + 1

n

)
= (1 − x)

(
(1 − ε)1U x(A)<U x(B) + ε

2

)
(2.2)

Pε

(
x, x − 1

n

)
= x

(
(1 − ε)1U x(A)>U x(B) + ε

2

)

3 A large class of dynamic processes that relates to risk dominance is the class of ‘skew-symmetric’ rules considered by Blume (2003) and Norman 
(2009a). Under such a rule, a player’s probability of playing a non-best response is weakly decreasing in the expected payoff loss relative to playing a best 
response. Similar rules are considered for arbitrary interaction structures by Peski (2010).

4 See Sawa and Wu for a discussion of their own related work (Sawa, 2015; Sawa and Wu, 2018b).
5 Regarding switching rates, Norman (2009b) shows that convergence to risk dominant strategies can actually be speeded up when switching rates 

under a perturbed best response dynamic are decreased for small payoff differences. Wood (2014) considers robustness to several behavioral biases in the 
beliefs of best responding agents and shows that, while selection results remain robust, convergence rates can be faster than is the case in the absence of 
these biases. Newton and Angus (2015) show that coalitional behavior can greatly speed or slow convergence rates and that these effects can depend on 
knife-edge payoff differences.

6 This means we avoid having to assume that n is large to guarantee that a single state is stochastically stable. Sawa and Wu (2018a) assume that n
is large to deal with odd-valued n but there is ambiguity in both their limiting definition of stochastic stability for large n and the part of the proof of 
Theorem 3.2 that deals with large n.



H.H. Nax, J. Newton / Games and Economic Behavior 116 (2019) 179–184 181
Fig. 1. Payoffs and utilities. aA A > aB A and aB B > aAB . Panel (i): For each combination of A and B , entries give payoffs for the row player. Panel (ii): At 
state x, the row player assesses payoffs from the game in Panel (i) according to the strictly increasing utility function ux(·).

Pε ( x, x ) = 1 − Pε

(
x, x + 1

n

)
− Pε

(
x, x − 1

n

)
.

As any state can be reached from any other state, Pε is irreducible and has a unique invariant measure, which we denote 
πε . If πε(x) → 1 as ε → 0, we say that state x is uniquely stochastically stable (Foster and Young, 1990).

3. Utility transformations without state dependence

Consider state-independent preferences. That is, ux(·) is constant in x. We write ux(·) = u(·). Thus we can rewrite (2.1)
as

U x(s) = (1 − x) u(asA) + x u(asB). (3.1)

Note that, for x = 1
2 , we have that U x(A) > U x(B) if and only if

u(aA A) + u(aAB) > u(aB A) + u(aB B). (3.2)

This is the condition for strict risk dominance of strategy A under utility u. Consequently, if (3.2) holds, then U x(A) > U x(B)

for all x ∈ {0, . . . , 12 }. Thus at least n
2 + 1 deviations are required for the process to transit from x = 0 to x = 1, whereas at 

most n
2 deviations are required for the process to transit from x = 1 to x = 0. Consequently, πε(0) → 1 as ε → 0. State x = 0

is uniquely stochastically stable.
Conditions can be given for the underlying game of Fig. 1[i] that make A strictly risk dominant in the transformed game 

of Fig. 1[ii]. Firstly, if A is risk dominant and maximin in the underlying game, then A is risk dominant in the transformed 
game for any concave utility function.

Proposition 1. (3.2) holds for every concave u(·) if and only if

(i) aA A + aAB > aB A + aB B (strict risk dominance), and
(ii) aAB ≥ aB A (maximin).

Proof.
Necessity.

If (i) does not hold, then any linear (therefore concave) u will not satisfy (3.2).

If (ii) does not hold, then aB A > aAB and it must be that aAB < min{aA A, aB A, aB B}. Let u(a) = a − min{aA A, aB A, aB B} for 
a ≥ min{aA A, aB A, aB B}, and u(a) = −λ (min{aA A, aB A, aB B} − a) for a < min{aA A, aB A, aB B}. Note that u(·) is concave for 
λ ≥ 1. For large enough λ, (3.2) does not hold.
Sufficiency. Let (i) and (ii) hold and u(·) be concave.

If aA A > aB B , then aA A > aB B > aAB ≥ aB A , so (3.2) holds as u(·) is strictly increasing.

If aA A ≤ aB B , then aB B > aAB ≥ aA A > aB A or aB B ≥ aA A ≥ aAB ≥ aB A . Define u′ so that u′(a) = u(a) everywhere except on 
the interval [min{aA A, aAB}, max{aA A, aAB}] on which u′(·) is given by the chord from (aA A, u(aA A)) to (aAB , u(aAB)). As the 
minimum of two concave functions (u and a straight line), u′ is concave. Note that u′(a) = u(a) for a = aA A, aAB , aB A, aB B . 
It follows that

1

2
u(aB B) + 1

2
u(aB A) = 1

2
u′(aB B) + 1

2
u′(aB A) ≤︸︷︷︸

by concavity

u′
(

1

2
aB B + 1

2
aB A

)

<︸︷︷︸
by (i)

u′
(

1

2
aA A + 1

2
aAB

)
= 1

2
u′(aA A) + 1

2
u′(aAB) = 1

2
u(aA A) + 1

2
u(aAB),

which completes the argument. �
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The conditions in Proposition 1, taken together, comprise what Sawa and Wu (2018a) call ‘loss dominance’. We have 
shown that these conditions are needed to ensure that strategy A remains risk dominant under concave (i.e. risk averse) 
utility transformations, even without state dependence. Furthermore, a similar argument proves an analogous result for 
convex (i.e. risk seeking) utility transformations.

Proposition 2. (3.2) holds for every convex u(·) if and only if

(i) aA A + aAB > aB A + aB B (strict risk dominance), and
(ii) aA A ≥ aB B (payoff dominance).

The proof of Proposition 2 is relegated to the appendix as it has a similar structure to the proof of Proposition 1. Note 
that weak variants of Propositions 1 and 2 can be proved if we replace the strict inequalities of Condition (i) and expression 
(3.2) with weak inequalities.

The difference in the conditions of Propositions 1 and 2 arises from the following. Concave utility can make bad payoffs 
relatively worse, so to ensure that strategy A remains risk dominant under such utility, a maximin condition is required to 
ensure that the smallest possible payoff in the payoff matrix is not associated with A. Conversely, convex utility can make 
good payoffs relatively better, so to ensure that strategy A remains risk dominant under such utility, a payoff dominance 
condition is required to ensure that the largest possible payoff in the payoff matrix is associated with A.

4. State-dependent utility

Now consider state-dependent ux and let (3.2) hold for all x. That is,

For all x, ux(aA A) + ux(aAB) > ux(aB A) + ux(aB B). (4.1)

In words, A is risk dominant in the transformed game under the utility function at any state. This would be the case, for 
example, if ux were concave and the conditions of Proposition 1 held. Risk dominance of A at every state implies that 
U x(A) > U x(B) for all x ∈ {0, . . . , 12 }. As before, at least n

2 + 1 deviations are required for the process to transit from x = 0
to x = 1, whereas at most n

2 deviations are required for the process to transit from x = 1 to x = 0. Once again, x = 0 is 
uniquely stochastically stable.

The reason that state dependence does not change the implications of the model is that the choice probabilities in (2.2)
depend only on the ordinal ranking of U x(A) and U x(B). When risk dominance is preserved by ux , this ordinal ranking is 
determined to be U x(A) > U x(B) for all x ∈ {0, . . . , 12 } and choice probabilities at these states are exactly as before.

5. Example: prospect theory preferences

Sawa and Wu (2018a) consider the following utility function

ux(a) :=
{

(a − rx)α if a − rx ≥ 0,

−λ (rx − a)α otherwise,
(5.1)

where {rx}x∈X , rx ∈ R are state-dependent reference points, α ∈ (0, 1] represents diminishing sensitivity to gains and 
losses, and λ ≥ 1 represents the degree of loss aversion. If α = 1, then ux are piecewise-linear and concave. Moreover, 
the counterexample in the proof of the ‘Necessity’ part of Proposition 1 uses a utility function that satisfies (5.1) with 
rx = min{aA A, aB A, aB B} and α = 1. From Proposition 1 and our discussion of state dependence, we therefore recover the 
main theorem of Sawa and Wu (2018a).7

Theorem SW. (Theorem 3.2 of Sawa and Wu, 2018a)
x = 0 is uniquely stochastically stable for all utilities given by (5.1) with α = 1 if and only if

(i) aA A + aAB > aB A + aB B (strict risk dominance), and
(ii) aAB ≥ aB A (maximin).

Loss aversion (λ ≥ 1) has played no role beyond, in conjunction with constant sensitivity to gains and losses (α = 1), 
ensuring that (5.1) represents risk averse preferences at every state. To see beyond doubt that it is risk aversion that relates 
to the loss dominance conditions, now consider the case when strategy A satisfies (i) and (ii) of Theorem SW, but does not 

7 Restricting attention to subclasses of concave utility can weaken the conditions for (3.2) to hold. For example, if we restrict attention to linear utility, 
then we only require condition (i) of Proposition 1. Theorem SW shows that the class of utilities given by (5.1) with α = 1 does not lead to such a 
weakening. However, Sawa and Wu (2018a, Theorem 5.1) show that weaker conditions apply under the additional restriction that rx equals the average 
payoff over all players.
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satisfy payoff dominance. That is, we have aB B > aA A . Consider preferences given by (5.1) with rx ≡ aB B . It is clear that, for 
small enough α (that is, when utility is sufficiently S-shaped), inequality (3.2) is reversed. The converse of the argument 
that follows (3.2) then implies that x = 1 is uniquely stochastically stable. Importantly, by setting rx ≡ aB B we have been 
able to use the convex part of the utility curve, ensuring that Proposition 1 does not apply.8
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Appendix A. Remaining proofs

Proof of Proposition 2.
Necessity.

If (i) does not hold, then any linear (therefore convex) u will not satisfy (3.2).

If (ii) does not hold, then aB B > aA A and it must be that aB B > max{aAB , aB A, aA A}. Let u(a) = a − max{aAB , aB A, aA A} for 
a ≤ max{aAB , aB A, aA A}, and u(a) = λ (a −max{aAB , aB A, aA A}) for a > max{aAB , aB A, aA A}. Note that u(·) is convex for λ ≥ 1. 
For large enough λ, (3.2) does not hold.
Sufficiency. Let (i) and (ii) hold and u(·) be convex.

If aAB > aB A , then aA A ≥ aB B > aAB > aB A , so (3.2) holds as u(·) is strictly increasing.

If aAB ≤ aB A , then aA A > aB A ≥ aB B > aAB or aA A ≥ aB B ≥ aB A ≥ aAB . Define u′ so that u′(a) = u(a) everywhere except on 
the interval [min{aB A, aB B}, max{aB A, aB B}] on which u′(·) is given by the chord from (aB A, u(aB A)) to (aB B , u(aB B)). As the 
maximum of two convex functions (u and a straight line), u′ is convex. Note that u′(a) = u(a) for a = aA A, aAB , aB A, aB B . It 
follows that

1

2
u(aB B) + 1

2
u(aB A) = 1

2
u′(aB B) + 1

2
u′(aB A) = u′

(
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2
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by (i)

u′
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2
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2
aAB
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≤︸︷︷︸

by convexity
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2
u′(aA A) + 1
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u(aA A) + 1

2
u(aAB),

which completes the argument. �
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