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1. Introduction 

 

After the seminal paper by Schluter and Trede (2002), who introduced concepts 

and tools for extreme value theory to the econometrics, part of the literature on 

inequality measures has concentrated on the consequences on inference due to 

heavy upper tail of the income distribution. More in details, the focus is on 

inferential problems created by population income distributions whose right tail 

decays slowly like a power function, i.e.  

𝑃(𝑌 > 𝑦)~𝛽𝑦−𝛼 as 𝑦 → ∞                                                                                    

(1) 

𝛼 is the stability index and provides information on moments finiteness, if 𝛼 < 1, 

the mean is infinite mean and also the variance, if 𝛼 < 2, the variance is infinite. 

Examples of this type of distributions, often called “heavy tailed”, are the 

Singh-Maddala, Pareto, Generalized Beta distributions. For these heavy tailed 

distributions, standard methods of inference, both asymptotic and bootstrap, are 

unreliable. The underlying intuition is that as tail heaviness increases, the 

population moments increase and eventually cease to exist, whilst the (finite) 

sample moments tend to underestimate them.  

In the attempt to overcome severe inference problems, a number of contributes 

have presented in the literature. Broadly speaking, works on this topic can be 

divided into two groups. The first group includes methods focusing on point 

measures of inequality and aiming at handling the limits of conventional inference 

(in particular, bootstrap inference) in the presence of heavy tails. The second group 

includes methods based on partially ordering income distributions using stochastic 

dominance and related criteria, one such is Donald et al. (2012).  

In the present review, we will concentrate in particular on the first group of 

methods about which a heat debated has developed in the last 10 years. On the one 

hand, there are approaches oriented to improve the finite sample performance in 
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case of very heavy tails, based on bootstrap and permutation (Davidson and 

Flachaire, 2007; Dufour et al. 2017). On the other hand, there are approaches based 

on deriving asymptotic expansions for the distributions, to transform the statistics 

opportunely (Schluter, 2012; Schluter and van Garderen, 2009).  

This paper is structured as follow. In the second section the contribute by 

Davidson and Flachaire (2007) is discussed. The third section is devoted to 

Schluter (2012). The fourth section presents the very recent paper by Dufour et al. 

(2017). The fifth section concludes.  

 

 

2. Davidson and Flachaire (2007) 

 

Davidson and Flachaire (2007), DF07 hereafter, begin by studying the finite-

sample performance of asymptotic and bootstrap inference for inequality measures, 

in particular they concentrate on the Generalized Entropy class. Their preliminary 

simulations show that, in spite of large samples of usually iid observations, neither 

asymptotic nor standard bootstrap inference perform well, in particular severe 

overrejection of the null hypothesis is documented. As anticipated in the first 

section, the reason of this is that asymptotic and bootstrap inference is very 

sensitive to the exact nature of the upper tail of the income distribution, especially 

in cases of infinite variance. 

Focussing on the Theil index
1
, DF07 propose two alternative bootstrap to deal 

with these cases of infinite variance: i) a revised version of the m out of n bootstrap 

(moon bootstrap) and ii) a semiparametric bootstrap.  

The m out of n bootstrap (Politis and Romano, 1994; Bickel et al. 1997) is based on 

bootstrap samples of dimension m<n, where n is the original sample size, and it is 

known in literature as a good option when the standard bootstrap fail or it is 

difficult to prove its consistency.  

The performance of the moon bootstrap is shown via simulations, for the Theil 

index, n=50, m=2,...,50, from a Singh-Maddala distribution which can successfully 

mimic observed income distributions in various countries (Brachman et al., 1996) 

and whose cumulative distribution function is 

𝐹(𝑦) = 1 −
1

(1+𝑎𝑦𝑏)𝑐                                                                                                

(2)  

                                                      
1
 For a random variable 𝑦 with cumulative distribution function 𝐹, the Theil index can be written 

as  𝑇(𝐹) = (
𝑣𝐹

𝜇𝐹
) − log(𝜇𝐹), where 𝜇𝐹 = 𝐸𝐹(𝑦) and 𝑣𝐹 = 𝐸𝐹(𝑦 log 𝑦). 
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where a=100, b=2.8, c=1.7. The tail parameter 𝛼=bc=4.76 is a choice that closely 

mimics the net income distribution of German households. DF07 results show that 

for m=22 the percentage of rejection is very close to the nominal level. However, 

the moon bootstrap performance is very sensitive to the choice of m. In particular, 

for m=n the moon bootstrap coincides with the standard one and approaches 

serious overrejection; by reducing m the number of rejections decreases, but when 

m is too small, the moon bootstrap approaches underrejection. Given these results, 

DF07 introduce a different version of the moon bootstrap. To do this, they firstly 

quantify the bias that leads to overrejection, then they approximate it via the moon 

bootstrap (with some choice of m), finally, they obtain an adjusted p-value 

(denoted revised moon bootstrap p-value). 

As an alternative to the revised moon bootstrap, DF07 propose a 

semiparametric bootstrap that combines a parametric bootstrap for the right tail 

with a standard bootstrap for the main body of the distribution. In a first step, it is 

estimated the index of stability of the right tail of the distribution (resorting to the k 

greatest order statistics of a sample of size n, for some integer 𝑘 ≤ 𝑛)  

𝛼̂ = 𝐻𝑘,𝑛
−1   and 𝐻𝑘,𝑛 = 𝑘−1 ∑ log 𝑦𝑛−1 − log 𝑦𝑛−𝑘+1

𝑘−1
𝑖=0                                    (3)  

where 𝑦𝑗 is the j-th order statistic of the sample, the choice of k is a matter of trade-

off between bias and variance. Common choice, usually based on graphical 

methods, and adopted here, is the square root of the sample size (Coles, 2001).  

In a second step, the bootstrap samples are drawn from a distribution defined as 

a function of a probability 𝑝𝑡𝑎𝑖𝑙 that constitutes the tail of the distribution. Each 

observation of the bootstrap sample is, with probability 𝑝𝑡𝑎𝑖𝑙, a drawing from the 

distribution with cumulative density function 

𝐹(𝑦) = 1 − (𝑦/𝑦0)𝛼̂ 

where 𝑦 > 𝑦0 and 𝑦0 is the order statistic of rank 𝑛̅ = 𝑛(1 − 𝑝𝑡𝑎𝑖𝑙) of the sample 

and, with probability 1 − 𝑝𝑡𝑎𝑖𝑙, a drawing from the empirical distribution of the 

sample of the smallest 𝑛(1 − 𝑝𝑡𝑎𝑖𝑙).   

Table 1  ERP (𝜶=4.76, h=0.4, m is the closest integer to √𝒏)  

n 50 100 500 1000 2000 3000 

Asymptotic 0.140 0.115 0.071 0.062 0.052 0.051 

Standard bootstrap 0.058 0.049 0.032 0.022 0.021 0.020 

Moon bootstrap (revised) -0.043 -0.0018 0.021 0.020 0.020 0.020 

Semiparametric bootstrap 0.026 0.022 0.005 0.001 -0.002 0.003 
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Simulations results by DF07 from Singh-Maddala distribution are summed up 

in tables 1 and 2, where 𝑝𝑡𝑎𝑖𝑙 = ℎ𝑘/𝑛, h=0.3, 0.4, 0.6, 0.8. The performance is in 

terms of Error in Rejection Probability, ERP, (left hand tail) for the Theil index, 

hence the closer the figures are to zero, the better. The revised moon bootstrap 

yields a slight improvement over the standard bootstrap. For the the semiparametric 

bootstrap, instead, the performance improves dramatically over the standard 

bootstrap, with insignificant ERPs for sample sizes greater than around 1000 (table 

1). Still ERP are unacceptably high in case of very heavy tails (table 2).  

Table 2  ERP (in case of heavier tail, h=0.4, n=100, m is the closest integer to √𝒏)  

 Asy Stand boot  Moon boot (rev) Semiparam boot 

𝛼=2.1 0.41 0.24 0.15 0.16 

𝛼=1.9 0.48 0.28 0.20 0.18 

 

All in all, the simulation results by DF07 show that by adopting their bootstrap 

proposals the inferential problem is mitigated, especially with the semiparametric 

bootstrap, but still performance deteriorates as the tail of the income distribution 

becomes heavier.  

 

 

3. Schluter (2012) 

 

Moving from the results by DF07 and by Schluter and van Gardener (2009), 

Schluter (2012), hereafter SCH12, proposes a normalizing transformation of 

inequality measures, in particular the Generalized Entropy class. The work is based 

on Edgeworth expansions to adjust asymptotic Gaussian approximations in order to 

deal with the inference problem due to the heavy upper tail of the income 

distribution discussed above. 

SCH12 begins by observing a systematic relationship between 𝐼 and 𝑣𝑎𝑟̂(𝐼) as 

potentially responsible of the severity of the inference problem. In particular, by 

plotting pairs of 𝐼 and 𝑣𝑎𝑟̂(𝐼) and observing the corresponding coverage error, the 

author recognize that the wrong confidence limits are associated to particularly low 

realizations of both 𝐼 and 𝑣𝑎𝑟̂(𝐼). Exploiting this relationship suggests the 

application of a variance stabilizing transform:  

𝐻(𝐼) = ∫
𝑑𝑢

[𝜎(𝑢)2]1/2

𝐼

0
                                                                                                   

(4)  
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where 𝜎2(𝐼) denotes the variance as a function of 𝐼. In conjunction with a 

bootstrap, the transform in (4) reduces the inference problem significantly. Finally, 

SCH12 develops asymptotic expansions for studentized (based on estimated 

variance)  

𝑆𝑛 = √𝑛 (
𝐼−𝐼

𝜎̂
)                                                                                                           

(5)  

where 𝜎̂ is the asymptotic standard deviation, derived with the delta method, 

and standardized inequality measures  (based on the theoretical variance)  

𝑆𝑛 = √𝑛 (
𝐼−𝐼

𝜎
)                                                                                                    (6)  

A finite sample experiment documents (whose detailed results are not reported 

here) the positive effects of the stabilizing variance transform for various levels of 

the heaviness of the tail for a Singh-Maddala distribution. Compared to the poor 

quality of the Gaussian approximation (discussed in the previous section), the 

performance of the studentized bootstrap, coupled with the stabilizing variance 

transform, improves. In spite of this improvement in the performance, however for 

𝛼 = 2 there is still a substantial difference between the nominal and the actual 

coverage behaviour.  

 

 

4. Dufour, Flachaire and Khalaf (2018) 

 

Dufour, Flachaire and Khalaf (2018), hereafter DFK18, propose Monte Carlo 

permutation and bootstrap methods for the problem of testing the equality of 

inequality measures between two samples. Their results cover the Generalized 

Entropy class.  In addition to the previously discussed problems of heavy upper 

tail, DFK18 emphasize that inequality measures inference can also be confounded 

because those indices, as functionals of the cumulative distribution function, can be 

equal even in case the underlying distributions differ.  

Consider two iid samples 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} and 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑚}, from 

cumulative distribution functions 𝐹𝑋 and 𝐹𝑌,  and the hypothesis testing 

𝐻0: 𝜃(𝐹𝑋) = 𝜃(𝐹𝑌)                                                                                            (7)  

where 𝜃(. ) is some functional on some subset F of distributions. Inequality 

indices are special cases of 𝜃(. ). A natural statistic is:  
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𝑇 =  𝜃(𝐹̂𝑋) − 𝜃(𝐹̂𝑌)                                                                                                

(8)  

where 𝐹̂𝑋 and 𝐹̂𝑌 are the empirical cumulative distributions and the studentized 

version is 

𝑆 =
𝜃(𝐹̂𝑋)−𝜃(𝐹̂𝑌)

√𝑉̂(𝜃(𝐹̂𝑋))+𝑉̂(𝜃(𝐹̂𝑌))

                                                                                       (9)  

and, for both 𝑇 and 𝑆, DFK18 consider three p-values (in addition to the 

asymptotic p-value, based on the Gaussian limiting distribution): (i) MC 

permutation p-value (ii) bootstrap p-value (iii)  bootstrap p-value that imposes the 

null hypothesis. 

The permutation p-value (i) is obtained from the distribution derived by 

permuting in all possible ways the 𝑁 = 𝑛 + 𝑚 observations of the combined 

sample  

𝑍 = {𝑋1, 𝑋2, … , 𝑋𝑛, 𝑌1, 𝑌2, … , 𝑌𝑚} 

under the assumption of iid samples. The permutations, in total (𝑚 + 𝑛)!, are all 

equally probably which in turn determines the permutational distribution of 𝑇 or 𝑆. 

𝐵 permutations are drawn at random (Dwass, 1957) from the set of all 

permutations and along with the actual data this yields 𝐵 + 1 random permutations 

of 𝑍., 𝐹̂𝑋∗  and 𝐹̂𝑌∗  are the corresponding cumulative distribution function and the 

value of the test statistic is:  

𝑇∗ =  𝜃(𝐹̂𝑋) − 𝜃(𝐹̂𝑌 )                                                                                       

(10)  

The following is the permutation p-value function, where 𝑗 = 1, … , 𝐵 refer to 

the series of permutation statistics and 1(.) is the indicator function:  

𝑝∗ = 2 min (
∑ 𝟏(𝑇∗𝑗≤𝑥)+1𝐵

𝑗=1

𝐵+1
;

∑ 𝟏(𝑇∗𝑗≥𝑥)+1𝐵
𝑗=1

𝐵+1
)                                                   (11)  

similar arguments hold for 𝑆∗𝑗, the studentized version of 𝑇∗𝑗. 

The bootstrap p-value (ii) is obtained moving from the bootstrap samples, 

(𝑋𝑏 , 𝑌𝑏) and 𝐹̂𝑋𝑏
 and 𝐹̂𝑌𝑏

, their corresponding empirical cumulative distribution 

functions; the bootstrap statistic is  
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𝑆𝑏 =
(𝜃(𝐹̂𝑋𝑏

)−𝜃(𝐹̂𝑌𝑏
))−(𝜃(𝐹̂𝑋)−𝜃(𝐹̂𝑌))

√𝑉̂(𝜃(𝐹̂𝑋𝑏
))+𝑉̂(𝜃(𝐹̂𝑌𝑏

))

                                                                (12)  

hence for a two-tailed test, the bootstrap p-value, based on 𝑗 = 1, … , 𝐵 bootstrap 

statistics:  

𝑝𝑏 = 2 min (
1

𝐵
∑ 𝟏(𝑆𝑏𝑗 ≤ 𝑆0);𝐵

𝑗=1
1

𝐵
∑ 𝟏(𝑆𝑏𝑗 > 𝑆0)𝐵

𝑗=1 )                                 (13)  

It is interesting to observe that the permutation approach does not differ 

radically from the bootstrap approach. For example, a sample obtained by 

permuting elements of the combined sample 𝑍 is equivalent to resampling without 

replacement 𝑁 observations from 𝑍. Thus, resampling with replacement from 𝑍 

represents an alternative bootstrap sample that respects the null hypothesis from 

which the bootstrap p-value under the null (iii) can be derived. This bootstrap 

sample is denoted by (𝑋°, 𝑌°), 𝐹̂𝑋°
 and 𝐹̂𝑌°

 are the corresponding empirical 

cumulative distribution functions; the bootstrap statistic is:  

𝑆° =
(𝜃(𝐹̂𝑋°

)−𝜃(𝐹̂𝑌°
))

√𝑉̂(𝜃(𝐹̂𝑋°
))+𝑉̂(𝜃(𝐹̂𝑌°

))

                                                                                 (14)  

and for a two-tailed test the bootstrap p-value under the null, based on 𝑗 =
1, … , 𝐵 bootstrap statistics, is  

𝑝° = 2 min (
1

𝐵
∑ 𝟏(𝑆° ≤ 𝑆0);𝐵

𝑗=1
1

𝐵
∑ 𝟏(𝑆° > 𝑆0)𝐵

𝑗=1 )                                      (15)  

DFK18 provide asymptotic conditions for the validity
2
 of the proposed 

methods (Romano, 1990; Chung and Romano, 2013) and they do it for two 

scenarios. In one case, they consider testing equality of the inequality measures 

when the population have the same distributions; this is equivalent to test 𝐻0: 𝐹𝑋 =
𝐹𝑌  versus the alternative 𝜃(𝐹𝑋) ≠ 𝜃(𝐹𝑌). Under this circumstance both level and 

size of the tests can be controlled, irrespective whether the distribution 𝐹𝑋 or 𝐹𝑌 is 

continuous or discrete, without any restriction on the form of the functional 𝜃. 

Moreover, permutation tests are exact both for the 𝑇 and 𝑆 statistic.  

                                                      
2 Validity is intended in the sense that under the null hypothesis the rejection frequency tends to the 

nominal level as the sample size increases. 
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In the second case, when the populations do not have the same distributions 

things are more complicated since permutations test are no longer exact. However, 

such tests can be asymptotically valid if some restrictions are satisfied. In 

particular, for 𝜃(. ) linear functional, if  

𝑉𝑎𝑠(𝜃(𝐹̂𝑋)) = 𝑉𝑎𝑠(𝜃(𝐹̂𝑌)) 

implying that 𝑛1/2 ((𝜃(𝐹̂𝑋) − 𝜃(𝐹𝑋)) and 𝑚1/2 ((𝜃(𝐹̂𝑌) − 𝜃(𝐹𝑌)) have the same 

asymptotic variance or if 
𝑚

𝑚+𝑛
→

1

2
 as 𝑛 → ∞ implying sample sizes asymptotically 

equal, asymptotic validity of the permutation test is guaranteed. 

Note that the (arithmetic) mean is a linear functional, but the quantile is not. 

So comparing means from samples of similar size is then asymptotically valid 

when the sample sizes are similar even if the underlying distributions are not 

identical, while comparing quantiles with a permutation test is no longer valid, in 

general, if the underlying distribution are not identical. 

The Generalized Entropy class considered by the authors is not a linear 

functional, unless the mean in the group is the same. However, given the scale 

invariance property of the Generalized Entropy class, it is possible to base a 

permutation test on the rescaled samples 

{
𝑋1

𝜇(𝐹𝑋)
, … ,

𝑋𝑛

𝜇(𝐹𝑋)
} and {

𝑌1

𝜇(𝐹𝑌)
, … ,

𝑌𝑚

𝜇(𝐹𝑌)
} 

Comparing these indices from the rescaled samples makes no difference, while 

it validates (asymptotically) the use of permutation test. In practice, the following 

combined samples will be used where the sample means 𝑋̅ and 𝑌̅ are adopted:  

𝑍𝑠 = {
𝑋1

𝑋̅
, … ,

𝑋𝑛

𝑋̅
,
𝑌1

𝑌̅
, … ,

𝑌𝑚

𝑌̅
} 

and the ame holds for Gini index.   

DFK18 carry out a simulations study focusing on extreme cases of heavy-tailed 

distributions in small samples to stress-test the methods employed in testing for 

Theil and Gini index. Competitors p-values are: asymptotic, standard bootstrap test 

𝑆𝑏, permutation 𝑇 rescaled (𝑇∗ based on 𝑍𝑠), permutation 𝑆 rescaled (𝑆∗ based on 

𝑍𝑠), permutation 𝑆 standard (𝑇∗ based on 𝑍), bootstrap 𝑆 rescaled (bootstrap 

𝑆° based on 𝑍𝑠), bootstrap S standard (bootstrap 𝑆° based on 𝑍).  

Table 3  Theil index – Empirical size (same distribution, (r) stands for rescaled sample)  



Rivista Italiana di Economia Demografia e Statistica 73 

 

𝛼 asy Boot Sb Perm T* (r) Perm S* (r) Perm S* boot S° (r) boot S° 

2.9 0.083 0.082 0.130 0.065 0.051 0.041 0.038 

3.2 0.075 0.081 0.115 0.061 0.051 0.042 0.038 

3.5 0.071 0.082 0.092 0.060 0.050 0.043 0.041 

4 0.068 0.080 0.075 0.055 0.050 0.043 0.041 

5 0.064 0.079 0.063 0.051 0.050 0.045 0.041 

6 0.061 0.078 0.060 0.050 0.050 0.048 0.047 

 

The size part of the experiment is based on data generated from several Singh-

Maddala distributions for which the Theil (and Gini) inequality index is the same 

and the tail index varies in [2.9,6.26], the value 2.9 corresponds to the most severe 

case of heavy tail. The sample size is small, 𝑚 = 𝑛 = 50. As a benchmark it is 

used the Singh-Maddala distribution with tail index equal to 4.76, the one used in 

DF07. 

Results for the case of identical distributions are presented in tables 3 (Theil 

index) and 4 (Gini index).  

Table 4  Gini index – Empirical size (same distribution, (r) stands for rescaled sample)  

𝛼 asy boot Sb perm T* (r) perm S* (r) perm S* boot S° (r) boot S° 

2.6 0.125 0.072 0.095 0.065 0.052 0.055 0.047 

2.9 0.117 0.071 0.087 0.064 0.051 0.054 0.048 

3.2 0.106 0.071 0.074 0.060 0.050 0.0500 0.048 

4 0.090 0.070 0.068 0.057 0.050 0.050 0.049 

5 0.081 0.069 0.062 0.053 0.050 0.050 0.049 

6 0.077 0.068 0.057 0.050 0.050 0.050 0.049 

 

As we can see from tables 3 and 4, in case of identical distributions results show 

that asymptotic and standard bootstrap do not perform well for the heaviest tails 

cases, whilst permutation tests and bootstrap based on 𝑆 statistic perform well. Test 

based on original samples provide exact inference, unlike test based on rescaled 

samples (this is because rescaling is done via the sample mean).  

Table 5  Theil index – Empirical size (different distribution, (r) stands for rescaled 

sample)  

𝛼 asy boot Sb perm T* (r) perm S* (r) perm S* boot S° (r) boot S° 

2.9 0.145 0.171 0.173 0.125 0.124 0.115 0.116 

3.2 0.120 0.135 0.137 0.104 0.096 0.090 0.088 

3.5 0.083 0.105 0.090 0.071 0.068 0.062 0.062 

4 0.071 0.091 0.073 0.055 0.053 0.050 0.050 

4.76 0.062 0.087 0.065 0.053 0.052 0.047 0.048 

5.5 0.061 0.086 0.061 0.051 0.051 0.048 0.048 

6 0.062 0.086 0.061 0.051 0.051 0.049 0.050 
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Table 6  Gini index – Empirical size (different distribution, (r) stands for rescaled 

sample)  

𝛼 asy boot Sb perm T* (r) perm S* (r) perm S* boot S° (r) boot S° 

2.6 0.138 0.090 0.105 0.085 0.083 0.082 0.081 

 2.9 0.082 0.087 0.092 0.077 0.078 0.070 0.070 

3.5 0.082 0.072 0.071 0.091 0.059 0.057 0.056 

4 0.078 0.070 0.068 0.058 0.055 0.053 0.053 

4.76 0.077 0.069 0.065 0.058 0.054 0.050 0.050 

5 0.072 0.068 0.065 0.054 0.053 0.050 0.050 

 

In case of different distributions (empirical size in tables 5 and 6), the 

distribution of 𝑋 is fixed (𝛼=4.76) and the distribution of 𝑌 changes and its tail 

becomes heavier (the lower the value of 𝛼). The results show an overall 

performance that worsens the more 𝐹𝑌 is heavy tailed than 𝐹𝑋. Permutation tests 

and bootstrap based on S statistic perform similarly and better than other 

methods.DFK18 also consider the effects of the increase of the sample size (results 

not reported here). When 𝐹𝑋 = 𝐹𝑌, the rejection frequencies decrease slowly for 

asymptotic and standard bootstrap test. Instead, permutation and bootstrap under 

the null based on studentized statistic perform very well in all cases. When 

𝐹𝑋 ≠ 𝐹𝑌 the rejection frequencies decrease slowly for all methods, but permutation 

and bootstrap under the null based on studentized statistic outperform the other 

methods. 

DFK18 also study the effects of the unequal sample sizes. In case 𝐹𝑋 = 𝐹𝑌, the 

more unequal are the sample sizes, the overrejections grow quickly for asymptotic 

and bootstrap test. Instead, permutation based on studentized statistic perform very 

well in all cases. In case 𝐹𝑋 ≠ 𝐹𝑌 for all methods overrejections grow quickly as 

the sample sizes are more unequal, but permutation tests this happens more slowly. 

As for the power side of the Monte Carlo experiment, DFK18 test the equality 

of an inequality measure between two samples, when the sample come from two 

distributions with different value of the inequality measure (𝐹𝑋 is fixed and 

𝐹𝑌 varies). Power comparison of the considered permutation and bootstrap methods 

are valid since rejection probabilities under the null hypothesis  
𝜃(𝐹𝑋) − 𝜃(𝐹𝑌) = 0 are close to the nominal level. The permutation approach 

(rescaled and standard) is more powerful than the bootstrap under the null (rescaled 

and standard), the difference between the two approaches being resampling without 

replacement rather than with replacement. Studentized permutation test based on 

rescaled outperforms all other methods, especially when 𝐹𝑌 is heavier tailed than 

𝐹𝑋. 
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All in all, results show that Monte Carlo methods outperform competitors both 

in terms of empirical size and power. Substantial reduction in size distortion is 

achieved more generally and studentized rescaled permutation tests outperforms 

the competing methods in terms of power. 

 

 

5. Conclusions 

 

In this work we present a review of some contributes of the econometric 

literature on comparing inequality measures. The main issue behind this bulk of 

recent literature is the heavy right tail of the income distribution, a condition under 

which standard methods of inference, both asymptotic and bootstrap are unreliable. 

The papers we review are attempts to deal with this inference severe problem 

focusing on bootstrap and permutation, as well as on asymptotic expansion. 

Theoretical and simulations performance has been provided by all authors and, as 

far as we can tell by results, it is, in particular, the most recent proposal based on 

permutation methods by DFK18 the one that seems to better handle the issue.   
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SUMMARY 

Inference for inequality measures: a review  
 

In this paper we present a review of the most recent contributes of the econometric 

literature on comparing inequality measures, focusing in particular on Theil index and Gini 

index. 

We will start by discussing the main issue behind this bulk of literature, which is the 

heavy tail of the income distribution. Specifically, the severity of the inference problem 

responds to the exact nature of the right tail of the distribution. Attention in the literature 

has been given to determining the limits of conventional inference in the presence of heavy 

tails and, in particular, of bootstrap inference. Then we review a number of methods based 

on alternative parametric bootstrap and, more recently on permutations that heated in this 

debate in the last 10 years. 
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