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Summary 
 

Ecological Risk Assessment (ERA) is a process undertaken for estimating the environmental 

harms caused by human activities. The assessment is based on three components: effect 

assessment, exposure assessment, and risk characterisation. The latter is a combination of the 

former two. Various methodologies can be used for performing ERA, which can be categorised 

into deterministic and probabilistic. Probabilistic techniques have been at the focus of 

research the last years, due to their elaborated character and the possibilities they offer for 

more refined risk assessments.  

Despite their obvious advantages, probabilistic techniques present also disadvantages and 

challenges that need to be tackled. In the thesis, the possibility of exploring further the 

concept of Probabilistic Ecological Risk Assessment (PERA) is addressed. The main motivation 

of the thesis is identified in the effort to combine various well known concepts and methods 

for Ecological Risk Assessment, while enhancing them with new features and functionalities 

to serve the current needs of Risk Assessors. Therefore, providing a complete software 

package that allows performing efficient Propabilistic ERA (PERA) and offers related 

functionalities, all gathered in one place. The proposed software is developed as part of the 

research project AMORE (funded by the National French Research Academy – ANR). 

A proposal for a Decision Support System (DSS), named AMORE DSS, supporting Probabilistic 

ERA is described in detail and validated through the application of the proposed DSS to a case 

study for assessing the effects and risks posed by the presence of cyanide in a river in north-

western France. The AMORE DSS aims at allowing efficient Probabilistic ERA and tackles issues 

related with PERA and the concept of weighted Species Sensitivity Distributions (SSWD) such 

as the handling of uncertainty in PERA, the production of reliable SSWD graphs and the 

assessment of the quality of ecotoxicological data. 

The theoretical section of the thesis is split into two main parts. In the first, the concept of 

Ecological Risk Assessment is introduced and the principal methods of interest are described. 

It is followed by the presentation of the concepts of Multi-Criteria Decision Analysis (MCDA) 

and Decision Support Systems (DSS), which are important aspects of the developed research.  

The methodological developments of the thesis are based on a proposal for the estimation of 

the reliability and relevance of ecotoxicological data used in ERA, which is presented in detail 

and evaluated. The proposed methodology is based on Multi-Criteria Decision Analysis and 

allows the assessment of ecotoxicological data on the basis of a fixed set of criteria and 

mathematically stable and robust aggregation techniques. Therefore, the methodology 

suggests the production of reliable weighted Species Sensitivity Distributions, a vital 

component of the probabilistic ERA and the calculation of risk probabilities. The proposal 

allows incorporating in the risk assessment the knowledge gathered from an expert panel and 

gives significant strength to the risk assessors for the performed assessments, through the use 

of previously not widely available information and expertise. 

The proposed DSS is built on the three components (exposure, effects, risk) of ERA and 

provides a complete set of functionalities to the risk assessors, enhanced with unique 

features. The thesis describes in detail the development of the software and the 

functionalities of each of its modules. The Exposure Assessment module aims at providing to 

the Decision Maker/Risk Assessor a collection of tools for the statistical analysis of 
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environmental exposure data, through the concept of Predicted Environmental 

Concentration. The Effect Assessment module is based on the concept of weighted Species 

Sensitivity Distributions (SSWD) and incorporates the proposed methodology for the 

assessment of the reliability and relevance of ecotoxicological data. The Risk Assessment 

module is based on the concept of Potentially Affected Fraction (PAF) and aims at synthesising 

the results of the previous two modules for the estimation of risks, in an efficient and easy to 

present way.  

The last part of the thesis is dedicated to the application of the DSS to a real life case study. A 

Risk Assessment process is performed for estimating the sensitivity of species to the presence 

of Cyanide (CN) in the environment, for estimating Environmental Quality Criteria (EQC) for 

the assessed case and for estimating the level of risk posed from Cyanide at the ecosystem. 

The assessed area is the Selune rivershed in the Manche department of the lower Normandy 

region in France, where four sampling stations have been identified with records of Cyanide 

presence for the period 2005-2014. Regarding the ecotoxicological data of the case study, 26 

scientific articles on cyanide toxicity, published in the period 1965-2011, have been analysed 

for the extraction and assessment of 46 toxicological endpoints for the aquatic environment. 

The case study is firstly based on all the available ecotoxicological data and secondly based on 

data split per taxonomic groups (i.e vertebrates, invertebrates) and trophic levels (i.e. primary 

producers, primary/secondary consumers). Specifically, six (6) sets of SSWD graphs are 

produced (i.e. All data, Vertebrates, Invertebrates, Primary producers, Primary consumers, 

Secondary consumers) with the use of two weighting options: (i) the weighting coefficients 

that are produced with the application of the MCDA based methodology and (ii) equal 

weighting coefficients for all the data. A comprehensive comparison of the two types of SSWD 

is performed and discussed in detail for the identification of the appropriateness of the fitting 

of the SSD curves to the experimental data. Hazardous concentrations (HCx) are estimated 

and presented for all the taxonomic groups and trophic levels. In addition, in combination with 

the results of the statistical analysis of the environmental exposure data, the risk is estimated 

for the assessed stations in the case study area. The results of the case study show that the 

primary producers are found to be the most sensitive trophic level while Invertebrates are 

more sensitive as a taxonomic group for low cyanide concentrations and Vertebrates are more 

sensitive for higher concentrations. Regarding the calculated risk indices, station 3 (L’Yvrande) 

of the Manche region is the area with the higher estimated risk. 

The performed application of the DSS in the cyanide case study demonstrates a complete 

probabilistic Ecological Risk Assessment process with the use of Species Sensitivity 

Distributions and the utilisation of Multi-Criteria Decision Analysis. The case study, alongside 

with the validation of the developed DSS, demonstrates the performance of the proposed 

MCDA-based WoE framework for the analysis of ecotoxicological data, based on three 

distinctive Lines of Evidence (Experimental Reliability, Statistical Reliability, Biological 

Relevance). The framework and the related MCDA methodology constitute an innovative 

development in the field of quantitative ecotoxicological data assessment frameworks. 

Furthermore, a robust performance of the DSS has been identified, which allows potential for 

adoption within the risk assessment research fields.The thesis is concluded with future 

considerations for the developed DSS, which could provide interesting functionalities and 

extensions of the capabilities of the software. 
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1. Introduction 
 

In this chapter, the motivation behind the need for the research into probabilistic ecological 
risk assessment and the proposed developments for enhanced and more reliable results for 
the purposes of risk characterisation is discussed. In addition, an outline of the focus of 
subsequent chapters is provided. 

 

1.1. Motivation & Objectives 
 

Water, as one of the most important natural resources, was, is and will be essential to humans 

(Aulenbach, 1968). On one hand water consumption and on the other hand industry, 

urbanisation and human development require large amounts of water to be used by humanity 

(Meinzen-Dick et al, 2002). Water pollution is an area that has been highly researched by 

scientists all over the world, in numerous aspects and situations (APHA, 1915; Hellawell, 1986; 

Olness, 1995; Zhao et al., 2014), though a necessity for continuous research is present due to 

the importance of the effects. In many cases, natural or anthropogenic factors (e.g. chemicals, 

heavy metals) cause severe water pollution to fluvial systems (e.g. release of single 

substances) which, on a larger scale, is interconnected with various other impacts on the 

environment. The assessment of the risks and impacts created by such factors is at interest, 

as a case of concern. 

Moreover, the assessment of risks of chemicals is a topic of major concern on European 

regulatory level. Several regulations have been put into force with most important the REACH 

(Registration, Evaluation, Authorisation and Restriction of Chemical substances) regulation 

(EP/EC, 2006) that aims to improve the protection of human health and the environment 

through the better and earlier identification of the intrinsic properties of chemical substances. 

Environmental Risk Assessment (ERA) is the procedure to examine the risks resulting from 

hazards in the environment that threaten ecosystems, plants, animals and humans (Critto et 

al, 2009). ERA is conducted in phases, with the most common being the ‘Exposure’, the ‘Effect’ 

and the ‘Risk’ Assessment (EEA, 1998). Major issues in Environmental Risk Assessment are the 

heterogeneity of the information that needs to be taken into consideration, the present 

variability in the amounts of information and the different sources of origin (Duboudin et al, 

2004; Forbes and Callow, 2002). In addition, the insights and preferences of the stakeholders 

involved in an assessment is an important aspect of the information that can possibly be taken 

into consideration. 

Standard approaches are based on deterministic comparison of estimated exposure 

concentrations to the concentrations of the toxicant, below which adverse effects are unlikely 

to occur for the potentially exposed species (Hickey, 2010). The calculated concentration is 

known as the ‘Predicted No Effect Concentration’ (PNEC). Deterministic methods are usually 

useful for screening purposes and provide only one point estimate of environmental risk, 

known as ‘Risk Quotient’ (RQ). 

The latest developments in the research field of risk assessment have introduced the use of 

more sophisticated probabilistic methodologies. Probabilistic ERA is an improvement over the 

RQ approach and it will likely continue to develop as the entire science of risk assessment 
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advances (Solomon et al., 2002).  Probabilistic risk assessment produces distributions or range 

of values instead of one fixed value in the exposure and effect assessment sections. The results 

of the refined risk assessments show the range of possible environmental impacts and 

therefore provide the risk assessors with flexible tools for making decisions. 

Probabilistic approaches to ecological risk assessment (PERA) have been recommended for 

later tiers in the ERA process (ECOFRAM, 1999). Despite its advantages (i.e. use of all relevant 

single-species toxicity data, allowance of quantitative estimations of risks when combined 

with exposure distributions), PERA does have some disadvantages as well: more effects and 

exposure data are usually needed, it does not address all sources of uncertainty and has not 

been widely calibrated against field observations (Solomon et. al, 2002). 

Various techniques and methods have been used in Europe and the US, the last 40 years, for 

performing ERA. The most widely adopted approach is the ‘Species Sensitivity Distribution – 

SSD’ (EC, 1996). Despite its well known advantages, the SSD approach has received various 

critisisms regarding issues such as the statistical methods used for the analysis of the data, the 

differences in the handling of the data between experts and the availability of tools. 

Various software exist for individual phases of the risk assessment process, such as ‘Simple 

Box’ (Brandes et al., 1996) and ‘Focus models’ (Focus, 2001) for exposure assessment, 

‘AQUATOX’ (US EPA, 2002) and ‘Demetra’ (Craciun et al., 2006) for effect assessment and 

‘Gps1’ (Hommen et al., 1993) and ‘Prat2’ (Solomon, 2000) for risk assessment. Though, none 

of them combines the functionalities for performing a complete risk assessment. ‘Crystalball’ 

(Oracle, 2008) and ‘Risk Calc’ (Ferson, 2002) are commercial, general risk assessment software 

but are not dedicated to Ecological Risk Assessment. 

ETX 2.0 from RIVM (Van Vlaardingen et al., 2004) is the most well known and freely available 

software for probabilistic Ecological Risk Assessment, though it does not incorporate the use 

of weighting coefficients and produces conventional SSD graphs. Busy (Aldenberg, 2007) is a 

software for probabilistic ERA, though it focuses on Bayesian techniques and is programmed 

as a package in Mathematica. 

In this context, the National French Research Academy (ANR) has funded the European 

Research project ‘AMORE’ (Multi-criteria Analysis for the development of Decision Support 

tools for the prevention of Environmental Risks), which has been supervised and coordinated 

by EDF (Electricité de France) and aimed at the development of state-of-the-art tools for 

Ecological Risk Assessment and the support of the development of new methodologies to 

tackle the major issues in the field of ERA, PERA and SSD, as well as their related available 

software, by the creation of a complete software package for Probabilistic Ecological Risk 

Assessment. The proposed software is in the form of a Decision Support System (DSS), named 

AMORE DSS, and aims at supporting and allowing efficient Probabilistic ERA, while it tackles 

issues related with PERA and the concept of Species Sensitivity Distributions (SSD).To this end, 

it has been identified that Multi-Criteria Decision Analysis (MCDA) provides many tools to the 

research world for the analysis, understanding, assessment and complex presentation of 

issues, by taking into consideration the opinions of various stakeholders (of completely 

different working/decision/research groups), the impact of various groups of criteria and the 

fragile balance between the importance of each characteristic (Giove et al, 2009). 

Notable uses of MCDA are the integration into Decision Support Systems (DSS) and into 

Weight of Evidence (WOE) approaches. A Decision Support System is usually computer based 
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software that is designed for supporting management decisions (Giove et al, 2009) and there 

is a wide use for environmental problems and general risk assessment. A Weight of Evidence 

approach can be defined as a framework for combining  individual lines of evidence, using 

methods that are either qualitative or quantitative, in order to develop conclusions regarding 

questions concerned with the degree of impairment or risk (Linkov et al, 2009). In this context 

the use of Multi Criteria Decision Analysis, integrated in a WoE framework, has been 

considered an excellent approach for the proposed research issues and can be used in order 

to support the decision making processes. 

The objective of the PhD project, within the AMORE project, has been the development of an 

innovative MCDA-based Decision Support System (DSS) for the probabilistic assessment of 

environmental risks related with fluvial systems. The DSS aims at performing Ecological Risk 

Assessment, based on the concept of Species Sensitivity Distributions (SSD), and incorporates 

a series of improvements from existing methodologies and other software. The DSS is based 

on the three main concepts of ERA: (1) Exposure Assessment, (2) Effect Assessment and (3) 

Risk Assessment. Each concept has been implemented in a stand-alone module of the 

software. Each module incorporates a series of functionalities and capabilities, which are 

described in detail in chapter 4.2. 

The DSS allows the integration of all sorts of available experimental information (related to 

contaminated aquatic systems) by means of MCDA methods, provides the stakeholders with 

reliable information on the uncertainties in the performed evaluation and supports the REACH 

(Registration, Evaluation, Authorisation and Restriction of Chemical substances) regulation 

implementation. 

The proposed research aims at tackling existing issues of the SSD concept and specifically 

provide a methodology for assessing the quality of input data, by any independent 

evaluator/assessor, a process that allows performing a transparent and good risk assessment 

(Forbes and Callow, 2002). In this view, a WoE methodology has been envisioned and 

proposed for effectively estimating the quality of SSD input data. The methodology is based 

on Multi-Criteria Decision Analysis techniques, builds up on the concept of ‘weighting 

coefficients’ for the production of weighted Species Sensitivity Distributions (SSWD) and 

constitutes an attempt to handle the topic in a quantitative and robust way. The PhD project 

includes the application of the developed DSS to a case study: the river Selune (France), 

representing a highly impacted western European river basin with a strong interaction with 

the coastal zone. 

The following subchapter provides a comprehensive outline of the thesis. 
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1.2. Outline of the thesis 
 

The presented research of the PhD thesis is split into the following three main sections: (A) 

the theoretical background, (B) the Methodological development and (C) the Application to 

case study. 

The thesis begins with the exploration of the theoretical background information of the key 

concepts, mainly Ecological Risk Assessment (ERA), Multi-Criteria Decision Analysis (MCDA) 

and Decision Support Systems (DSS), in Section A and specifically chapter 2. Each of the topics 

is introduced in greater depth, to support the reader and emphasize the necessary details for 

the flawless understanding of the proposed research. The necessary definitions and notations, 

which are important throughout the entire research report, are described. 

In particular, Ecological Risk Assessment is introduced and the concepts of tiered risk 

assessment procedures is shortly discussed in chapter 2.1. Empashis is given to the use of the 

well known concept of Species Sensitivity Distributions (SSD) in risk assessment and the 

derivation of Environmental Quality Criteria/Standards (EQC/S). 

The remaining two topics (MCDA and DSS) are discussed and presented in chapters 2.2 and 

2.3 respectively. These two concepts, are harmonically combined for performing Ecological 

Risk Assessment in the second part of the PhD thesis and the main instances which are utilised 

in the methodological development are explained shortly. 

The two chapters (chapters 3 and 4) of the methodological development (Section B) are 

ordered so that they cover two distinct strands of the proposed improvements to the way 

current ecological risk assessment is understood and performed. The key research topics and 

chapters are briefly outlined below. 

One of the main contributions of this thesis is the MCDA-based Weight of Evidence (WoE) 

methodology for the estimation of the reliability and relevance of ecotoxicological data, as 

described in Chapter 3. The importance of analysing ecotoxicological data, which may be used 

in the risk assessment processes, has been discussed by a number of authors, who have 

proposed their visions for the assessment frameworks (Klimisch et al (1997), Warne et al 

(1998), Hobbs et al (2005), Schneider et al (2009), Breton et al (2009), Ǻgerstrand et al (2011)), 

yet the implications and the nature of the issue allow refining the assessment and provide 

space for the proposal and development of new frameworks. The chapter describes our vision 

for the assessment of ecotoxicological and explains in detail the process that has been 

followed throught the period of the PhD programme for the development of the WoE 

framework and the complete mathematical notations, upon which the MCDA methodology is 

built. 

Chapter 4 is dedicated to the description of the developed Decision Support System for 

probabilistic Ecological Risk Assessment with the use of multiple criteria and the MCDA-based 

methodology for the assessment of ecotoxicological data. Effectively, the software is a 

combination of current scientifically accepted probabilistic ecotoxicological methodologies, 

adapted and enhanced with innovative features in order to take into account more effectively 

the reliability and relevance of ecotoxicological data and provide a more robust and efficient 

process for risk assessments. The methodological framework of the DSS, alongside with the 

description of the DSS modules are presented in detail. 
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Evidently, every proposed theoretical scientific development has to be validated and tested 

for its usefulness and robustness. In this view, Section C (Chapter 5) is dedicated to the 

presentation of the case study and the discussion of the related results. The proposed 

methodologies and the developed DSS have been applied to a case study for the risk 

assessment from contamination of cyanide in the Selune rivershed in France. The results of 

the performed risk assessment are presented in detail with numerous graphs and are shortly 

discussed. 

The research discussed above is evaluated and summarised in Chapter 6. An overview of the 

performed activities is shortly presented and accompanied by a discussion on the challenges 

faced and the proposed solutions for tackling them. 
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Section A: Theoretical background 

2. Basic theoretical backgrounds 
 

The following chapters contain the main theoretical backgrounds, which have been 
considered essential for a smooth understanding of the thesis and provide the main 
information that a reader needs to be able to follow smoothly the content of sections B and 
C. 

Chapter 2.1 starts with a short introduction to Ecological Risk Assessment (ERA), which is 
followed by a consice presentation of the concepts of Environmental Quality Criteria (EQC), in 
which the quality of ecotoxicological data as well as the methods (e.g. Species Sensitivity 
Distributions (SSD)) used to derive them, play a crucial role.  The second chapter is dedicated 
to the introductions of the well established methods ‘Weight of Evidence’, ‘Multi-Criteria 
Decision Analysis’ and ‘Fuzzy logic’ (chapter 2.2). The last chapter is devoted to the 
presentation of Decision Support Systems (DSS – chapter 2.3). 

 

2.1. Ecological Risk Assessment frameworks and methods 
 

Ecological Risk Assessment (ERA) is defined as the estimation of both the magnitude and the 
probability of environmental harm caused by human activities (Barnthouse et al. 1986). 
Ecological risk assessment usually focus on the estimation of negative effects on specific 
ecosystems (Breitholtz et al, 2006) and according to the European Commission (2003) it is 
completed in four steps: hazard identification, dose-response assessment (effect assessment), 
exposure assessment, and risk characterisation. Many international organisations have 
developed frameworks for ERA, such as the US EPA (1998), the WHO (2001), the EC (2003) 

and others (OECD – Organisation for Economic Co-operation and Development, EPPO – 
European and Mediterranean Plant Protection Organisation, ECETOC – European Centre for 
Ecotoxicology and Toxicology of Chemicals). These frameworks have been evaluated, 
advanced and adapted in order to meet the needs of the assessors in various countries (e.g. 
European Union, United States, Japan, Canada, South Africa, Australia and New Zealand), as 
identified by Suter (2006) and Bradbury et al (2004). 

In ERA two main tiers can be distinguished: screening ERA and site-specific ERA (Critto and 
Suter, 2009). While screening risk assessment aims at identifying chemicals and agents that 
do not pose hazards at the ecosystem under analysis, and thus could be excluded from the 
assessment process, site-specific risk assessment aims at providing estimations of risks to 
support decision-making processes (Critto and Suter, 2009). 

In screening risk assessment environmental quality criteria (EQC) or standards (EQS) are 
usually adopted. They are threshold numerical values that indicate a level beyond which there 
is a significant risk that the associated environmental quality objective has not been achieved 
and for which the assessors should adopt actions for the preservation of the ecosystems, 
including the development of a site-specific risk assessment (EPA, 2005). The way 
environmental standards are derived, and the frameworks within which they are used, differ 
between countries and regions. In the recent years, various international frameworks and 
legislation have been developed to tackle important issues regarding the EQC, such as the 
establishment, the derivation methods and the implementation. In Europe these include i) 
legislation focusing on a specific environmental compartment such as the Water Framework 
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Directive (EC, 2000), followed by the Environmental Quality Standards Directive (EC, 2008a) 
of the European Commission setting EQS for 44 priority pollutants in inland, transitional and 
coastal waters and the related Technical Guidance Document (TGD-EQS) for Deriving 
Environmental Quality Standards (EC, 2011), as well as ii) legislation aimed at classifying and 
regulating the highly produced chemicals (>1 tonnage per year) such as the EU REACH 
regulation (EC, 2006), in which the standards of the European Chemicals Agency (ECHA, 
2008b) are adopted, followed by the CLP (Classification, Labelling and Packaging) regulation 
(EC, 2008b). Outside Europe two documents can be cited as main references: the Water 
Quality Standards Regulation of the US Environmental Protection Agency (US EPA, 1983) and 
the related Water Quality Standards Handbook (US EPA, 1994), developed by US EPA for the 
aquatic environment but applied worldwide, while no other legislations specifically addressing 
the highly produced chemicals currently exist apart from the EU REACH.  

The EQC can be derived either through deterministic or probabilistic approaches, with the 

latter being preferred in the recent advances in the field as they allow to take into 

consideration uncertainty as well as the spatial and temporal variability of the data (Verdonck 

et al, 2002). The most widely adopted probabilistic approach used for this purposed is the 

Species Sensitivity Distruibution (SSD), that has received significant attention the last 40 years, 

both in the US and in Europe. The concept was proposed as an ecotoxicological tool that is 

useful for the derivation of environmental quality criteria and ecological risk assessment and 

it has been initiated in the late 1970s in the US and the next decade in Europe (Posthuma et 

al., 2002), though SSDs have been steadily used ever since as, when used correctly, they allow 

greater statistical confidence into risk assessment processes when compared to traditional 

quotient and assessment factor approaches (Wheeler et al., 2002). 

Posthuma et al. (2002) describe the SSD as “a statistical distribution describing the variation 

among a set of species in toxicity of a certain compound or mixture. The species set may be 

composed of a species from a specific taxon, a selected species assemblage, or a natural 

community.”  

The basic assumption of the SSD concept is that the sensitivities of a set of species can be 

described by some distribution, usually a parametric distribution function (e.g. triangular, 

normal, or logistic distribution) or a nonparametric method. The available ecotoxicological 

data are seen as a sample from this distribution and are used to estimate the parameters of 

the SSD (Posthuma et al. 2002). 

SSDs can be used in the well known ‘forward’ and ‘inverse’ ways (Van Straalen and Denneman, 

1989). At the forward use, the risk assessment is performed through the calculation of the 

Potentially Affected Fraction (PAF), which is calculated based on the SSD and the estimated 

environmental concentration of a contaminant in the environment, whereas, in the inverse 

way the SSDs can be used for the derivation of EQS. The derivation is based on the selection 

of a cutoff percentage p, and the calculation of the estimated safe concentration (HCp) from 

the SSD graph, that is protective for the species of the compartment under assessment. 

A complete description of SSD is presented in Posthuma et al. (2002) and a detailed critique 
of SSD is presented in Forbes and Calow (2002) in which the most signicant assumptions made 
in SSD-theory are reported and appraised. Specifically, Forbes and Calow (2002) raised a 
number of questions regarding effect of intraspecies variation, proportion of data between 
the different taxonomic groups and adopted statistical methods in SSD. To tackle these 
considerations, in 2004 Duboudin and colleagues (Duboudin et al., 2004) have introduced the 
concept of Species Sensitivity Weighted Distributions (SSWD) in which  various statistical 



18 
 

production methods as well as weights for the ecotoxicological data are used in the 
production of SSDs. 

In their study, Duboudin et al. (2004) have proposed a weighting coefficient combining two 
different criteria that allow taking into account: (1) the intraspecies variation in effect 
response and (2) the taxonomic groups’ abundance. Though, this weighting coefficient is 
neither related with the quality of the assessed data nor with their reliability and relevance 
for the ecosystem of concern, elements which are considered highly important for the 
derivation of robust and reliable EQC/S. 

The derivation of robust and reliable EQC/S mainly depends on the availability and quality of 
relevant ecotoxicological data. Ecotoxicological data can be obtained through many different 
approaches and conditions, e.g., the protocol can be standardised or not; time duration can 
vary among experiments, leading to chronic or acute data; different physiological endpoints 
can be observed, e.g. mortality, growth, reproduction and more; statistics used for 
interpreting data can differ, leading to e.g. NOEC or ECx and more. It is therefore of high 
interest the analysis of their reliability and relevance that will allow the derivation of more 
significant and relevant EQ criteria to be adopted in screeing ERA, as well as more reliable site-
specific ERA. 

Several frameworks have been proposed in order to address this issue. The most important 
are presented and analysed for their strengths and limitations in chapter 3. 

 

2.2. Weight of Evidence, Multi-Criteria Decision Analysis (MCDA), Fuzzy Logic 
and Group Decision Theory 

 

The term ‘Weight of Evidence’ constitutes neither a scientifically well-defined term nor an 

agreed formalised concept characterised by defined tools and procedures (Weed, 2005). 

According to ECHA, an evidence based approach involves an assessment of the relative 

values/weights of different pieces of the available information that have been retrieved and 

gathered in previous steps (ECHA, 2010). Therefore, each piece of information of a Weight of 

Evidence approach should be assigned to a value. This can be performed, either with the use 

of expert judgement or by applying a formal process to obtain objective values.  

Weight of Evidence (WoE) refers to a large family of methods and is applied into various 

scientific projects, mainly known for the applications into human health and ecological risk 

assessments. Weed (2005) and Linkov et al. (2009, 2011) have provided comprehensive 

critical reviews on the concept and the uses of Weight of Evidence, both in an exploratory way 

as well as in an effort to provide a categorisation of the available qualitative and quantitative 

WoE methods and their use in environmental assessments. WoE can be defined as a 

framework for synthesizing individual Lines of Evidence (LoE), which are developed from 

available data to address a specific question (Linkov et al., 2009). 

Multi Criteria Decision Analysis (MCDA) can be defined as a decisional support tool whose 

main goal concerns the selection, ranking, scoring or screening, among a set of admissible 

alternatives, on the basis of multiple criteria, taking into account Decision 

Makers/stakeholders preferences and Experts’ knowledge (Koksalan et al. 2011, Figueira et 

al. 2005).  



19 
 

Multi-Criteria Decision Analysis includes a wide variety of methods for the evaluation and 

ranking, or selection, of different alternatives that consider all the aspects of a decision 

problem involving many actors (Giove et al., 2009).  

Using Multi-Criteria Decision Analysis methods in WoE approaches allows to: i) classify 

available information according to a hierarchical structure based on different ‘Lines of 

Evidence’, each of them being subdivided into several levels of criteria; ii) normalise 

information, i.e. assigning common units to qualitative (e.g. originating from expert 

judgement), semi-quantitative (e.g. Boolean information) or quantitative information; iii) 

assign different weights and relations to the selected criteria in order to rank and compare 

criteria based alternatives through an integrated approach; iv) define decision indices 

integrating all the selected criteria on the basis of experts’ judgements and decision makers’ 

insights. 

Features common to almost all the decision making processes include the following items:  

- the decision maker (DM). A single person, a group of persons or an entity in charge of 
finding the best solution for the problem under examination; 

- a set A of alternatives, in the finite case:  𝐴 =  (𝑎1, … , 𝑎𝑚), out of which the DM must 
choose the best solution; 

- a countable group of criteria 𝐾 =  (𝑘1, … , 𝑘𝑛). Criteria define the alternatives; they 
are aspects of the problem that the DM considers crucial. Criteria can be organized 
into a hierarchical structure, i.e. a decision tree where the root is the objective 
function whose branches are the first-level criteria, each of them splits again into 
second-level criteria (sub-criteria), and so on till the last level, whose terminal leaves 
are the indicators calculated on the basis of the available information (data or 
judgments); 

- the decision maker's preferences for the different evaluations of the criteria. 

In case of an infinite set of alternatives the final solution of a MCDA problem is also related 
to: 

- an objective or target function (to be optimised) used to score alternatives, usually an 
aggregation function;  

- an algorithmic tool designed to optimize the objective function, considering all the 
above information. 

The infinite-alternatives based field of MCDA is called Multi Objective Decision Making 
(MODM), and is the counterpart of the finite-alternatives based branch called Multi Attribute 
Decision Making (MADM). Typically MADM can be subdivided into three main categories 
(Vincke, 1992):  

1. Multi-Attribute Utility/Value Theory (MAUT/MAVT ) 
2. Outranking and  
3. Interactive methods. 

In Multi-Attribute Utility/Value Theory (MAUT/MAVT) criterion values are firstly normalised 
into a common numerical scale, by means of a suitable transformation function (or 
Utility/Value Function). Then, the criteria are aggregated by a suitable aggregation operator, 
a function which satisfies a set of rationality axioms. Using a bottom up approach, this 
operation is repeated for all the nodes in the decision tree (if the problem is hierarchically 
structured) for all the alternatives. Each branch or level of the tree may be aggregated to its 
root by using different aggregation functions on the basis of the relations between the criteria 
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of concern. At the tree root (the objective) a single numerical value is finally computed, which 
is the score of the proposed alternatives. The alternatives can then be rated and ranked, since 
MAUT/MAVT produces a total ordering, and so the best one can be selected.  

Outranking methods are based on an “outranking relationship" between alternatives stating 
that one alternative may be dominant, with a certain degree, over another one. These 
outranking relationships are neither complete nor transitive generating therefore only partial 
orders. This is due to the fact that outranking methods comprise the existence of non-
comparable alternatives.  

Interactive methods obviously consist of the iteration of certain procedure steps. At first, a 
rough solution is proposed to the DM, which can accept or reject it. In the latter case new data 
are acquired and/or more information is supplied (e.g. extra information concerning a DM's 
preferences) to the system. Then a new solution based on new data and information is 
presented to the decision maker. This extraction of preferences and re-computation steps are 
repeated, creating successive compromise solutions, until the satisfaction of the DM is 
reached. 

The WoE framework and the MCDA methodology of the PhD project, which are described in 
chapter 3, have been developed based mainly on the notions of the MAVT, as introduced in 
this paragraph, since the concept of ‘value functions’ is used for the handling of the criteria 
values and their transformations into certain scales and a ‘decision tree’ has been designed 
and used as a foundation of the assessment process. The methodology is combining the value 
theory with elements of two other branches of decision making: fuzzy logic and group decision 
theory. Fuzzy logic introduces the concepts of ‘partial membership’ and ‘degree of truth’ and 
elements of group decision theory provide support in the managerial and decisional processes 
for the development of the WoE and MCDA frameworks.  

The following paragraphs are describing in a short but comprehensive way the basic 
definitions of: 

- Value functions 
- Fuzzy Logic and 
- Group Decision Theory 

 

2.2.1. Value Functions 
Multi Attribute Value Theory (MAVT) consists in the creation of a value function 
(normalisation function) for each criterion, used to normalise all criteria values in a common 
numerical closed interval (Keeney et al. 1976). The normalised criteria values are aggregated 
towards the obtainment of a final alternative score value. Normalisation functions are usually 
monotonic and their co-domain is included in the closed interval [0,1]. Given that the 
assignment of such functions is subjective (even if guided by a suitable software interface) and 
depends on the user's preference structure or perception about the criterion impact, the 
normalisation problem must be solved without resorting to any type of data-driven formulas 
(e.g. subdivision by maximum). This is due to the fact that any data-driven normalisation 
algorithm is quite sensitive to outliers and may therefore induce distortion in the final scoring. 
Distortion is also present if the data which have to be normalised are dense around an average 
value. As a consequence the most feasible solution for normalisation is performing re-scaling 
of all the available data of criteria into a common closed numerical scale. This solution not 
only is simpler but also solves the normalisation problem in a better way. 
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Normalising functions can be divided in two main categories: discrete and continuous. 
Discrete normalisation functions are mapping the domain into a finite number of alternatives 
(which may be expressed as fixed numerical values like in Figure 1a but also as lexical labels 
e.g. "BAD" or "GOOD"). Instead, continuous normalisation functions are continuous, usually 
monotonic, functions mapping the domain into any value in the co-domain e.g. piecewise 
linear functions (Figure 1b). 

 

Figure 1: Examples of discrete a) and continuous b) normalisation functions 

 

In crisp logic value functions are dealt with Boolean logic, since the characteristic functions of 
criteria can take only two values and the evaluation of criteria can be either true or false. Crisp 
sets are well-defined sets based on those characteristic functions. Though, crisp logic is not 
sufficient for describing many real life applications, due to the existence of uncertainty and 
subjectivity. Those cases can be handled with fuzzy logic, an extension of the notion of crisp 
logic, which is described in the next paragraph. 

 

2.2.2. Fuzzy Logic 
The notion of fuzzy logic and fuzzy sets were introduced by Lotfi Zadeh (Zadeh, 1965) as a 
formalization of vagueness. The basic idea concerns the fact that a predicate may apply to an 
object in a non-absolute way, but rather to a certain degree, e.g. who can say if a person is 
part of the set of tall persons or if a movie is part of the set of interesting movies? These 
inclusion problems are very likely to happen in real life but are almost untreatable with 
classical bivariate crisp logic. Fuzzy logic is in fact a multi-valued logic (i.e. a logic which admits 
truth values different from “true" and “false") characterised by a continuous truth degree 
space, usually corresponding to the whole interval [0,1]. Furthermore, when linguistic 
variables are used, the membership degrees may be managed by specific functions called 
membership functions and usually denoted by the 𝜇 symbol. In Figure 2 membership functions 
for the crisp and fuzzy interpretations of the “tall persons" example are reported.  

Fuzzy logic has been applied to many fields, from control theory to artificial intelligence 
(Mamdani 1977, Klement et al. 1994). Formally, given a set 𝑈 (i.e. Universe) whose generic 
elements are denoted by 𝑥, a fuzzy set 𝐴 in 𝑈 is characterized by a membership function 𝜇𝐴(𝑥) 
which associates with each element in 𝑈 a real number in [0,1]. Then the fuzzy set  𝐴 is usually 
denoted by the set of pairs: 

𝐴 = {𝑥, 𝜇𝐴(𝑥), 𝑥 ∈ 𝑈} 
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Figure 2: Crisp and fuzzy membership functions for the set of “tall persons" 

 

For a classical crisp set: 

𝜇𝐴(𝑥) = {
1 𝑖𝑓𝑓 𝑥 ∈ 𝐴
0 𝑖𝑓𝑓 𝑥 ∉ 𝐴

 

Other characterisations of classical crisp sets can be translated in the fuzzy environment. For 
example the formalisations of the concepts of complement and cardinality of the fuzzy set 𝐴 
are reported below: 

𝜇�̅�(𝑥) = 1 − 𝜇𝐴(𝑥), 𝑥 ∈ 𝑈 

|𝐴| = ∑ 𝜇𝐴(𝑥)

𝑥∈𝑈

 

It is important to note that membership degrees are not probabilities. This can be perceived 
by noting that the probabilities related to a finite set must sum up to one which is absolutely 
not true in fuzzy sets theory. 

An important role in fuzzy logic is played by set-theoretic operations related to fuzzy sets. The 
notions of intersection and union can be translated into fuzzy sets as explained by Zadeh 
(Zadeh, 1965). In his work Zadeh utilises the minimum and maximum aggregation operators 
to mimic respectively intersection and union. Bellman and Giertz (Bellman et al., 1973) 
pointed out that intersection and union can be interpreted as the logical “AND” and “OR” 
operators respectively and gave a formal justification for the use of minimum and maximum 
by Zadeh.  
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2.2.3. Group Decision Theory 
Group Decision and Negotiation is a field of research that aims in developing and studying 
methods and tools that provide humans the ability to use formal procedures for reaching 
collective decisions (Kilgour et al. 2010). Group Decision Making is a multi-person process that 
is used in complex and ill-structured situations where decisions need to be taken (Jelassi et al. 
1990). Jelassi (Jelassi et al. 1990) identifies four types of multi-person decision making 
situations, based on the way the final decisions are taken:  

 Individual decision making in a group setting, where one person (i.e. the DM) utilises 
the knowledge of a group for taking a decision, 

 Hierarchical decision making, where decisions are organised in a hierarchical way, a 
person is responsible for the top level decision and group members are responsible 
for lower level decisions, 

 Group decision making or one-party decision making, where many members 
participate in the process and are responsible for the final decision, and 

 Multi-party decision making or negotiation, where several decision makers represents 
different parties with possibly conflicts of interest regarding the decision to be taken. 

Already for many years, advances in Information Technologies (IT) have created a growing 
interest for the development of Group Decision Support Systems and reviews are available 
(Finlay et al. 1992). A Group Decision Support System can be defined as an interactive, 
computer-based system which facilitates solution of unstructured problems by a set of 
decision makers working together as a group (De Sanctis et al. 1985). Group Decision 
processes are usually complex and limitations may exist for the allocation of resources. 
Researchers have explored the possible combination of various models and methods, such as 
MCDA models (Davey et al. 1998) and Multi-Attribute Utility methods (Bose et al. 1997), with 
Group Decision Making and their inclusion in Group Decision Support Systems. Olson (Olson 
et al. 1987) reviews and presents techniques for the extraction of expert knowledge and the 
design of expert systems. Many direct (e.g. interviews, questionnaires, observation of task 
performance and more) and indirect methods (multidimensional scaling, hierarchical 
clustering, ordered trees) are identified and presented in the paper of Olson, which are 
techniques similar with the ones used for the development of the methodologies used in this 
PhD project (as those are explained in chapter 3.1). 

 

2.3. DSS 
 

Decision Support Systems (DSSs) are tools created with the aim of supporting Decision Makers 
(DMs) in taking more informed and concrete decisions. They are designed to take into 
consideration different forms of input and information and are calibrated to fit the special 
needs of the specific projects they are produced for.  

A Decision Support System (DSS) is a computer-based information system that supports 
business or organisational decision making activities (Burstein et al. 2008). DSSs serve the 
management, operations and planning levels of an organisation and help to make decisions, 
which may be rapidly changing and not easily specified in advance (Burstein et al. 2008). 
Decision Support Systems can be either fully computerised, human or a combination of both.  

According to Keen and colleagues (1978), Decision Support Systems (DSSs) are IT-enabled 
tools that aim to enhance the effectiveness and efficiency of managerial and professional 
decision making for ill-structured problems. There exists a wide variety of Decision Support 
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Systems, including passive DSSs that provide the user with compiled information only and 
active DSSs that provide specific solutions or recommendations (Holsapple, 2008).  

Scientific literature provides a rich collection of articles regarding the development of DSSs 
related with risk assessment and management of various different environmental topics, such 
as contaminated sites (Marcomini et al., 2009), water supply systems (Baroudy et al., 2006), 
flood management (Levy et al. 2007), regional forest management (Zambelli et al., 2012) and 
many more. 

 

2.3.1. Definitions and objectives 
There are many different ways of categorising Decision Support Systems, due to their vast 
fields of applications as well as their different characteristics. 

According to Power (2002), a first significant classification separates the DSS into: 

1. Model-driven 
2. Data-driven 
3. Communication-driven 
4. Document-driven 
5. Knowledge-driven 

According to the same author (Power, 2002): ‘A Model-driven DSS emphasizes access to and 
manipulation of a statistical, financial, optimization, or simulation model. A Model-driven DSS 
use data and parameters provided by DSS users to aid decision makers in analysing a situation, 
but they are not necessarily data intensive. A Data-driven DSS emphasizes access to and 
manipulation of a time-series of data. A Communication-driven DSS supports more than one 
person working on a shared task. A Document-driven DSS manages, retrieves and manipulates 
unstructured information in a variety of electronic formats. Finally, a Knowledge-driven DSS 
provides specialised problem-solving expertise stored as facts, rules, or procedures’. 

Holsapple (2008) divides the structural definition of Decision Support Systems into four 
essential components: 

1. a language system (LS), 
2. a presentation system (PS), 
3. a knowledge system (KS) and 
4. a problem-processing system (PPS). 

A ‘language system’ consists of all messages the DSS can accept, a ‘presentation system’ 
consists of all messages the DSS can emit, a ‘knowledge system’ consists of all knowledge the 
DSS has stored and retained, while a ‘problem processing system’ is the software engine of 
the DSS (Holsapple, 2008). 

On a different note, Marakas (1999) divides the architecture of Decision Support Systems into 
five components: 

1. user(s) 
2. the user interface 
3. the knowledge engine 
4. the data management system 
5. the model management system 

The data and model management systems relate to the definitions provided by Power (2002) 
and are responsible for the analysis performed by the DSS on a data or model basis. Users can 
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have various roles and influence on the DSS and the user interface is the component that 
defines how the users interact with the system. The knowledge engine is the component that 
connects the users and the data/model management systems, through the user interface. 
Regardless, though, of the available classifications and architecture descriptions all DSSs have 
the same main objective: To assist and systemise processes of decision making for the benefit 
of their users. 
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Section B: Methodological development 
 

The following chapters contain all the information regarding the methodological 
developments that took place during the PhD programme. Initially, a very detailed description 
of the developed MCDA-based, WoE methodology for the assessment of the reliability and 
relevance of ecotoxicological data is provided in chapter 3. The chapter contains all the 
information regarding the procedure that has been followed for the design and development 
of the methodology (paragraph 3.1). Furthermore, the mathematical foundations of the 
MCDA-based methodology are described in complete detail in paragraph 3.2 and the 
description of the theoretical WoE framework and the multiple criteria which are used for the 
assessment of ecotoxicological data for laboratory biotests are described in paragraph 3.3. 
Lastly, interesting statistics, which are extracted from the knowledge base of the developed 
DSS are described in paragraph 3.4. 

The AMORE Decision Support System is described in detail in Chapter 4. Paragraph 4.1 is 
dedicated to the description of the methodological framework and the model development 
details, whereas paragraph 4.2 contains all the important information of the three modules 
of the DSS. 

 

3. Weight of Evidence framework and MCDA methodology for 
the analysis of the reliability and relevance of ecotoxicological 
data 

 

As described in section (A), ecotoxicological data are used in the Ecological Risk Assessment 
processes and in the derivation of EQS. During the last decades, various frameworks have 
been adopted for the assessment and evaluation of ecotoxicological data and the analysis of 
their reliability. Evaluations of individual ecotoxicity data have been often done on a case-by-
case expert judgement. This resulted usually in a poor transparency, reproducibility and 
predictability of the risk assessment process because different experts may have their own 
implicit set of criteria and rankings for rejecting or not an ecotoxicity datum. 

To improve ecotoxicity data evaluation, several structured frameworks based on lists of pre-
defined criteria have been proposed. A first attempt to classify ecotoxicological data, 
according to a systematic approach, and to harmonise data evaluation processes was 
proposed by Klimisch et al (1997), who proposed the classification of data into four qualitative 
reliability categories (i.e. Reliable without restriction, Reliable with restriction, Not reliable 
and Not assignable). Warne et al (1998) proposed a more detailed scheme for assessing the 
quality of aquatic ecotoxicological data. It is based on a series of questions and a score is given 
to the answer of each question; the scores of all questions are then summed in order to obtain 
a ‘total score’ for each datum, expressed as a percentage of the maximum possible score. The 
data are classified as being unacceptable, acceptable or high quality, depending on whether 
the quality score is <50%, between 51-79% and >80% respectively. Hobbs et al (2005) 
submitted Warne’s scheme to a panel of experts and refined the set of questions in order to 
modify/clarify ambiguous or poorly written questions, to reduce assessor variation and thus 
improve the consensus level among experts. Similarly, Schneider et al (2009) developed a tool 
(called ToxRTool) for assessing reliability of toxicological data (both in vitro and in vivo data 
and rather dedicated to human health risk assessment). The process followed by Schneider et 
al (2009) is similar to those of Hobbs et al (2005), i.e. based on a set of questions, refined after 
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consultation of a panel of experts. One innovation of Schneider’s framework is the 
introduction of ‘red criteria’: non-compliance with at least one red criterion leads to the ‘Not 
reliable’ category, irrespective of the total score achieved. Breton et al (2009) developed a 
Quality Assurance system (called eco-QESST) specifically dedicated to three of the most 
common tests used in ecotoxicology, i.e. the fish acute toxicity test (OECD 1992), the Daphnia 
acute immobilization and reproduction toxicity test (OECD 2004) and the algae growth and 
inhibition effects test (OECD 2002). The eco-QESST system is based on a set of questions, most 
of them being answered as either by ‘Yes’, ‘No’, ‘Not applicable’ or ‘Not reported’. A scoring 
process is included in the eco-QESST system: a ‘Yes’ answer is given a specific weight, 
depending on the relative importance of the factor addressed by the question, while a ‘No’ or 
a ‘Not reported’ answer is given a zero weight. The overall study quality score (OSQS) is 
calculated as a percentage of maximum sum of weights. Finally, Ǻgerstrand et al (2011) 
reviewed criteria for reporting and evaluating ecotoxicological tests dedicated to 
pharmaceuticals. A framework allowing a comparative assessment of standard and non-
standard tests was then developed. A main innovation of Ǻgerstrand’s framework was the 
explicit subdivision of the analysis criteria in reliability and relevance criteria.  

The described frameworks are a good starting point for the analysis of ecotoxicological data, 
because they are based on a priori selected and objective criteria and help to rank the 
acceptability of individual datasets to the fulfilment of strict specifications. Despite their 
obvious positive input, existing assessment schemes present however some flaws, e.g.: (i) 
initial schemes proposed by Klimisch are based on rather poorly written questions that can be 
interpreted differently by risk assessors, leading to significant variations among experts. More 
unambiguous questions are needed for improving consensus and reproducibility among 
experts; (ii) for most of the frameworks, the qualitative ‘summary’ result appears ‘poor’ 
compared to the information collected during the assessment process: data are assigned to 
three (or four) qualitative categories only. Concretely, the first categories (Reliable without 
restriction, Reliable) are actually not (or poorly) distinguished in further risk process (e.g. they 
are generally equally used for SSD construction), while data belonging to the last one (Not 
reliable) are actually completely ignored. Only the eco-QESST system proposes a quantitative 
scoring system, but rules for the assignment of data to Klimisch categories were finally defined 
(from ‘Reliable without restriction’ if Score>90%, to ‘not assignable’ if Score <60%) and 
quantitative scores are hidden; (iii) Schneider et al (2009) identified rightly that “a source of 
heterogeneity among experts is the degree to which they include elements of relevance and 
adequacy into their rating and how they weighted those against reliability. The concepts of 
reliability and relevance and their discrimination need to be discussed more thoroughly”. 
However, except Ǻgerstrand’s scheme, it can be noted that reliability and relevance are not 
explicitly distinguished, leading to biased weighting process. 

To this end, a new framework is proposed for the analysis of the reliability of ecotoxicological 
data, based on the use of multiple criteria. The proposed framework is a Weight of Evidence 
framework, which allows the analysis of data based on a hierarchically structured set of 
criteria and the use of an innovative MCDA-based aggregation methodology. 

 

3.1. Participatory process 
 

One of the main innovative aspects of the proposed methodology is the strong focus that has 

been given to the participation of experts in the design and creation of the assessment 

process. A total of 23 experts and senior researchers in the fields of ecotoxicology and 

chemistry, from prestigious research centres, universities and companies in France (EDF 
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Energy, Veolia Environmental Services, INERIS – French National Institute for the Industrial 

Environment and Risks, IRSN – Institute for Radiological Protection and Nuclear Safety) and 

Europe (KTH Royal Institute of Technology, University of Basel, UNICATT – Catholic University 

of the Sacred Heart, UFZ – Helmholtz Centre for Environmental Research, BPI – Benaki 

Phytopathological Institute) have been involved throughout the course of the project, in a 

strongly interactive participatory process. 

The participatory process has been structured in such a way that it would allow the extraction 

of valuable information regarding the criteria that are used in the assessment of 

ecotoxicological data, as well as the possible interactions among those criteria and the 

importance of the elements used in the Weight of Evidence methodology. In addition, it also 

enabled the research team to gather the necessary information for the creation of the 

knowledge database of the European-funded AMORE research project, upon which the MCDA 

methodology has been designed. The process included the use of two different questionnaires 

and the organisation of a workshop for gathering live the experts and providing them the 

possibility to interact in real time. 

In the next sections, the process that has been followed is described in further detail. 

 

3.1.1. Questionnaire for the evaluation of the criteria hierarchy 
The assessment methodology is based on a hierarchical structure, which relates the different 

aspects of ecotoxicological data in a clear and solid fashion. The hierarchy is based on four 

levels, starting from the Lines of Evidence (LoE). Each LoE is subdivided into several categories, 

which are further subdivided in criteria groups, and finally in specific assessment criteria, 

which are evaluated with the use of detailed questions. Criteria-questions are the lowest level 

of the hierarchy, the one which must be informed by the user.  

As a basis for defining such a hierarchical structure, the frameworks developed by US EPA 

(1991), Klimisch et al (1997), Warne et al (1998), Hobbs et al (2005), Schneider et al (2009), 

Breton et al (2009) and Ǻgerstrand et al (2011) were used. The criteria evaluation questions 

and weighting rules suggested in these publications were reviewed in detail to provide a first 

hierarchical structure, which included 24 criteria-questions, organised in 10 categories. This 

latter was submitted for evaluation to a panel of eight experts in the field of ecotoxicology, 

who had to answer the following five (5) questions for each criterion/question:  

 In your opinion, is this criterion potentially relevant in the quality assessment of eco-
toxicological data generated through lab bio-test? 

 In your opinion, is the question unambiguous?  

 Would you split the question into several questions because you consider that it 
ambiguously merges several issues?  

 How would you change the sentence?  

 In your opinion, is this criterion in the right Category / Criteria Group? 

In addition, experts were asked if they would add new Categories/Criteria groups/Criteria-
Questions. 

This set of questions aimed at: (i) defining if the hierarchical structure was well designed (i.e. 
if criteria-questions are properly placed in the right group/category) and shared by a 
significant panel of experts; (ii) detecting potential lacking LoEs/Categories/Criteria 
groups/Criteria-Questions; (iii) guaranteeing that questions were unambiguous. 
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Based on the results of the first part of the experts’ participatory process, the first version of 
the criteria-questions hierarchy has been significantly expanded to include a total of 57 
assessment criteria-questions, organised in 23 criteria groups and 11 categories. 

In the thesis, only the final WoE hierarchical structure resulting from this process of expert 
consultation is presented (see Table 11 in the Annex). 

 

3.1.2. Questionnaire for expert consultation 
Once the WoE hierarchical framework has been established and the evaluation basis had been 

set up, the next step of the participatory process consisted in the design of a process for the 

exploitation of the aggregation operators to be used in the MCDA methodology. In 

cooperation with the existing panel of experts, an analysis has been performed in order to 

identify which parameters and characteristics of the criteria hierarchy are important and 

should be explored further. The procedure included various steps and involved continuously 

the members of the expert panel. Initially a draft of the second evaluation questionnaire was 

designed with main purposes the exploration of the relations among criteria (e.g. 

identification of criteria which are interconnected and their simultaneous positive/negative 

evaluation influences the assessment) as well as the identification of the different types of 

importance of criteria (e.g. prerequisite criteria, very important criteria, not relevant criteria 

and so on). The questionnaire included 6 main points, as described below, and was presented 

to 12 members of the panel of experts during the dedicated workshop, with the aim of 

evaluating the clarity of the questionnaire, testing the procedure and identifying possible 

improvements that could be implemented in the final version of the questionnaire. Reaching 

a consensus among experts, when possible, was a priority throughout the procedure.  

The first version of the questionnaire included the following points, which were defined as 
important for the evaluation of the criteria hierarchy: 

 Identification of criteria whose evaluation overrules (positively or negatively) other 
criteria belonging to the same criteria group (‘Over’ and ‘Veto’ criteria). 

 Identification of synergic or redundant effects of criteria to the evaluation. 

 Identification of the importance (ranking) of ‘Optimum and Worse evaluation’ of each 
criterion. 

 Identification of the effects in data degradation of a criterion being ‘Applicable but 
not reported’ for a given ecotoxicological datum. 

 Identification of the credibility and plausibility of a criterion. 

 Identification of the robustness of the evaluation and the possible existence of 
disputable conditions. 

During the workshop, the complete testing of the process was performed and each expert 
present had the possibility to express his/her insights on the six (6) aforementioned 
points/questions for each element of the assessment criteria hierarchy (see Table 11 in the 
Annex). Based on the fruitful discussions, the provided feedback from the present experts and 
the outcomes of the workshop, the questionnaire for expert consultation was slightly 
redesigned and adjusted to fit further the characteristics of ecotoxicological data. Specifically, 
the questions regarding (1) the ‘synergic/redundant effects’ of criteria and (2) the credibility 
of criteria were omitted as not applicable in the context of ecotoxicology and the question 
regarding the ‘importance of criteria’ was rephrased to include only the ranking regarding the 
‘Worse evaluation’ of a criterion. 
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The final version of the ‘Questionnaire for expert consultation’ includes the following four 
points, for which the related questions and outputs are reported: 

1. Identification of elements whose evaluation overrules (positively or negatively) other 
elements belonging to the same element group (‘Over’ and ‘Veto’ criteria). 
Q: “Does an optimum (i.e. green answer), or conversely, worst (i.e. red answer) 
evaluation of one of the following criteria make all/some of the other criteria within 
the same category irrelevant?” 
The output of the question can be a set of causal relations, in the form of ‘IF-THEN’ 
rules or a null set, in the cases where the expert does not define any relation. 

2. Identification of the importance (ranking) of ‘Worse evaluation’ of each element. 
Q: “Rank the importance of each criterion by assigning each of them to the 
appropriate category. Each criterion should be ranked, based on your judgment for its 
effects on data generation. For example, think about one test where all the criteria 
are optimum except to the criterion you are considering here. How would this worst 
answer degrade the test?” 
The output of the question is a classification of each element to five (5) predefined 
classes (i.e. Prerequisite, Highly important, Moderately important, Slightly important, 
Not relevant). 

3. Identification of the effects in data degradation of an element being ‘Applicable but 
not reported’ for a given ecotoxicological data. 
Q: “Supposing a criterion is applicable for the type of test under assessment but not 
reported in the paper or not specified by the person evaluating the test's quality, 
which action would you take? Each criterion should be assigned, based on your 
judgment for its effects on data generation, in the right answer.” 
The output of the question is a classification of each element to three (3) predefined 
classes (i.e. Substituted by optimum, No idea on how to substitute, Substituted by 
worst). 

4. Identification of the robustness of the evaluation and the possible existence of 
disputable conditions. 
Q: “Evaluate if the Optimum/Worst answer is disputable (i.e. highly depend on the 
data assessor) or consensus-based (i.e. based on largely recognized 
assumptions/desired conditions). Each criterion should be assigned in the right 
answer, based on your judgment for its effects on data generation.” 
The output of the question is a classification of each element to two (2) predefined 
classes (i.e. Disputable, Undisputable). 

It is important to notice that the final questionnaire design, includes the possibility for a user 
to skip the four questions for a given node of the criteria hierarchy, in case the user does not 
possess sufficient information or knowledge for evaluating the elements included in that 
node. This feature is designed for excluding from the evaluation the possible existing lack of 
knowledge, up to the highest possible percentage. For the completion of the questionnaire, a 
bottom-up approach is followed; therefore the user starts the evaluation from the criteria-
questions level, continues with the criteria groups, the categories, the ecotoxicological 
categories and ends with the evaluation of the Lines of Evidence (LoEs). 

The questionnaire was made available to the expert panel, through an online web application 
specifically developed, so that it could be submitted to and answered by any member of the 
panel. A total of 14 experts have provided their answers to the questionnaire, with the aim 
of: (i) identifying the possible existing relations among criteria, (ii) identifying the relative 
importance of each criterion and (iii) identifying the possible inherent uncertainty.  The 
uncertainty could be expressed in the form of: (i) unreported information, (ii) disputable 
information and (iii) possible lack of knowledge of the experts. 
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The outputs that were gathered from the criteria ranking process are used as part of the 
MCDA-based aggregation procedure, with the purpose of identifying and scoring the reliability 
and relevance of the ecotoxicological data under assessment. The elaborated outputs 
constitute the knowledge base of the proposed methodology, which is used in the 
implementation of the methodology for the quantitative scoring of ecotoxicological data. The 
knowledge base constitutes the driving force of the MCDA based aggregation process, as it is 
described in the following section (3.2), and allows taking into consideration the insights and 
opinions of all the involved experts. Furthermore, the methodology allows the addition or 
removal of experts’ input from the knowledge base, as it is designed to be modular, flexible 
and adjustable to the needs of the user/decision maker. Thus, the knowledge base can be 
expanded to be even more reliable in the future. 

 

3.2. Introduction to the MCDA based aggregation methodology (Scoring 
system) 

Hierarchically structured criteria allows the decomposition of complex decision making 

problems into smaller subtasks and is therefore attractive for users (Corrente et al., 2012). A 

great majority of methods designed for MCDA, assume that all evaluation criteria are 

considered at the same level, however, it is often the case that a practical application is 

imposing a hierarchical structure of criteria (Corrente et al., 2012).  

Notable research has been performed on the application of MCDA methodologies with the 

use of hierarchically structured criteria. Recent publications include the application of the 

Multiple Criteria Hierarchy Process (MCHP) in Robust Ordinal Regression (Corrente et al., 

2012), with ELECTRE and PROMETHEE (Corrente et al., 2013a) and for the Choquet Integral 

(Angilella et al., 2013), where authors deal with cases of decision making problems with 

indirect elicitation of preference information, outranking relations and interacting criteria 

respectively. 

The proposed MCDA methodology builds up on the concept of MCDA and hierarchically 

structured criteria and suggests a process that is not based on one of the well-known MCDA 

methods but combines significant characteristics from various methods and concepts, as 

explained further below.   

The proposed MCDA methodology is a vital part of the WoE framework that connects the 

different elements of the ecotoxicological data assessment process. It serves as the main 

connector between the analysed ecotoxicological data and the knowledge base, and thus 

allows the quantification of all the available information firstly for the analysis of the reliability 

and relevance of ecotoxicological data and secondly for the ranking of the data. Three figures 

are used to describe in further detail the proposed methodology. Specifically, they illustrate 

the information flow and the process that is followed for the implementation of the 

methodology (Figure 3), the connections between the various elements used in the 

methodology and the various actors (Figure 4) and the way the hierarchical aggregation of 

information is performed mathematically (Figure 5). In Figure 3, the blue part represents the 

process followed for the creation of the WoE assessment framework and the knowledge base, 

the grey part the process for the assessment of ecotoxicological data by a user, based on the 

WoE framework, and the light green the process for the application of the MCDA 

methodology. The background colours used correspond to the ones used also in Figure 4 for 

allowing the reader to connect the various instances of the methodology and provide a better 
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understanding of the involvement of various actors in the methodology. On the other hand, 

Figure 5 shows a graphical representation of the hierarchical aggregation techniques used. 

 

Figure 3 : Information flow and MCDA based aggregation methodology – conceptual representation 

 

 

Figure 4: Connections between elements and actors in the application of the MCDA methodology 
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Figure 5: Illustration of the hierarchical mathematical aggregations 

 

The methodology allows performing a systematic analysis of the diverse types of available 

information and using various complex algorithms for the calculation of a final reliability and 

relevance index for every ecotoxicological datum under assessment. It is an innovative process 

that has been designed and tailored to fit the characteristics of the available information in 

the context of ecotoxicology as well as to fill in the gaps in the state-of-the-art of the analysis 

of ecotoxicological data, as identified in the ‘Introduction’. Specifically, the methodology 

makes use of all the available information and provides a transparent scoring system based 

on unambiguous multiple criteria, while the existence of hierarchical aggregations allows the 

detailed analysis and identification of the elements that influence the ranking of 

ecotoxicological data in a clear way.  

The WoE framework and the proposed MCDA methodology have been developed based on 

the notions of the Multi-Attribute Value Theory (Keeney et al. 1976), since the concept of 

‘value functions’ is used for the handling of the criteria values, and their transformations into 

certain scales, and a ‘decision tree’ has been designed and used as a foundation of the 

assessment process. The methodology is combining the value theory with elements of fuzzy 

logic. Fuzzy logic (Zadeh, 1965) introduces the concepts of ‘partial membership’ and ‘degree 

of truth’. Namely, ‘degree of truth’ of an element x refers to the associated value in [0,1] of 

the value of the membership (characteristic) function for element x of a fuzzy set and ‘partial 

membership’ refers to the possibility of an element x to partially belong to a fuzzy set. 

Various methodologies have been developed to handle multicriteria aggregation problems 

with the use of integrals (e.g. Choquet, 1954; Sugeno 1974), such as the research performed 

by Grabisch (1996) for the application of fuzzy integrals for criteria aggregation in decision 

problems. Due to the nature of the issue under assessment, the characteristics of 

ecotoxicological data and the absence of synergic/reduntant effects within the WoE criteria 

hierarchy (see paragraph 3.1.2) it has been deemed necessary to use a MCDA methodology 

that does not utilise fuzzy integrals and which is tailored to the decision problem at hand. 
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In order to use the proposed MCDA methodology the assessor has to analyse each 

ecotoxicological datum, by answering each of the 57 criteria-questions (multiple answer 

questions) of the WoE framework regarding the conditions and methods under which each 

ecotoxicological datum was created, as seen in the grey section of Figure 3 and Figure 4. The 

methodology allows coupling the answers to the criteria-questions with the contents of the 

knowledge base (as described in section 3.1.2 and seen in Figure 4) by the application of a set 

of aggregation algorithms and functions for the calculation of the reliability and relevance 

score as depicted in Figure 4 and Figure 5. 

As mentioned in section 3.1.2, each of the questions used in the questionnaire for expert 
consultation provides specific types of outputs: 

1. the relations among elements, 
2. the relative importance of elements, 
3. the disputability of elements, and  
4. information on the handing of unreported data. 

Outputs are expressed in different forms: 

 relations among elements: a priority ordered set of causal relations, i.e. rules of the 
‘IF-THEN’ form, 

 the rest: unique element scores in the interval [0,1]. 

It is useful to describe the main way each output is incorporated and processed in the 
aggregation methodology for the analysis of one ecotoxicological datum. In Figure 6, an 
example of a priority ordered set of causal relations is given and the concepts of a criterion 
and its evaluation, a rule block, a rule outcome, a rule and a set of rule blocks are presented. 
For the evaluation of a set of rules, the following steps are followed: Firstly, the causal 
relations are divided into smaller blocks and evaluated for their validity, based on the answers 
of each criterion for the given datum. This is done by calculating the degree of truth of each 
rule block and then combining all the degrees of truth for calculating the degree of truth of 
each specific rule. Since the set of causal relations is priority ordered, the degree of truth of 
each rule receives a specific priority in the aggregation procedure. 

 

Figure 6: Example of a prioritised set of IF-THEN rules 
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The outputs of the other three questions are expressed as scores and presented in numerical 
forms. They are all used for evaluating how much each element evaluation could affect, or 
not, the production of the ecotoxicological datum and therefore how much it reduces the 
reliability and relevance of the datum. As they are numerical, no prior-elaboration is 
necessary. 

 

The following paragraphs provide all the details regarding the way the MCDA based 
methodology is set up, the types of inputs used, the derived inputs throughout the various 
steps, the definitions of the aggregation functions and their implementations for the 
calculation of the overall reliability score of a given analysed ecotoxicological datum. 

The MCDA aggregation methodology is based on various types of inputs and 10 distinctive 
functions, which are used in the methodology for the calculation of the score for one node 
𝑗 (𝑗 = 1: 38) of the criteria hierarchy. In an identical way, the scores are calculated for all the 
nodes of the hierarchy, in a bottom-up approach, that is concluded with the calculation of the 
total reliability and relevance score for every datum. 

Starting from the first level of the hierarchy, each hierarchy criterion-question is denoted with 
i (i=1:57) and subsequently each Node with j (j=1:38). A Node j refers to a single branch of the 
hierarchical criteria structure (criteria group, category, LoE), starting from the lowest branch 
level (criteria groups) and moving upwards to the top of the hierarchy (LoE). For simplification 
reasons, an element of the aggregation scheme that refers either to a Criterion i or to a Node 
j is denoted with e (e=1:57). 

The replies of the criteria-questions for a given ecotoxicological datum are represented and 
expressed in the aggregation methodology as CAi ∈ {Y, N,NA, NR,DK}, for each criterion-
question i (i = 1: 57). The corresponding answers are Y: ‘Yes’, N: ‘No’, NA: ‘Not Applicable’, 
NR: ‘Applicable but Not Reported’, DK: ‘I don’t know’. These answers are, in subsequent steps 
of the aggregation, used as an input for the evaluation of the causal relations of the knowledge 
base and the evaluations of the criteria i. 

In the framework, there is a specific correspondence between the answers to each criterion’s 
question (CAi ∈ {Y, N,NA, NR,DK}) and the numerical evaluation of each criterion, 

represented as CAi̅̅ ̅̅̅  ∈ [0,1] ∪ ∅.  

The criterion evaluation (CAi̅̅ ̅̅̅) is calculated through a specific function which is described later 
in this section. 

The input term Arrow (Ari ∈ {↑, ↓}), which is predefined in the framework by the expert 
panel, provides the correspondence between the answer to the response sheet for a criterion 
(CAi = Y or N) and the ‘Optimum’ or ‘Worse’ status of each criterion in the framework. 
Formally, a function F6 ∶  F6(CAi, Ari) → {O,W} is used to define the criterion 
correspondence Ai, such that:  

Ai = {
O, (Y, ↑) ∨ (N, ↓)
W, else

 (Eq. 1) 

The criterion correspondence Ai is an input to the membership function F5: F5(CAi, Ai) →
 [0,1] ∪ ∅ which calculates the criterion evaluation score CAi̅̅ ̅̅̅ and is defined as: 

𝐶𝐴𝑖̅̅ ̅̅ ̅ =

{
 
 

 
 

∅                           , 𝐶𝐴𝑖 = 𝑁𝐴
𝑠𝑢𝑏𝑖                           , 𝐶𝐴𝑖 = 𝑁𝑅
𝑆𝐶𝐷𝐾                         , 𝐶𝐴𝑖 = 𝐷𝐾

𝑆𝐶𝑂   , 𝐶𝐴𝑖 ∈ {𝑌,𝑁} ∧ 𝐴𝑖 = 𝑂

𝑆𝐶𝑊   , 𝐶𝐴𝑖 ∈ {𝑌,𝑁} ∧ 𝐴𝑖 = 𝑊

 (Eq. 2) 
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Where: 

- subi is the substitution score input when a criterion is applicable but not reported. 

- SCDK is the score when the response sheet answer for a criterion i is ‘I don’t know’. 

- SCO is the score when the criterion correspondence is Optimum and, 

- SCW is the score when the criterion correspondence is Worse. 

Formally:  
- subi ∈ {0.1, 0.5, 0.9}, depending on the classification of a criterion in the knowledge base by 
the experts. 

- SCDK = 0.5 

- SCO = 1 

- SCW = 0 

It is important to first provide the definitions of the disputability and how it is handled in the 
framework. In detail, the disputability score of an element 𝑒 is denoted and defined as dispe ∈
{0,0.3}. The score is based on the classification of each element as ‘undisputable’ or 
‘disputable’, as provided by the expert panel and stored in the knowledge base. 

The disputability score is incorporated in the calculation of the disputability of elements’ 
evaluations through two dedicated functions, namely function F8 ∶  F8(CAi̅̅ ̅̅̅, dispi) → [0,1] ∪
∅ for the criteria evaluations CAi̅̅ ̅̅̅ and function F9 ∶  F9(SCj, dispj) → [0,1] ∪ ∅ for the node 

evaluations SCj. The disputability of criteria evaluations is denoted with CAi̅̅ ̅̅̅disp and the 

disputability of node evaluations with SCj̅̅ ̅̅ disp. It is important to note that the formal definition 

of a node evaluation SCj is deliberately described in the coming paragraphs of the chapter, 

due to the association of its calculation with the calculation of the relative importance of the 
criteria-questions of the specific Node.  

The formal implementations of functions F8 and F9 are, respectively: 

𝐶𝐴𝑖̅̅ ̅̅ ̅𝑑𝑖𝑠𝑝 = {

∅ , 𝐶𝐴𝑖̅̅ ̅̅ ̅ = ∅

𝐶𝐴𝑖̅̅ ̅̅ ̅ − (𝐶𝐴𝑖̅̅ ̅̅ ̅ − 0.5) ∗ 𝑑𝑖𝑠𝑝𝑖 , 𝐶𝐴𝑖̅̅ ̅̅ ̅ ≥ 0.5

𝐶𝐴𝑖̅̅ ̅̅ ̅ + (0.5 − 𝐶𝐴𝑖̅̅ ̅̅ ̅) ∗ 𝑑𝑖𝑠𝑝𝑖 , 𝐶𝐴𝑖̅̅ ̅̅ ̅  < 0.5

 (Eq. 3) 

 

𝑆𝐶𝑗̅̅ ̅̅ 𝑑𝑖𝑠𝑝 = {

∅ , 𝑆𝐶𝑗 = ∅

𝑆𝐶𝑗 − (𝑆𝐶𝑗 − 0.5) ∗ 𝑑𝑖𝑠𝑝𝑗 , 𝑆𝐶𝑗 ≥ 0.5

𝑆𝐶𝑗 + (0.5 − 𝑆𝐶𝑗) ∗ 𝑑𝑖𝑠𝑝𝑗 , 𝑆𝐶𝑗  < 0.5

 (Eq. 4) 

For each Node 𝑗 the evaluation is based on these disputability aware criteria evaluations 

CAi̅̅ ̅̅̅disp by the application of three steps: i) evaluation of priority ordered list of causal 
relations, in the form of ‘IF-THEN’ rules; ii) evaluation of relative importance of the node 
components; and iii) integration of causal and importance evaluations. In the following 
sections the definition of the three aforementioned steps are reported for the 2nd-lowest level 
of the hierarchy, namely criteria groups. 

In order to proceed with the theoretical explanation, a general element evaluation Se is 
defined as Se ∈ {O,W}.  
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3.2.1. Evaluation of priority ordered list of causal relations, in the form of ‘IF-
THEN’ rules 

A causal relation, as described in Figure 6, denoted as Rj,r and hereby referred as Rule (R), is 

related with a specific Node 𝑗 and identified through the subscript r, for r ≥ 1. Each Rule 

defined by the experts consists of a set of blocks Bj,r, paired with the respective rule 

evaluation Sr ∈ {O,W} (where O is Optimum and W is Worse). 

Specifically, 

Rj,r = {
{Bj,r, Sr} , for criteria causal relations

{Nj,r, Sr} , for node causal relations
 

Formally a set of blocks Bj,r is described as the collection of blocks Bj,r,k, therefore: 

Bj,r = {Bj,r,k|k ≥ 1} and Nj,r = {Nj,r,l|l ≥ 1} 

The definition of a block Bj,r,k , as part of a Rule Rj,r for a given Node j, includes a criterion 𝑖 

and the respective criterion evaluation Si, therefore Bj,r,k = {i , Si} for i = 1: 57, j = 1: 38, 

r ≥ 1 and k ≥ 1.  

Similarly, the definition of a node block Nj,r,l, as part of a Rule Rj,r for a given Node 𝑗, includes 

a Node 𝑗 and the respective Node evaluation Sj, therefore Nj,r,l = {j, Sj} for j = 1: 38, r ≥ 1 

and l ≥ 1.  

As mentioned above, a Rule Rj,k, as defined by the expert panel and stored in the knowledge 

base, for the criteria level is composed by sets of blocks and a respective evaluation (Rj,k =

{Bj,r, Sr}) and a set of blocks is composed by blocks (Bj,r = {Bj,r,k|k ≥ 1}). The evaluation of 

blocks, denoted as BΕj,r,k, is defined through the function F1: F1 (Bj,r,k, CAi̅̅ ̅̅̅disp) → [0,1] ∪ ∅, 

whose inputs are the blocks Bj,r,k and the disputability aware criteria evaluations CAi̅̅ ̅̅̅disp.  The 

formal implementation is defined by: 

BΕj,r,k = {

∅ when CAi̅̅ ̅̅̅disp = ∅

CAi̅̅ ̅̅̅disp when Si = O

1 − CAi̅̅ ̅̅̅disp when Si = W

 (Eq. 5) 

 

It has to be noted that when a criterion is not applicable (CAi = NA) the respective 

disputability criteria evaluation (CAi̅̅ ̅̅̅disp) is represented as the empty set (∅) and therefore 
the block evaluation is represented equally. 

Subsequently, the evaluation of a set of blocks for a given Rule Rj,k, called Rule evaluation is 

denoted as R̅j,r and defined through the function F3(Rj,r) → ([0,1], {0,1}) ∪ ∅.  

Formally,  
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R̅j,r = {

∅ , ∀ BEj,r,k = ∅

(min(BΕj,r,k) , 1) , ∃BEj,r,k ≠ ∅ ∧ Sr = O

(min(BΕj,r,k) , 0) , ∃BEj,r,k ≠ ∅ ∧ Sr = W

 (Eq. 6) 

 
The described function is used for the evaluation of all the present causal relations, as r ≥ 1. 

 

3.2.2. Evaluation of relative importance of the node components 
The second important part of the knowledge base is the info regarding the relative importance 
of criteria.  For the calculation of the relative importance of a criterion, the methodology takes 

into consideration two variables: The disputability aware criteria evaluation (CAi̅̅ ̅̅̅disp) and the 
importance score of a criterion.  

The importance score of an element, ime ∈ [0,1], is an input provided by the expert panel 
from the knowledge base.  

As such, the relative importance of criteria, which are part of a specific Node 𝑗, is denoted as 

Q2,j and is calculated through the function F7: F7 (CAi̅̅ ̅̅̅disp, imi) → [0,1] ∪ ∅. Formally: 

Q2,j = {

∅ , ∀ CAi̅̅ ̅̅̅disp = ∅

∑ CAi̅̅ ̅̅̅disp + (1 − CAi̅̅ ̅̅̅disp) ⋅ (1 − imi)
n
i=1

n
, else

 (Eq. 7) 

 

 

3.2.3. Integration of causal and importance evaluations 
The Sufficiency level of an expert for a given Node j can take the values 0 or 1 and is defined 
as  

Slj ∈ {0,1} , j = 1: 38 

Values R̅j,r for each rule and relative importance of criteria Q2,j have been defined therefore 

we can proceed with the definition of the function describing the calculation of the node score 
(SCj). 

Specifically, given the Sufficiency level Slj, which is taken from the knowledge base and 

represents whether an expert has provided feedback on the ‘Questionnaire for expert 
consultation’ for the Node j under evaluation or not, the score of a Node j is calculated through 

the application of function F4: F4(R̅j,r, Q2,j, 𝑆𝑙𝑗) → [0,1] ∪ ∅ defined as: 

SCj = {

∅ Slj = 0

∑𝑎𝑖 ⋅ �̅�𝑗,𝑖
2

𝑛

𝑖=1

+ 𝑎𝑛+1 ⋅ 𝑄2,𝑗 Slj = 1
 (Eq. 8) 

where for each Rule evaluation R̅j,r, that has an output of the form ([0,1], {0,1}), its two 

elements are denoted as R̅j,r
1  and R̅j,r

2  (the former identifies the degree of thruth of the rule 

while the latter identifies the associated outcome), 𝑟 = 1: 𝑛, 𝑎0 = 0, �̅�𝑗,𝑛+1
1 = 1 and 𝑎𝑖 =

[1 − ∑ 𝑎𝑘
𝑖−1
𝑘=0 ] ⋅ �̅�𝑗,𝑖

1    , 𝑤𝑖𝑡ℎ 𝑖 > 0. The idea behind this formula is that rules scores and relative 

importance are aggregated by weighted average, with weights based on degree of truth and 
decreasing priority with relative importance having the lowest weight. 
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The process described till now provides the necessary background and the step by step 
calculation of the score of a Node 𝑗 of the first (lowest) hierarchy level, the criteria groups. As 
a natural step in the aggregation methodology, the functions that allow the evaluation of the 
rest of the framework hierarchy in the bottom-up process can now be defined. Though, the 
process is identical with the one followed above and only some notations need to be adjusted 
to correspond to the respective hierarchy levels. Specifically, the functions which are used to 
define the node block evaluations (F2), the evaluations of Rules on node level (F3) and the 
relative importance of Nodes (F7) need to be adjusted. Their implementations are described 
below: 

𝑁𝐸𝑗,𝑟,𝑙 =

{
 
 

 
 ∅ 𝑤ℎ𝑒𝑛 𝑆𝐶𝑗̅̅ ̅̅ 𝑑𝑖𝑠𝑝 = ∅

𝑆𝐶𝑗̅̅ ̅̅ 𝑑𝑖𝑠𝑝 , 𝑤ℎ𝑒𝑛 𝑆𝑗 = 𝑂

1 − 𝑆𝐶𝑗̅̅ ̅̅ 𝑑𝑖𝑠𝑝 , 𝑤ℎ𝑒𝑛 𝑆𝑗 = 𝑊

 (Eq. 9) 

 

�̅�𝑗,𝑟 = {

∅ , ∀ 𝑁𝐸𝑗,𝑟,𝑙 = ∅

(min(𝑁𝛦𝑗,𝑟,𝑙) , 1) , ∃𝑁𝐸𝑗,𝑟,𝑙 ≠ ∅ ∧ 𝑆𝑟 = 𝑂

(min(𝑁𝛦𝑗,𝑟,𝑙) , 0) , ∃𝑁𝐸𝑗,𝑟,𝑙 ≠ ∅ ∧ 𝑆𝑟 = 𝑊

 (Eq. 10) 

 

𝑄2,𝑗 = {

∅ , 𝑖𝑓 𝑎𝑙𝑙 𝑆𝐶𝑗̅̅ ̅̅ 𝑑𝑖𝑠𝑝 = ∅

∑ 𝑆𝐶𝑗̅̅ ̅̅
𝑑𝑖𝑠𝑝

+ (1 − 𝑆𝐶𝑗̅̅ ̅̅ 𝑑𝑖𝑠𝑝) ∗ (1 − 𝑖𝑚𝑗)
𝑛
𝑗=1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (Eq. 11) 

 

Based on the proposed aggregation methodology, it is possible to calculate the overall 
reliability score of a given ecotoxicological datum, denoted as SC38 ∈ [0,1]. It is important to 
clarify that this reliability score is associated with a specific member of the expert panel, as 
the score is extracted by using the input provided by that expert during the creation of the 
knowledge base. By following the same procedure, it is possible to calculate a specific number 
of reliability scores for a given ecotoxicological datum, based on the number of members that 
constitute the expert panel. 

For a given number of experts M = 1:m, we denote with X = {SC38
1 , SC38

2 , … , SC38
m } the set of 

reliability scores of an ecotoxicological datum and W = {w1, w2, … , wm} the set of the 
respective weights, each associated with an expert. Each weight is in [0,1].  

The calculation of the total reliability score of an ecotoxicological datum is based on the 
application of the weighted average and is defined as: 

TSC =
∑ SC38

M ⋅ wM
m
M=1

∑ wM
m
1

 (Eq. 12) 
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3.3. Criteria Hierarchy of the WoE framework  

 

As described in paragraph 3, the proposed framework is a Weight of Evidence framework, 
which allows the analysis of ecotoxicological data based on a hierarchically structured set of 
criteria and the use of the innovative MCDA-based aggregation methodology. The details of 
the WoE framework and the related assessment criteria are described and shortly discussed 
below, while the complete hierarchical criteria structure is presented in the Annex, Table 11. 

 

3.3.1. Definition of Lines of Evidence (LoEs) 
At the first level of the hierarchical structure, it is proposed to evaluate ecotoxicological data 
according to three Lines of Evidence: 

1. Experimental Reliability LoE. Experimental reliability covers the inherent quality of a test 
relating to test methodology and the way the performance and results of the test are 
described.  

2. Statistical Reliability LoE. Statistical reliability covers the inherent quality statistical 
methodology and assumptions chosen for interpreting experimental results and the way 
the performance and results of the statistical analysis are described. 

3. Biological relevance LoE. Biological relevance covers the extent to which a biological 
endpoint is appropriate for a particular risk assessment. This category includes the extent 
to which a test is appropriate for a particular substance, given prior knowledge about its 
mode of action, and for a particular site, given prior knowledge about physico-chemical 
conditions and biological characteristics (e.g. habitat typology). 

 

These three LoEs are the ‘mandatory’ block of the Weight-of-Evidence (WoE) framework. They 
can be informed once and then reused for each assessment made under the same conditions 
(e.g. if more than one substance is assessed during the same experiment). Some criteria can 
be informed or not, according to the assessment context (i.e. prior knowledge or not on site 
conditions). At the lowest level of the hierarchical structure, specific questions were defined 
and used for the weighting process further developed. The questions could be answered 
either by ‘Yes’, ‘No’, ‘Not applicable’, ‘Applicable but Not reported’ or ‘I don’t know’. 

The complete set of LoE, categories, criteria groups and associated criteria-questions is 
reported in the annex, Table 11, and discussed shortly below. 

  

3.3.1.1. The Experimental Reliability LoE 

It is proposed to structure information related to the ‘Experimental Reliability’ LoE into four 
categories: 1. ‘Quality assurance’ category; 2. ‘Substance identification and monitoring’ 
category; 3. ‘Organisms culture’ category; 4. ‘Test design’ category. 

 

‘Quality assurance’ category 

‘Quality assurance’ has first to be defined because it highly differs according to frameworks. 
For example, according to Breton et al (2009), ‘Quality Assurance’ refers to all the criteria that 
they included in their system. Most authors defined ‘Quality assurance’ in a more restricted 
meaning, i.e. referring to the compliance to standards and/or Good Laboratory Practices 
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(GLP). Some frameworks do not include ‘Quality assurance’ in their list of criteria. For example, 
Schneider et al (2009) indicated that ToxRTool developers preferred to treat all kind of data 
equally and to base the decision on the data reliability using only information provided in the 
study report. Thus, the ToxRTool does not specifically consider whether data were obtained 
in compliance with recent guidelines and under GLP conditions. Similarly, Hobbs’ scheme does 
not refer to guidelines, normative or GLP. Instead, the eco-QESST system (Breton et al, 2009) 
submits detailed questions related to standards and GLP and weights affected in case of 
positive answer are the maximum weights of the system, showing that the eco-QESST 
developers consider this criterion as one of the most important. As stated by Schneider et al 
(2009), this latter option however introduces bias in reliability assessment because, for old 
data, guidelines and/or GLP were not necessarily available at the time the experiment was 
conducted. Considering this (contradictory) background, we proposed to consider two criteria 
related to Quality Assurance category, related to guidelines/standards and GLP respectively. 

 

‘Substance identification and monitoring’ category 

Many of the schemes analysed (Klimisch et al. 1997; US EPA 1991; Hobbs et al. 2005; Schneider 
et al. 2009) defined a set of questions related to the substance identification/characterisation. 
Schneider’s scheme is the most detailed one and it is thus proposed to build a similar structure 
for our methodology. Chemical monitoring during the test period is also mentioned by Hobbs’ 
scheme (‘Was the chemical concentration measured?’), but the scoring process is purely 
dichotomic (i.e. Maximum score if the substance is measured and minimum score if it is not 
measured), while the relevance of measuring the substance during the test period can also 
depend on the substance itself, e.g. on its ability to be degraded or lost by any other process 
(e.g. volatilization). Such interactions between criteria have been considered in the process of 
extracting the experts’ knowledge. 

 

‘Organisms’ category 
The schemes of Schneider (2009), Breton (2009) and Ǻgerstrand (2011) included significant 
criteria related with organisms (i.e. species identification and organisms’ physiology). Those 
were proposed to be included in the developed criteria hierarchy together with the criteria 
related with the culture design, as well as the acclimatation and feeding of organisms. 

 

‘Test design’ category 
‘Test design’ refers to all the experimental conditions that must be satisfied for guarantying 
the reliability of the test, i.e. the occurrence of negative and/or positive controls, the 
monitoring of important physico-chemical characteristics (e.g. temperature), the mode and 
route of contamination. The proposed framework includes three different criteria groups for 
test design, i.e. ‘Controls’, ‘Physico-chemical conditions’ and ‘Exposure conditions’ sub-
categories. 

 

3.3.1.2. The Statistical Reliability LoE 
It is proposed to structure information related to the ‘Statistical Reliability’ LoE into three 
categories: 1. ‘Test design’; 2. ‘Assumptions’; 3. ‘Estimation quality’. 

 



42 
 

‘Test design’ category 
‘Concentration design’, ‘Replicates’ and ‘Replicates Individual numbers’ are the aspects of the 
test design that are considered important and relevant for the  statistical reliability of an 
ecotoxicological test. Criteria related with the aforementioned characteristics have been 
identified and included in the assessment framework. In detail, the choice of concentrations, 
both the number of them and their value, affects the precision of LC/EC or NOEC/LOEC 
estimates. Guidelines currently often require four or five concentrations that are 
geometrically spaced, in addition to an untreated control. Even if these recommendations are 
conditional upon certain aspects of the tests, criteria are proposed to check that data actually 
respect them. Furthermore, criteria from Breton’s (2009) and Ǻgerstrand’s (2011) frameworks 
regarding the replicates have been identified as important and taken into consideration. 

 

‘Assumptions’ category 
Ecotoxicological data can be analysed either through hypothesis-testing or regression 
techniques. Assumptions are required in both cases and related criteria are proposed in this 
category. Information related to power and precision are important for assessing statistical 
reliability of hypothesis-testing methods. When hypothesis-testing, several assumptions need 
to be considered: independence of errors, normality of errors, and homogeneity of variance 
between treatments. Homogeneity of variance is the main assumption which must be 
satisfied. On the other hand, for the regression techniques, the model selection, the model 
comparison and the prior assumptions are evaluated and assessed. 

 

‘Estimation quality’ category 
An advantage of the regression approaches is the capability to provide a confidence interval 
for the calculated summary statistics (e.g. LC50). To be able to check the precision of the 
calculation, it is necessary that this information is available in the report/publication under 
analysis. The ‘estimation quality’ category includes criteria that are selected for assessing if an 
appropriate model has been selected for adequately fitting the set of data and if the quality 
of fit and/or comparison of models and/or justification of a given model are useful for 
assessing the quality of the summary statistics. 

 

3.3.1.3. The Biological Relevance LoE 
It is proposed to structure information related to the ‘Biological Relevance’ LoE into four 
categories: 1. ‘Duration’; 2. ‘Test design’; 3. ‘Biological endpoint’; 4. ‘Organism relevance’. 

 

‘Duration’ category 
According to the REACH guidance published by ECHA (ECHA, 2008a) ‘Chronic toxicity’ related 
to waterborne exposure refers to the potential or actual properties of a substance to cause 
adverse effects to aquatic organisms during exposures which are determined in relation to 
the life-cycle of the organism. Duration is then a key factor for determining whether a test can 
be considered as chronic or not and for identifying potential bias. Four criteria were proposed 
to check whether the test duration is optimal or not, for acute and chronic tests respectively. 
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‘Test design’ category 
This category combines criteria, which were not included in the existing frameworks found in 
the literature, regarding the physicochemical conditions of the tests under assessment and an 
updated version of the relevance criterion of Ǻgerstrand’s (2011) framework. 

 

‘Biological endpoint’ category 
For some biotests, several biological endpoints can be followed (e.g. for fish long term toxicity: 
hatching success, growth and/or survival; for fish embryo-larval test: several development 
effects like abnormally coiled tail or flexed tail with reduced length, small and disorganised 
trunk or inhibition of trunk morphogenesis, absence or malformation of ocellus, etc.; for 
invertebrates: long term toxicity, reproduction, growth and/or lethality; for macrophytes, 
fresh weight change, yield of energy conversion at photosystem; etc.). When several 
endpoints can be estimated, it would be necessary to justify whether the reported endpoint 
is actually appropriate for the risk assessment or not. In this context, seven criteria were 
proposed that were related with the summary statistics, the sensitivity of endpoints and the 
population relevance (as expressed also in Ǻgerstrand’s framework). 

 

‘Organism relevance’ category 
The criteria included in this category answer some questions related to species relevance in 

case of site-specific assessments. Species that are tested in laboratory are indeed generally 

selected mainly for their ease of breeding and handling (species should be readily available 

year-round and tolerate handling and laboratory conditions) and their ability to be used as 

usual standards (allowing a good reproducibility of biological responses to toxicants). 

However, such test species do not necessarily relate, both phylogenetically and ecologically, 

to the organisms that naturally dominate natural ecosystems. Species can be described by a 

list of biological and ecological traits (e.g. life-cycle patterns, reproductive features, 

food/feeding habits, habitat preferences, etc.). Those traits are related to exposure (routes 

and levels) and toxicity mechanisms (contamination and elimination kinetics as well as 

bioaccumulation) and they can thus be used for evaluating the relevance of lab species for a 

given risk assessment context. 

 

3.4. Statistics of the knowledge database of the AMORE DSS 

 

The paragraph includes the main statistics and information which have been collected from 

the analysis of the input provided by the expert panel, regarding the insights of the experts 
on which criteria are important for the analysis of ecotoxicological data and which 
elements of the criteria hierarchy are considered the most influential. 

An analysis of the input provided by the experts, allows the extraction of interesting statistics 
and information regarding the insights of the experts on which criteria are important for the 
analysis of ecotoxicological data and which elements of the criteria hierarchy are considered 
the most influential. A wealth of information can be extracted from the database, thus in the 
following paragraphs the most relevant graphs and statistics are presented and shortly 
discussed. 
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Firstly, an overview of the provided IF-THEN rules by the experts is presented. In Figure 7 the 
percentage of experts that have provided rules for each level of the criteria hierarchy is 
presented, information from which we can identify which nodes of the criteria hierarchy are 
more influential, either positively or negatively, in the evaluation of ecotoxicological data 
according to the experts. In detail, the most influential nodes are ‘1.2.1 – Substance 
identification’ , ‘1.4.1 – Controls’, ‘1.2 – Substance identification and monitoring’ and ‘1.4 – 
Test design’, followed by nodes ‘1.3.1 – Organisms identification and physiology’, ‘2.1.2 – 
Replicates’, ‘1 – Experimental Reliability’ and ‘0 – Laboratory biotests’. 

 

Figure 7: Presence of IF-THEN rules per criteria hierarchy level 

 

Furthermore, in Figure 8, the number of elements per each provided rule is presented. The 
majority of experts have identified rules with up to two elements (therefore including up to 
two rule blocks) as the most representative for the performed evaluation as seen in Figure 8, 
since 104 rules with a single element and 38 with two elements have been provided. The use 
of rules with up to two elements indicates a slightly conservative approach expressed by the 
expert panel, due to the fact that single elements can influence significantly the performed 
evaluation. 

 

Figure 8 : Number of elements per IF-THEN rule 
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The following figures (Figure 9, Figure 10 and Figure 11) provide a concise analysis of the 
influence of specific criteria (and nodes) in the analysis of ecotoxicological data, through their 
appearance in rules provided by the expert panel. Each graph provides a summary of the 
number of times each element (i.e. criterion or node) appears in the provided IF-THEN rules, 
and shows how many times the element has a positive/negative influence, as well as how 
many times each element has been included in single element rules. Figure 9 shows the 
statistics for the ‘Experimental reliability’ LoE, Figure 10 the ‘Statistical reliability’ LoE and 
Figure 11 the ‘Biological relevance’ LoE. Based on these graphs, we identify the following 
criteria as the most influential ones: 

 1.2.1.1 – Substance identity 

 1.4.1.1 – No toxicant control 

 2.1.2.1 – Replicates 

 2.1.1.2 – Concentration spacing 

 2.1.2.2 – Individual numbers 

 3.1.1.1 – Acute duration 

 3.3.3.1 – Population dynamics 

 

 

Figure 9 : Experimental reliability – Appearance of elements in IF-THEN rules  

 

 

Figure 10 : Statistical reliability – Appearance of elements in IF-THEN rules 
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Figure 11 : Biological relevance – Appearance of elements in IF-THEN rules 

 

Secondly, an overview of the importance of the criteria hierarchy elements is provided in 
Figure 12 (criteria), Figure 13 (criteria groups) and Figure 14 (ecotoxicological categories and 
LoE). The figures provide an overview of the classification of elements into the five predefined 
categories (from ‘Prerequisite’ to ‘Not relevant’) for every element and the importance a non-
optimum evaluation may have in the assessment of ecotoxicological data. As it can be seen, 
the criteria with the highest number of classifications as ‘Prerequisite’ (in light red colour) and 
‘Highly important’ (in yellow colour) are ‘1.2.1.1 – Substance identity’, ‘1.2.2.2 – Concentration 
monitoring’,  ‘1.2.2.3 – Loss acceptability’, ‘1.3.1.1 – Species identity’, ‘1.4.1.1 – No toxicant 
control’, ‘1.4.1.2 - ‘No toxicant control’, ‘1.4.2.1 – Temperature’, ‘1.4.2.2 – pH’, ‘1.4.3.1 – 
Exposure system’, ‘1.4.3.2 – Exposure route’, ‘2.1.1.1 – Concentration number’, ‘2.1.2.1 – 
Replicates’ and ‘3.1.1.1 – Acute duration’. 

 

  

Figure 12: Importance of assessment criteria 
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Figure 13 : Importance of assessment criteria groups 

 

 

Figure 14 : Importance of assessment ecotoxicological categories and LoE 

 

Similarly, for the criteria groups the most important according to experts’ inputs are ‘1.2.1 – 
Substance identification’, ‘1.2.2 – Substance loss and monitoring’, ‘1.3.1 – Organisms 
identification and physiology’, ‘1.4.1 - Controls’, ‘1.4.3 – Exposure conditions’, ‘2.1.1 – 
Concentration design’, ‘3.1.1 – Acute test relevance’ and ‘3.1.2 – Chronic test relevance’.  

Lastly, the most important ecotoxicological categories are ‘1.2 – Substance identification and 
monitoring’, ‘1.3 – Organisms’, ‘1.4 – Test design’ and ‘3.1 – Duration’ and the most important 
LoE are ‘1 –Experimental reliability’ and ‘2 – Statistical reliability’. 
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4. The AMORE Decision Support System  
The AMORE Decision Support System is developed as part of the AMORE research project and 
consists of three modules which aim in assisting environmental researchers and experts in 
assessing environmental risks of chemicals in aquatic systems. To this end, it provides a set of 
tools for analysing and integrating both exposure and effect information (i.e. modelling as well 
as experimental data). The complexity of the topic outlines the necessity of the development 
of a DSS that surpasses the single analysing capabilities of humans. 

The three modules of the DSS, namely the ‘Exposure Assessment’, the ‘Effect Assessment’ and 
the ‘Risk Assessment’ modules, are interactive and complete each other. They perform three 
different processes for evaluating, as final output of the DSS, the risk for species living on a 
given contaminated aquatic system in terms of Potentially Affected Fraction (PAF, Traas et al. 
2002). 

The objective of this section is to describe in detail the functionalities and interface of the 
AMORE DSS. Specifically, chapter 4.1 includes the details of the DSS framework and the model 
development, while chapter 4.2 includes the details of the organisation of the DSS into three 
modules and the characteristics of each module.  

The DSS is implemented in an Excel spreadsheet environment programmed through Visual 
Basic for Applications (VBA) and is developed as independent software. 

 

4.1. Framework and model development 
 

The AMORE DSS is built to support a probabilistic risk assessment approach in a reliable, fast 
and reproducible way by using the rich calculating possibilities that are offered through the 
use of Information Technologies (i.e. computers). It is a tool aiding in increasing the 
productivity and efficiency of risk assessment process (where precision and optimality are 
essential), and allows the integration of various sources of information for aiding the process 
of structuring decisions. 

The DSS consists of three modules, which are interconnected as depicted in Figure 15: 

- The Exposure Assessment module 
- The Effect Assessment module 
- The Risk Assessment module 
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Figure 15: The AMORE DSS framework  

 

The first module is developed with the use of VBA embedded into an EXCEL spreadsheet 
environment for the ‘Exposure Assessment’ and the estimation of the Predicted 
Environmental Concentrations (PEC) of pollutants via the production of their Probability 
Density Functions (PDF). It is described in detail in paragraph 4.2.1.  

The second module is developed with the use of PHP and an EXCEL spreadsheet environment 
with VBA procedures for the ‘Effect Assessment’, through the evaluation of the reliability of 
ecotoxicological data. The reliability is estimated with the combination of use of the 
‘questionnaire for expert consultation’ and the application of the MCDA methodology for the 
production of weighted Species Sensitivity Distributions (SSD). The module is described in 
detail in paragraph 4.2.2. 

The third module is combining the results of the previous two modules into an EXCEL 

spreadsheet environment with VBA procedures for the conduction of the final ‘Risk 

Assessment’, through the production of the Joint Probability Curve (JPC) of the PEC and SSD 

graphs and the calculation of the Potentially Affected Fraction (PAF) index, as an estimation 

of ecological risk. It is described in detail in paragraph 4.2.3. A scheme of the entire software 

scheme is presented in Figure 16. 
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Figure 16: The general scheme of the AMORE DSS module applications 

 

4.2. Modules 

4.2.1. Module 1: Exposure Assessment (Predicted Environmental 
Concentration – PEC) 

The design of the ‘Exposure Assessment’ module is based on the combination of empirical 
sampling techniques, mathematical modelling and statistical methods. The module is 
designed for the production of ‘Probability Density Functions’ (PDF) of contaminants, 
representing the probability of appearance of various concentration levels, based on sampling 
and taking into account missing values and their statistical substitutions. The concentration 
measurements over time are either collected through monitoring sampling or generated with 
the use of mathematical models. Both methodologies supply measurements at different 
times, in order to produce a temporal series of data. The time series of contamination 
measurements are used to calculate the contamination level Probability Density Function 
(PDF) over time. Obtaining a PDF from a set of measured data is a statistical issue, which can 
be treated by means of different methods, and can be represented in a graphical way by a 
curve on a Cartesian plane. The PDF is a useful instrument to estimate the distribution of a 
given substance in the environment. 

Undetected values, which are related with the physical limitations of the analytical 
instruments, are a known problem of the sampling techniques. The substitution of the 
missing, undetected values can be treated with various statistical methods such as: deletion, 
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simple substitution, distributional methods and distributional-based imputation (Baccarelli et 
al., 2005).  

In the AMORE DSS, the following methods are included and implemented in the software: 

A. Simple substitution of non-detects with the following options related with the 
sampling Detection Limit (DL): 

a. 0 

b. 
𝐷𝐿

2
 

c. 
𝐷𝐿

√2
 

d. 𝐷𝐿 
B. Distributional methods: 

a. Cohen 
b. Winsorised 

The use of simple substitution or a distributional method is mutually exclusive, thus the user 
can select either a variation of the simple substitution or one of the two available 
distributional methods. 

The software produces a set of four PDF graphs for each analysis and the types depend on the 
user selected substitution methods. For an assessment using simple substitution the software 
provides an empirical PDF, an empirical PDF with small intervals, a kernel estimation and a 
comparison of the previous three PDFs. For an assessment using a distributional method the 
software provides a normal curve PDF instead of an empirical PDF. 

 

Module 1 interfaces 

The following paragraphs present in detail the software implementation and interfaces of 
module 1. The data samples are simulated by using a random generator, representing the 
empirical or estimated measurements, and then loaded into the Microsoft Excel environment. 
A dialog box allows the user to fit parameters for the PDF generation and select the graphs 
that should be displayed. The scheme of the PEC module application is shown in Figure 17. 

 

Figure 17: Scheme of PEC module application 
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The user-interacting dialog box is presented in Figure 18. It allows the user to set up the 
needed parameters and choices for the production of the PDFs, as presented above. 

 

Figure 18: The dialog box of module 1. 

 

Sampling data can be entered manually in a table, where every row represents the series of 
data measured in the sampling station at each different time. First action the user has to 
perform is to select the assumed underlying model and whether to use simple substitution or 
not. If not, the only other choice is a distributional method. For simple substitution, values 

proposed to user are: 0,
𝐷𝐿

2
,
𝐷𝐿

√2
, 𝐷𝐿. 

The available distributional methods are Cohen and Winsorized. In both cases, mean and 
standard deviation are evaluated from original data without considering missing data. 
Subsequently, the new data are generated following the behaviour of a Normal variable where 
mean and standard deviation have been previously computed as parameters. 

To support the user in the method decision, a percentage of missing data is calculated first. 
Then, if the percentage is less than 15%, the option selected by default is simple substitution, 
otherwise a distributional method is chosen. In both cases, the user can change this choice. 
The percentage is also reported in the user interface at the dialog bog, next to the “Data below 
Detection Limit” box (see Figure 18). Finally the user selects which site graphs he/she wants 
to be displayed. 

Results presentation 

Once all parameters have been inserted, four graphs are displayed to user, showing the curve 
of the probability density function estimation computed in different ways. 

1. Empirical PDF or normal curve 

If a simple substitution was chosen, the first graph shows the correspondent empirical PDF, 
made by counting the occurrences of values in large intervals. If distributional methods were 
selected, the correspondent Normal distribution function is shown.  
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2. Empirical PDF with small intervals 

Simple substitution and the distributional methods produce the same type of empirical PDF 
when plotted by using smaller value intervals: The graph is created by plotting the data of the 
empirical PDF but subdividing the range of values into intervals of less width than the original 
empirical PDF graph of the simple substitution that is described in point 1 of the results 
presentation paragraph.  

3. Kernel estimation 

Both simple substitution and distributional method produce the same kind of graph for the 
kernel density estimation. Kernel density estimation’s graph is obtained by placing a kernel 
function on each data-point. Their sum forms the function estimation, which could be 
influenced by the kernel shape and the bandwidth. In case of simple substitution the 
estimation takes into account substituted values (in fact there is a peak in correspondence of 
the substitution value) while in case of a distributional method it discards missing data. As a 
consequence, the entire curve is slightly higher if compared with the kernel graph of the 
simple substitution. 

4. Comparison 

The last graph contains comparisons of all previous mentioned graphs. Since they have 

different points on the horizontal axis and different expansions on the vertical axis, data have 

to be normalised to a common scale. An example of the obtained graph is shown in Figure 19: 

on the left an example in case of simple substitution, on the right an example in case of a 

distributional method. 

 

Figure 19: Final comparison graph of the three PDFs produced by module 1. 

 

A general screenshot of the PEC module is presented in Figure 20. The figure represents an 

example of execution. The charts have been drawn using the values on the top of the sheet 

as data sample. The user dialog box can be seen on the upper right corner. 
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Figure 20: Screenshot of PEC module spreadsheet. 

 

4.2.2. Module 2: Effect Assessment (Species Sensitivity Distribution – SSD) 
The design of the ‘Effect Assessment’ module is based on the Weight of Evidence (WoE) 
methodology, which incorporates Multicriteria Decision Analysis (MCDA) methods, as 
described in chapter 3. 

The initial step for enabling the reliability evaluation in the DSS is to import the Experts’ 
knowledge base, which is created through the ‘Questionnaire for expert consultation’ as 
described in paragraph 3.1.2. The knowledge base is stored in text files in a separate folder. 
The user must select the folder containing these files and the software is capable of 
incorporating them into a single external EXCEL spreadsheet. In this way, once created, the 
expert knowledge file can be reused in multiple different assessments. Once a knowledge base 
file is available it has to be imported into the current assessment just by selecting its location. 

Once the expert knowledge file is linked to the present assessment file, the following step for 
a user in the implementation of the software is to compile the response sheet, which is shown 
on Figure 21 and contains the 57 criteria questions of the AMORE WoE framework for given 
ecotoxicological data. The response sheet is used to extract the reliability score of the 
ecotoxicological data.  

In order for the DSS to generate the SSD, the user has to fill in data in a specific form in the 
EXCEL spread-sheet, sorted in columns with headers. Columns to be filled in are: (1) the name 
of the originating test (must be the same name of the correspondent response sheet); (2) the 
name of the species (or the genus) used in the ecotoxicology test; (3) the trophic level (or the 
taxonomic group) of the species; (4) the toxicological test results (concentration data). All the 
data can belong to the same trophic level (or taxonomic group), even to the same species. The 
number of taxonomic groups is not limited. The ‘Worksheet’ names should not contain any 
spaces. Once all other information is supplied the reliability scores are automatically 
generated by the system based on the response sheets related to the involved tests. The data 
related to test results and reliabilities are then used to create the SSWD curves. An example 
can be seen below in Figure 22. 
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Figure 21: AMORE user response sheet 
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Figure 22: An example of ecotoxicological data, sorted in columns for use in module 2. 

 

Module 2 interfaces 

Similarly to module 1, a dialog box (see Figure 23) provides the user the possibility to select 
the information to be analysed and the parameters to be used by the software for producing 
the SSWD graph. An explanation of the three parts (i.e. data, weighting procedures and 
statistical options) composing the dialog box is reported in the following paragraphs. 
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Figure 23: The dialog box of module 2. 
 

 

Data box 

On the ‘Species or genus information’ field the user should select the range of data or the 
column containing the name of the species of each ecotoxicological test or the genus of the 
species of each test, with the heading in the first line of the selection. If a column is selected, 
the first line of the column must contain the heading. The program stops reading the data at 
the first empty cell. 

On the ‘Taxonomic or trophic information’ field the user should select the range of data or the 
column (heading included) containing the information about the taxonomic group or the 
trophic level. 

On the ‘Concentration values’ field the user should select the range of data or the column 
(heading included) containing the ecotoxicological test results.  

On the ‘Chronic / Acute data’ field the user should select the range of data or the column 
(heading included) containing the information about the chronic or acute data.  

Similarly, on the ‘Data Quality’ field the user should select the range of data or column 
containing the reliability scores of ecotoxicological data. 
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Acute to Chronic data transformation 

The user has the possibility to select the use of an Assessment Factor (AF) for the 

transformation of acute data to chronic. 

If the user selects YES, the software provides the possibility to use either a Normal or a 

Uniform distribution for the transformation and the user has to input the numerical details 

for each option (Min-Max, Mean). 

 

Statistical options 

The user selects the type of ‘Distribution’ to be applied to the weighted data points and three 
available options are included in the module: log-empirical, log-normal and log-triangular, 
which can all be used at the same time. The parameters of the log-triangular distribution are 
obtained by fitting the theoretical distribution to the empirical weighted data points. Two 
possibilities are offered: fitting the quantiles (Quant. fitting); fitting the cumulative empirical 
probabilities of the data (Prob. fitting).  

The confidence limits of the hazardous concentration are estimated by bootstrap. The user 
should enter the ‘Number of bootstrap samples’ generated to calculate the confidence limits. 
The number of data points drawn in each sample of the bootstrap approach (the samples size) 
is by default equal to the number of used data. If option ‘Optimized bootstrap samples size’ is 
selected, the number of data points drawn in each sample of the bootstrap is optimized 
regarding the proportions of data and the weight of each taxonomic group or trophic level. 
The user can modify the ‘Hazen method parameter 𝑎’, from the default value 0.5.  

Results presentation 

The numerical results are presented in a separate worksheet and the SSWD graphics are 
displayed directly in the same worksheet. An example is shown on Figure 24. 

 

Figure 24: Screenshot of SSD module spreadsheet 

 

The software delivers in the spreadsheet all the details regarding the input information that 
the user provided, as well as the statistical and numerical results (such as weights, the 
weighted cumulative probabilities, distribution parameters etc.) that are used for the 
production of the SSWD. 
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On the SSWD graphics the weighted data points, the empirical or the theoretical distribution 

and the 90% confidence limits of this distribution are displayed. The colour of the data points 

depends on the taxonomic group or the trophic level of the considered species. For the 

theoretical distribution, the multiple R-square coefficient (R2) between theoretical and 

empirical distribution and the Kolmogorov-Smirnov goodness of fit test are displayed. In 

addition, the user finds the parameters of the distribution calculated on the log of the data. 

For the log-normal distribution, it is the mean (wm.lg) and the standard deviation. For the log-

triangular distribution, it is the min, the max and the mode (wmin.lg, wmax.lg and wmode.lg). 

An example is shown in Figure 25. 

 

Figure 25: Produced SSWD for Log normal and Log Triangular distributions. 

 

In these graphics, the concentration values are directly put in the unity of the data supplied 
by the user, but with a log-scale. These graphics are constructed with the worksheet tables 
and can be modified by the user. In particular, the 90% confidence limits can be replaced by 
the 95% confidence limits. 
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4.2.3. Module 3: Risk Assessment (Potentially Affected Fraction – PAF) 
The design of module 3 of the AMORE DSS is based on the theoretical developments regarding 
the estimation of risk based on the notions of the Joint Probability Curve and the Potentially 
Affected Fraction graphs. The ‘Potentially Affected Fraction’ graph, representing the 
percentage of species affected by specific concentration levels, is derived from the 
combination of the PEC and the SSD cumulative distributions that are produced in modules 1 
and 2. PAF is considered an index for ecological risk and allows comparisons between 
substances, species groups, sites, and regions. 

The Joint Probability Curve (JPC) is a method for presenting the joint probability of PEC and 
SSD in the form of an exceedance curve, which describes the probability of exceeding the 
concentration associated with a certain degree of effect. Each point on the curve represents 
both the probability that the chosen proportion of species will be affected and the frequency 
with which that level of effect would be exceeded. At each point on the curve holds that, 
under the given conditions, 𝑥 % of species will be affected and that such proportion of species 
would be affected by 𝑦 % of the current observations (Solomon et al., 2000). Depending on 
the type of exposure data collected such observations could refer to time or locations 
(Posthuma et al., 2002). Since the exposure profile given by PEC (indicating a probability of 
occurrence) and the toxicity profile given by SSD (indicating a magnitude of effect) have the 
same horizontal axis (the concentration), the two curves can be combined into one, which is 
the JPC (Hendley and Giddings, 1999). The y-axis varies from 0 to 1 (or to 0 to 100 if it’s 
expressed by percentage) because it represents a probability, both for PEC and SSD. The JPC 
is a decreasing curve, which starts from the coordinates (1,1) - or, alternatively, at 
(100%;100%) - and ends at (0,0) - or (0%;0%). 

 

How to obtain the JPC  

For each point representing a cumulative frequency on SSD, the corresponding concentration 
on the x-axis is calculated. Then, in the correspondence of such point, the cumulative 
frequency of PEC is achieved. Such two cumulative frequency values represent, respectively, 
the coordinates of a point in the JPC graph. In Figure 26, the process of JPC derivation is 
reported in graphical way. Note that, in the first graph, the vertical axis on the left has the 
reversed scale respect to the vertical axis on the right: this is because the value, which has to 
be plotted to form the JPC, corresponds to ‘one minus the predicted environmental 
concentration’. 

 

Figure 26: Derivation of a Joint Probability Curve from PEC and SSD distributions. 
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A different shape for the JPC can be obtained by plotting the cumulative SSD on the vertical 
axis and the cumulative PEC (not the exceedance profile as before) on the horizontal axis. In 
this case the curve runs from the origin to the point (1, 1). 

 

Module 3 interfaces 

The interface of the module that has been developed in order to obtain the PAF is described 
in this paragraph. The basic scheme of the module is reported in Figure 27.  

 

Figure 27: General scheme of module 3. 

The user has the possibility to select between (i) running the PAF module with previously 
calculated data or (ii) running the PAF module with completely new data. A dialog box is used 
to set up the needed parameters and user choices. In the first case, the user can use values 
calculated in the previous phases of the risk assessment process (with the use of the PEC and 
SSD modules, as seen in Figure 28) , whereas in the second case the user can insert the mean 
and standard deviation of the two distributions representing PEC and SSD (as seen in Figure 
29). In the first case, the user can choose which PEC sample should be used for the calculations 
(either a specific station or all the available stations). The SSWD module always provides one 
parameter’s evaluation, so the same action is not necessary. Mean and standard deviation 
can be related to a Normal or a Log-normal distribution: for both PEC and SSD the user can 
select which of the two functions to use.  

 

Figure 28: User dialog box of module 3, data previously calculated in modules 1 and 2. 
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Figure 29: User dialog box of module 3, new data 

Results presentation  

The first graph the user can select presents the PEC and SSD cumulative density functions to 
have a rapid overview of the submitted distributions. If the two curves are not overlapping, 
the graph gives a first idea of the risk: if the SSD is on the right of the PEC, the risk is expected 
to be low otherwise it is expected to be high. If the two curves overlap other graphs are 
necessary to better understand the characteristics of risk. 

The second chart shows the ‘Area Under the Curve’, which is obtained as the integral of the 
exceedance profile (one minus the PEC) and the probability density function of species 
sensitivity. 

The third one is the Risk Quotient, which gives a different visual representation of the 
generalised risk and is available only in case of two Normal or two Log-normal distributions 
for PEC and SSD options. 

The last graph displays the Joint Probability Curve, which is the most expressive of the four 
representations. The user can re-iterate the entire procedure. The numerical risk is calculated 
with the trapezoidal rule and is reported to the user on the title of the JPC chart. 

A general screenshot of the module is presented in Figure 30 and represents an example of 
execution.  
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Figure 30: screenshot of PAF module spreadsheet. 
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Section C: Application to case study 

5. Application to cyanide case study 
 

The following chapters contain the full description of the application of the AMORE Decision 
Support System (DSS) to the case study on cyanide, which has been performed for the 
validation both of the MCDA based, Weight of Evidence methodology (chapter 3) and of the 
complete DSS (chapter 4).  

Paragraph 5.1 contains the presentation of the case study and includes the information on the 
assessment region, the theoretical information on cyanide and the basic information of the 
performed risk assessment process. 

The results of the case study are described in detail and discussed in paragraphs 5.2-5.3. 
Paragraph 5.2 includes the results of the assessment of ecotoxicological data, the application 
of the MCDA based methodology for the analysis of the reliability of the ecotoxicological data 
used in the case study, the production of the Species Sensitivity Distributions (SSDs) and the 
related graphs. Paragraph 5.3 includes the application of the PEC and PAF modules of the DSS 
for the risk assessment of cyanide in the proposed assessment area. 

 

5.1. Presentation of the case study 
 

A case study application has been performed for the analysis of the ecological risk from the 
presence of cyanides in the Sélune watershed (Figure 32), at the Manche department of the 
Lower Normandy (Figure 31) region in the north-west part of France. Environmental exposure 
data of cyanide (CN) have been collected from the web portal of the Water Agency of ‘Seine-
Normandie’ (http://www.eau-seine-normandie.fr/index.php?id=1628) and used in the 
Exposure Assessment module, while ecotoxicological data for cyanide toxicity gathered from 
peer-reviewed publications have been analysed with the use of the MCDA based 
methodology, in the Effect Assessment module. The ecological risk assessment process was 
concluded with the calculation of the risk indices in the last module (PAF) of the DSS. 

Twelve water quality measurement stations have been identified in the region and included 

in the query. Cyanide concentrations have been observed at four of those stations and 

environmental exposure data have been collected for the period 01/01/2005 – 20/08/2014. 

The four stations are located along the Selune river, in spots close to the cities Isigny-le-buat, 

Saint-aubin-de-terregatte, Les loges-marchis and Romagny, and can be seen in Figure 32. 

 

Figure 31: The Lower Normandy region of north-west France (left) and the Manche department 

(right) 

http://www.eau-seine-normandie.fr/index.php?id=1628
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Figure 32: The Selune watershed in France (source: http://eau-seine-normandie.fr/). In circles the 

locations of the four stations where cyanide concentrations have been measured. 

 

5.1.1. Cyanide1 
Cyanides are a group of chemical compounds characterised by occurrence of the association 

of a carbon and a nitrogen atom (CN). These compounds occur in the environment as free 

cyanides (HCN and CN-), simple associations to cyanides as NaCN and KCN, metal-cyanides 

complexes (e.g. iron and cyanides) and organic complexes (nitriles and glucosides). Cyanides 

mainly occur in waters as free cyanides, mostly hydrogen cyanide (HCN) which represents the 

main toxic form with cyanide ion CN- (US-EPA, 1984). 

Hydrogen cyanide (HCN) is a colorless or pale blue liquid or gas with a faint bitter almond-like 

odor, while sodium cyanide (NaCN) and potassium cyanide (KCN) are white crystalline 

powders. HCN is a weak acid with a pKa of 9.2; therefore, HCN and CN- can interconvert based 

on pH and temperature. In solution under physiological conditions, the majority of HCN is 

present in the undissociated form. The simple cyanide salts, KCN and NaCN, are very soluble 

in water and mildly soluble in ethanol. These compounds readily dissociate in water, and 

therefore, exposure to any of these compounds in aqueous media results in exposure to CN-. 

                                                           
1 Based on information from US EPA (Toxicological review of hydrogen cyanide and cyanide salts, 

2010) and WFD-UK Technical Advisory Group (Proposed EQS for Water Framework Directive Annex 

VIII substances: cyanide (free), 2008) 

http://eau-seine-normandie.fr/


66 
 

Cyanides are extensively used in industry and are also emitted from car exhaust fumes. They 

also occur naturally in the environment and are found in a range of aquatic organisms such as 

arthropods, macrophytes, fungi and bacteria. 

Cyanide originates primarily from anthropogenic sources in the environment, but cyanide is 

also released from biomass burning, volcanoes, and natural biogenic processes from higher 

plants, bacteria, and fungi (Agency for Toxic Substances and Disease Registry [ATSDR], 2006). 

Cyanide is also a component of tobacco smoke and can be present at high concentrations in 

structural fires (Steinmaus et al., 2007; Brauer et al., 2006; Tsuge et al., 2000; Brandt-Rauf et 

al.,1988). Cyanide compounds are used in a number of industrial processes, including mining, 

metallurgy, manufacturing, and photography, due to their ability to form stable complexes 

with a range of metals. Cyanide has been employed extensively in electroplating, in which a 

solid metal object is immersed in a plating bath containing a solution of another metal with 

which it is to be coated, in order to improve the durability, electrical resistance, and/or 

conductivity of the solid. HCN has also been used in gas chamber executions and in chemical 

warfare. NaCN and KCN are also used as rodenticides. 

Cyanide or cyanogenic compounds are found in many foods. Cyanide compounds occur 

naturally as part of sugars or other naturally occurring compounds in certain plant-derived 

foods, including almonds, millet sprouts, lima beans, soy, spinach, bamboo shoots, sorghum, 

and cassava roots. 

Volatilisation and biodegradation are important transformation processes for cyanide in 

ambient waters. Hydrogen cyanide can be biodegraded by acclimated microbial cultures, but 

is usually toxic to unacclimated microbial systems at high concentrations. 

Cyanides are readily soluble in water, where they exist in the free state (CN- and HCN), as 

simple cyanides (e.g. NaCN), complex cyanides (organic or metal complexes) or total cyanide 

(all available species). Hydrogen cyanide (HCN) dissociates in water to give the free ion (CN-) 

under alkaline conditions (50 per cent of both forms at pH 9.36). The CN- ion has a half-life of 

15 days in water; HCN has a tendency to volatilise from water, with a half-life measured from 

hours to a few days. Simple cyanides readily dissociate, as do some metal complexes (e.g. zinc 

and cadmium) releasing free CN-. Other metal complexes containing cyanide are very stable 

with limited dissociation. 

Cyanide acts as a respiratory depressant and can inhibit aerobic metabolism. Free cyanide ions 

can also pass though the gill membranes. Undissociated HCN is primarily used to determine 

toxicity, with HCN being more toxic than CN-. However, CN- contributes to toxicity due to 

formation of HCN at pH values up to around 8. Simple cyanides readily dissociate and 

hydrolyse to form HCN and CN- and, therefore, have the same toxicity as free cyanide. 

 

5.1.2. Exposure data 
As mentioned earlier, the Environmental exposure data of cyanide (CN) have been collected 

from the Water Agency of ‘Seine-Normandie’. The 91km Selune River and its rivershed have 

been selected as the area of interest and interesting spots along the river have been identified. 

A total of 12 stations (Table 1) have been examined for the period 01/01/1990-20/08/2014, 

though contamination from cyanide has been observed and measured for only 4 of them 

(Table 2) for the period 01/01/2005 – 20/08/2014.  
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The selected parameter was free cyanide (HCN and CN-) in natural water and the acqueous 

phase of water (filtered, centrifugal) and was measured in µg(CN)/L. 

The actual exposure values and their statistical analysis for the estimation of the Predicted 

Environmental Concentration (PEC), are presented in paragraph 5.3. 

Station Code Station name Municipality County-region Spot name 

03271415   LA CANCE A ROMAGNY 1   ROMAGNY   MANCHE   La Cance   

03271515   LA GUEUCHE A MILLY 1   MILLY   MANCHE   La Gueuche   

03271437   
LA SÉLUNE A NOTRE-DAME-DU-TOUCHET 

1   
NOTRE-DAME-
DU-TOUCHET   

MANCHE   La Selune   

03272685   
LA SÉLUNE A SAINT-AUBIN-DE-

TERREGATTE 1   

SAINT-AUBIN-
DE-

TERREGATTE   
MANCHE   La Selune   

03272040   
LA SÉLUNE A SAINT-HILAIRE-DU-HARCOUET 

2   
SAINT-HILAIRE-

DU-HARCOUET   
MANCHE   La Selune   

03271965   L'AIRON A LES LOGES-MARCHIS 2   
LES LOGES-
MARCHIS   

MANCHE   L'Airon   

03274000   
LE BEUVRON A MONTJOIE-SAINT-MARTIN 

1   
MONTJOIE-

SAINT-MARTIN   
MANCHE   Le Beuvron   

03274420   
LE BEUVRON A SAINT-AUBIN-DE-

TERREGATTE 1   

SAINT-AUBIN-
DE-

TERREGATTE   
MANCHE   Le Beuvron   

03272400   LE LAIR A HAMELIN 1   HAMELIN   MANCHE   Le Lair   

03271840   
LE RUISSEAU DU MOULIN DU PRÉ A BUAIS 

1   
BUAIS   MANCHE   

Ruisseau du 
Moulin du Pre   

03273345   L'OIR A DUCEY 2   DUCEY   MANCHE   L'Oir   

03272235   L'YVRANDE A ISIGNY-LE-BUAT 3   
ISIGNY-LE-

BUAT   
MANCHE   L'Yvrande   

Table 1: The 12 stations of the Selune watershed that have been included in the case study 

 

Station Code Station name Municipality County-region Spot name 

03271415   LA CANCE A ROMAGNY 1   ROMAGNY   MANCHE   La Cance   

03271965   L'AIRON A LES LOGES-MARCHIS 2   
LES LOGES-
MARCHIS   

MANCHE   L'Airon   

03272235   L'YVRANDE A ISIGNY-LE-BUAT 3   
ISIGNY-LE-

BUAT   
MANCHE   L'Yvrande   

03272685   
LA SÉLUNE A SAINT-AUBIN-DE-

TERREGATTE 1   

SAINT-AUBIN-
DE-

TERREGATTE   
MANCHE   La Selune   

Table 2: The 4 station of the Selune watershed, where cyanide contamination has been observed 

and measured 
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5.1.3. Ecotoxicological data 
The ecotoxicological data have been collected from various scientific articles. In detail, 26 

articles regarding cyanide toxicity, published in the period 1965-2011 have been analysed. The 

analysis resulted in the extraction of 46 toxicological endpoints for the aquatic environment, 

related to the 5 different taxonomic groups: Protozoa, Plants, Algae, Invertebrates and 

Vertebrates. 

The collected endpoints included: no observed effect concentration (NOEC), lowest observed 

effect concentration (LOEC), effect concentration of x% of species (ECx), median lethal time 

of x% of species (LTx) and lethal concentration of x% of species (LCx). 

The acute ecotoxicological data have been processed (i.e. converted from acute to chronic 

and from effect to no effect values) in order to obtain the input data (called “calculated 

NOEC”) required to build the SSWD curves. Two assessment factors have been applied, 

according to the REACH guidance (ECHA, 2008a,b): The first one accounts for the difference 

between acute and chronic toxicity (factor 10 to extrapolate short-to-long term effect) and 

the second one to extrapolate from various cyanide effect’s endpoint (e.g. ECx) the no 

observed effect concentration (NOEC) required to build the SSWD curves. For the second 

assessment factor the value 10 has been applied to convert the median lethal and effect 

concentration (LC50, EC50) and median lethal time (LT50) into no observed effect concentration, 

while for the effect concentration (EC25) a factor 2 has been applied.  

The NOEC for the chronic data are reported in Table 3 and the calculated NOECs obtained by 

the application of the assessment factors for the acute data, as described above, are reported 

in Table 4.  

 

Chronic 

Species 
Taxonomic 

group 
NOEC 
(μg/L) Reference 

Score 
(Disp 0.3) 

Score 
(Disp 0.1) 

Asellus communis INV 27.92 Oseid & Smith, 1979 0.42 0.50 
Champia parvula ALG 3.9 Steele and Thursby, 1983 0.47 0.56 
Chlamydomonas ALG 10 Cairns et al, 1978 0.50 0.60 
Chlamys asperrimus INV 5 Pablo et al, 1997b 0.54 0.66 
Gammarus pseudolimnaeus INV 3.9 Oseid & Smith, 1979 0.42 0.50 
Hydra viridissima INV 200 Rippon et al, 1992 0.41 0.47 
Moinodaphnia macleayi INV 5.8 Rippon et al, 1992 0.41 0.47 
Nitzschia closterium ALG 10 Pablo et al, 1997a 0.57 0.69 
Oncorhynchus mykiss VE 10 Dixon & Leduc 1981 0.37 0.40 
Cyprinus carpio VE 73 Jee & Kang 1999 0.43 0.47 
Lemna gibba  PLAN 3.58 Bertow, 2011b 0.66 0.79 
Chironomus riparius  INV 5 Bertow, 2011c 0.67 0.80 

Table 3: Chronic ecotoxicological data 
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Acute 

Species 
Taxonomic 

group 
EC50/LC50 

(µg/L) 

Calculated 
NOEC 
(μg/L) Reference 

Score 
(Disp 
0.3) 

Score 
(Disp 
0.1) 

Chlamys asperrimus INV 22.4 0.224 Pablo et al, 1997b 0.64 0.79 

Cancer magister INV 51 0.51 Brix et al, 2000 0.56 0.71 

Nitzschia closterium  ALG 54.87 0.5487 Pablo et al., 1997a 0.57 0.68 

Cancer productus INV 107 1.07 Brix et al, 2000 0.56 0.71 

Cancer oregonensis INV 131 1.31 Brix et al, 2000 0.56 0.71 

Gasterosteus aculeatus VE 131 1.31 Broderius, 1973 0.59 0.73 

Cancer gracilis INV 144 1.44 Brix et al, 2000 0.56 0.71 

Gammarus pseudolimnaeus INV 162.69 1.6269 Oseid ans Smith, 1979 0.42 0.50 

Asellus communis INV 2211 22.11 Oseid and Smith, 1979 0.42 0.50 

Gammarus fasciatus INV 83.9 0.839 Smith et al., 1979 0.56 0.69 

Spirostomum ambiguum INV 1180 11.8 Nalecz-Jawecki and Sawicki, 1998 0.31 0.34 

Moina micrura INV 15460 154.6 Bhunia et al., 2000 0.45 0.55 

Branchiura sowerbyi INV 166880 1668.8 Bhunia et al., 2000 0.55 0.67 

Daphnia pulex  INV 100 1 Cairns et al., 1978 0.40 0.47 

Rana temporaria VE 260 2.6 Costa et al, 1965a 0.36 0.40 

Gammarus pseudolimnaeus INV 170 1.7 Smith et al, 1979 0.56 0.69 

Artemia salina INV 6720 67.2 Calleja et al., 1994 0.53 0.61 
Streptocephalus 
proboscideus INV 2140 21.4 Calleja et al., 1994 0.54 0.62 

Patiriella calcar INV 0.03 0.0003 Mahadevan, 1986 0.38 0.43 

Pomoxis nigromaculatus VE 101 1.01 Smith et al, 1979 0.56 0.68 

Pimephales promelas VE 78.6 0.786 Smith et al., 1978 0.56 0.69 

Perca flavescens VE 73 0.73 Smith et al., 1978 0.56 0.69 

Oncorhynchus mykiss VE 28 0.28 Carballo et al., 1995 0.45 0.55 

Tanytarsus dissimilis INV 2490 24.9 Call et al., 1983 0.51 0.62 

Myriophyllum spicatum PLAN 20000 200 Stanley 1974 0.28 0.28 

Physella heterostropha INV 432 4.32 Cairns and Scheier, 1958 0.48 0.56 

Anculosa sp INV 7000 70 Cairns et al, 1978 0.50 0.56 

Aeolosoma headleyi INV 9000 90 Cairns et al, 1978 0.39 0.49 

Tetrahymena pyriformis Proto 50 0.5 Slabbert and Maree, 1986 0.50 0.64 

Philodina acuticornis Proto 54000 540 Cairns et al, 1978 0.41 0.51 

Cichlasoma bimaculatum VE 87 4.35 Leduc, 1966 0.42 0.50 

Lemna gibba  PLAN 11.6 0.116 Bertow, 2011b 0.66 0.79 

Chironomus riparius  INV 12.4 0.124 Bertow, 2011a 0.65 0.78 

Lepomis macrochirus VE 126 1.26 Broderius, 1973 0.59 0.73 

Table 4: Acute ecotoxicological data with assessment factors applied 
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5.2. Analysis of ecotoxicological data and weighted Species Sensitivity 
Distributions (SSWD) 

Ecotoxicological data have been analysed for the production of the weighted Species 
Sensitivity Distribution (SSWD) graphs. As described in paragraph 3.2, the proposed MCDA 
based aggregation methodology has been used for the analysis of the reliability and relevance 
of the ecotoxicological data.  

A total of 26 peer-reviewed articles has been analysed by members of the expert panel and 
the various included endpoints have been assessed, based on the multiple criteria of the WoE 
framework. The 2nd module of the Decision Support System and the incorporated MCDA-
based aggregation methodology have been used for the analysis of the 46 available 
toxicological endpoints (mortality, growth, reproduction and more), of the various assessed 
species. The assessed tests included both chronic and acute toxicity data. The species 
belonged to five taxonomic groups (Algae, Plants, Protozoa, Invertebrates and Vertebrates). 

Specifically the following number of endpoints has been analysed for each taxonomic group: 

 Algae – 4 endpoints 

 Plants – 3 endpoints  

 Protozoa – 2 endpoints 

 Invertebrates – 27 endpoints 

 Vertebrates – 10 endpoints 

 

In the analysis, the following aspects of the MCDA methodology have been taken into 
consideration: 

 The complete set of available experts’ answers has been used (14 experts). 

 All experts have been considered of equal importance for the evaluation and thus 
equal weights have been assigned to them. 

 Two disputability scores have been used. The default value (0.3) of the DSS has been 
used in the first analysis, while in the second analysis the disputability score has been 
set as 0.1.  

As explained in section (B), the MCDA methodology is taking into consideration the possible 
existing uncertainty in the evaluation of ecotoxicological data and specifically, the presence 
of disputable conditions, as described in paragraph 3.2. This element is evaluated in the 
methodology based on the feedback of the expert panel. The disputability scores are user 
defined and therefore can be adjusted according to the individual preferences of the decision 
maker. For the case study, two analysis have been performed, though the second analysis has 
been included only for giving the reader a demonstration on how different uncertainty factors 
influence the calculated scores and is not discussed further. The assessment of the 
ecotoxicological data has been performed under conditions with inherent uncertainty 
regarding the way the criteria-questions have been interpreted by the assessors and the 
default disputability score has been deemed as representative for the given conditions. 
Therefore, only the test scores for the default disputability value have been taken into 
consideration for the rest of the case study (modules 2 and 3 of the DSS). 

The results are presented in Table 5, sorted in descending order, where the first column 
presents the scores for the disputability scores dispe = 0.3 and the second column the scores 
for disputability scores dispe = 0.1.  
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Test 

Scores 

D0.3 D0.1 

Chironomids Chronic toxicity 0.67 0.80 

Lemna test 0.66 0.79 

Chironomids Acute toxicity 0.65 0.79 

Pablo_1997_chlamys_EC50 0.64 0.78 

Broderius 1 Lep 0.59 0.73 

Broderius 2 Gast 0.59 0.73 

Pablo chronic_Nitzschia 0.57 0.71 

Pablo acute_Nitzschia 0.57 0.69 

Brix_2000_Cancer spp 0.56 0.69 

Smith 1978 2 Perca 0.56 0.69 

Smith 1978 1 Pim 0.56 0.69 

Smith 1979 2 gammarus 0.56 0.68 

Smith 1979 1 pomoxis 0.56 0.68 

Bhunia_2000_branchiura 0.55 0.67 

Pablo_1997_chlamys_NOEC 0.54 0.66 

Calleja 2 Streptoxkit 0.54 0.64 

Calleja 1 Artoxkit 0.53 0.62 

Call_1983_Tanytarus 0.51 0.62 

Cairns_1978_chlamy 0.50 0.61 

Slabbert_1986_tetrahymena 0.50 0.60 

Cairns_1978_anculosa 0.50 0.56 

Cairns_Physa 0.48 0.56 

Steele_1983_Champia 0.47 0.56 

Carballo_1995_O.mykiss 0.45 0.55 

Bhunia_2000_moina 0.45 0.55 

Jee and Kang 1999 0.43 0.51 

Leduc 1966 0.42 0.50 

Oseid and Smith 1979 0.42 0.50 

Cairns_1978_philodina 0.41 0.49 

Rippon et al 1992 0.41 0.47 

Cairns_1978_daphnia 0.40 0.47 

Cairns_1978_aelosoma 0.39 0.47 

Mahadevan_1986_patriella 0.38 0.43 

Dixon_1981_salmo 0.37 0.40 

Costa 1965a 0.36 0.40 

Nalecz-
Jawecki_1998_Spirotomum 0.31 0.34 

Stanley_1974_myrio 0.28 0.28 

Table 5: Reliability and relevance scores of the toxicological data based on different disputability 

scores. (a) First column disp=0.3, (b) Second column disp=0.1 
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Default disputability (disp=0.3) 

The minimum score (0.28) is observed for the test on ‘Myriophyllum spicatum’ from Stanley 
(1974) while the maximum (0.67) is observed for the test on ‘Chironomus riparius’ from 
Bertow (2011). The tests have an average score of 0.5. Most tests, whose conditions varied 
significantly between optimum and non-optimum, received a middle level reliability and 
relevance score (0.40-0,60). 

The MCDA methodology allows the analysis of each test, based on the preferences of each 
involved expert. The variability that is observed among experts for the scores of an individual 
test are based on the different input provided by each expert, regarding the importance of 
the assessment criteria and the relations among criteria, as those are expressed in the 
questionnaire for expert consultation and stored in the knowledge base. In practice, the 
variability is one of the main cores of the methodology, as it allows to evaluate and assess 
ecotoxicological data on the basis of different experts’ opinions based on the same criteria 
hierarchy.  

The methodology allows extracting further information regarding the analysis of each specific 
test for every single node of the criteria hierarchy. As an example, we can see in Table 6 how 
well the different tests perform for the ‘Experimental Reliability’, ‘Statistical Reliability’ and 
‘Biological Relevance’ Lines of Evidence (LoEs) test respectively. 

Most of the analysed tests, perform quite well in the ‘Experimental Reliability’ LoE, with scores 
in the range 0.50-0.80. Four test have received the maximum score (0.84 -  test on ‘Chlamys 
asperrimus’ from Pablo 1997, test on ‘Lemna gibba’ from Bertow 2011, tests on ‘Chironomus 
riparius’ from Bertow 2011), while the tests on ‘Myriophyllum spicatum’ from Stanley 1974 
and on ‘Spirostomum ambiguum’ from Nalecz-Jawecki 1998 have the lowest performance 
(0.38 and 0.41 respectively). Most of the tests do not perform well on the ‘Statistical 
Reliability’ LoE, as it observed that most of the scores are in the range 0-0.5, with significant 
number of tests below 0.3. Two tests have score 0 (test on ‘Chlamydomonas’ from Cairns 1978 
and ‘Patiriella calcar’ from Mahadevan 1986), which indicates complete unreliability for the 
statistical aspects of the performed tests. Similarly with the 1st LoE, the scores of the tests for 
the third LoE (Biological Relevance) are fairly good and in the range 0.49-0.72. Only one test 
has received a score of 0.38 (test on ‘Oncorhynchus mykiss’ from Dixon 1981). 

In a similar way, we can analyse and compare every assessed test and ecotoxicological datum 
based on every criteria group, ecotoxicological category and line of evidence of the WoE 
framework. In this way, apart from the overall reliability score, different tests can be 
quantitavely evaluated, based on their various other different characteristics. 
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Experimental 

Reliability 
Statistical 
Reliability 

Biological 
Relevance 

Calleja 1 Artoxkit 0.73 0.34 0.49 

Calleja 2 Streptoxkit 0.76 0.34 0.49 

Pablo acute_Nitzschia 0.72 0.48 0.65 

Pablo chronic_Nitzschia 0.72 0.47 0.68 

Cairns_Physa 0.64 0.03 0.65 

Cairns_1978_anculosa 0.64 0.31 0.66 

Smith 1978 1 Pim 0.71 0.46 0.65 

Smith 1978 2 Perca 0.71 0.46 0.65 

Smith 1979 1 pomoxis 0.71 0.43 0.65 

Smith 1979 2 gammarus 0.71 0.46 0.65 

Broderius 1 Lep 0.75 0.59 0.65 

Broderius 2 Gast 0.75 0.59 0.65 

Brix_2000_Cancer spp 0.72 0.43 0.72 

Call_1983_Tanytarus 0.68 0.38 0.61 

Carballo_1995_O.mykiss 0.60 0.15 0.70 
Nalecz-
Jawecki_1998_Spirotomum 0.41 0.38 0.49 

Steele_1983_Champia 0.63 0.11 0.71 

Pablo_1997_chlamys_EC50 0.84 0.45 0.63 

Pablo_1997_chlamys_NOEC 0.74 0.24 0.71 

Slabbert_1986_tetrahymena 0.58 0.63 0.63 

Cairns_1978_chlamy 0.70 0.00 0.72 

Cairns_1978_aelosoma 0.50 0.35 0.63 

Cairns_1978_philodina 0.52 0.35 0.63 

Cairns_1978_daphnia 0.50 0.33 0.62 

Bhunia_2000_moina 0.55 0.57 0.57 

Mahadevan_1986_patriella 0.58 0.00 0.47 

Dixon_1981_salmo 0.54 0.11 0.38 

Stanley_1974_myrio 0.38 0.13 0.51 

Rippon et al 1992 0.51 0.25 0.59 

Lemna test 0.84 0.49 0.66 
Chironomids Chronic 
toxicity 0.84 0.49 0.69 

Chironomids Acute toxicity 0.84 0.46 0.67 

Leduc 1966 0.52 0.38 0.63 

Oseid and Smith 1979 0.46 0.42 0.64 

Costa 1965a 0.45 0.25 0.55 

Jee and Kang 1999 0.61 0.27 0.45 

Bhunia_2000_branchiura 0.72 0.46 0.57 
Table 6: Scores of the tests for the three Lines of Evidence. Columns: (a) Experimental reliability, (b) 

Statistical reliability, (c) Biological relevance 
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5.2.1. SSWD graphs 
In this study the proposed MCDA methodology has been used for the assessment of the 
available ecotoxicological data and the SSWD method was applied to the dataset of 
ecotoxicological data on cyanide, which has been described in the paragraph 5.1.3. Moreover, 
for comparison purposes, the conventional SSWD (all data equally weighted) was applied to 
the same set of data. 

The weighting coefficients used for the production of the SSWD are the reliability and 
relevance scores that have been calculated with the use of the MCDA methodology and are 
reported in Table 5, while for the conventional SSWD the weighting coefficients were set equal 
to 1 for all the ecotoxicological data. 

The produced SSWD graphs are used in the following two ways, as reported by Posthuma et 
al. (2002): 

1. The forward use 
2. The inverse use 

The forward use, ecological risk assessment, requires estimation of the ambient concentration 
of a compound at a contaminated site, in our case the PEC module results (paragraph 5.3.1), 
or the concentration predicted to result from a proposed use (X-axis). The potentially affected 
fraction (PAF) at that concentration can then be estimated using the SSWD. The various SSWD 
graphs for each taxonomic group (i.e. All data, Vertebrates, Invertebrates) and the different 
trophic levels (i.e. Primary producers, Primary consumers, Secondary consumers) are reported 
in the following sub-paragraphs and specifically in Figure 33 for all the ecotoxicological data, 
in Figure 34 for the Invertebrates, in Figure 35 for the Vertebrates, in Figure 36 for the primary 
producers, in Figure 37 for primary consumers and in Figure 38 for the secondary consumers. 
Each figure consists of a set of 4 SSWD graphs, which report the log-empirical and the log-
normal SSWD which are created with the use of the MCDA methodology (graphs (a) and (b), 
while the log-empirical and log-normal graphs of the conventional SSWD (all weights equal to 
1) are reported in graphs (c) and (d). The results of the forward use of the SSWDs and the risk 
estimations for the four stations in France are reported in paragraph 5.3.2. 

For the inverse use, such as the derivation of environmental quality criteria, a cutoff 
percentage p is chosen (to protect 1-p percent of species, Y-axis), and the desired “safe” 
concentration (HCp) is calculated as a result. The 5th percentile of a chronic toxicity 
distribution has been chosen in the earliest methods as a concentration that is protective for 
most species in a community, but the value of p is a policy decision, not science. In this study, 
the cutoff percentages p=5 and p=50 are reported, and the HC5 and HC50 values are presented 
in Table 7 and Table 8 for the different taxonomic groups (i.e. All data, Vertebrates, 
Invertebrates) and the different trophic levels (i.e. Primary producers, Primary consumers, 
Secondary consumers). This approach is used to derive ecological quality criteria (EQCs). This 
process allowed the identification of the most sensitive trophic level and taxonomic group for 
the environmental compartments of concern. 

Weighted SSD curves 

For all the ecotoxicological data, it can be observed that both log-empirical and log-normal 
SSWD curves have the same range of distribution for the best estimate curves, which spans 
from 0.01 to 1000 μg/L (Figure 33, a and b). 

The log-normal curve has a high R2 value (0.949), which indicates a good fitting of the 
ecotoxicological data, while at the same time the KSp value is 0.5 (pvalue of the Kolmogorov-
Smirnov goodness of fit test, with Dallal-Wilkinson approximation) is greater than 0.1 and 
indicates a good fitting of the data as well.  



75 
 

For the Invertebrates, we observe that both log-empirical and log-normal SSWD curves have 
almost the same range of distribution for the best estimate curves, which spans from 0.01 to 
1000 μg/L (Figure 34, a and b). 

The log-normal curve has a high R2 value (0.944), and a good KS pvalue is 0.5. 

For the Vertebrates, it can be observed that the log-normal SSWD curve has larger range of 
distribution, which spans from 0.1 to 30 μg/L from the log-empirical curve, which spans from 
0.4 to 30 μg/L (Figure 35, a and b). 

The log-normal curve has a R2 value which is lower than 0.9 (0.832), therefore the fitting of 
the data is not optimal, while the KS pvalue is good (0.5). 

For the Primary producers, it can be observed that the log-normal SSWD curve has larger 
range of distribution, which spans from 0.03 to 360 μg/L, from the log-empirical curve, which 
spans from 0.17 to 170 μg/L (Figure 36, a and b). 

The log-normal curve has a high R2 value (0.932), and a good KS pvalue (0.5). 

For the Primary consumers, it can be observed that both log-empirical and log-normal SSWD 
curves have the same range of distribution for the best estimate curves, which spans from 0.1 
to 1000 μg/L (Figure 37, a and b). 

The log-normal curve has a very high R2 value (0.983), and a good KS pvalue (0.5). 

For the Secondary consumers, it can be observed that both log-empirical and log-normal 
SSWD curves have the same range of distribution for the best estimate curves, which spans 
from 0.01 to 100 μg/L (Figure 38, a and b). 

The log-normal curve does not have a high R2 value (0.749), neither a good KS pvalue (0.05). 
In this case, the curve does not represent well the experimental data, therefore the results 
are deemed unreliable. 

No specific pattern has been observed for the sensitivity of different species, based on the 
various SSWD graphs (All data, primary producers, primary consumers, secondary 
consumers), since the different species are distributed alongside the SSWD curves. 

Conventional SSWD curves (W=1) 

For all the ecotoxicological data, both log-empirical and log-normal SSWD curves have the 
same range of distribution for the best estimate curves, which spans from 0,01 to 1000 μg/L 
(Figure 33, c and d). 

The log-normal curve has a high R2 value (0.936), which indicates a good fitting of the 
ecotoxicological data, while at the same time the KSp value is 0.5 and indicates a good fitting 
of the data as well. 

For the Invertebrates, it can be observed that the log-empirical SSWD curve has a slightly 
different range of distribution, which goes from a bit below 0.01 to 1000 μg/L, while the log-
normal curve has range of distribution, which spans from 0.01 to 1000 μg/L (Figure 34, c and 
d). 

The log-normal curve has a high R2 value (0.912), and a good KS pvalue is 0.5. 

For the Vertebrates, it can be observed that the log-normal SSWD curve has larger range of 
distribution, which spans from 0. 1 to 30 μg/L, from the log-empirical curve, which spans from 
0.4 to 30 μg/L (Figure 35, c and d). 
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The log-normal curve has a good R2 value which is almost 0.9 (0.893) but it is still acceptable, 
while the KS pvalue is good (0.5). 

For the Primary producers, it can be observed that the log-normal SSWD curve has larger 
range of distribution, which spans from 0.03 to 800 μg/L, from the log-empirical curve, which 
spans from 0.2 to 280 μg/L (Figure 36, c and d). 

The log-normal curve has a high R2 value (0.95), and a good KS pvalue (0.5). 

For the Primary consumers, it can be observed that both log-empirical and log-normal SSWD 
curves have the same range of distribution for the best estimate curves, which spans from 0.1 
to 1000 μg/L (Figure 37, c and d). 

The log-normal curve has a very high R2 value (0.982), and a good KS pvalue (0.5). 

For the Secondary consumers, it can be observed that the log-empirical and log-normal SSWD 
curves do not have the same range of distribution for the best estimate curves, as the log-
empirical distribution from 0.003 to 100 μg/L, while the log-normal curve spans from 0.008 to 
230 μg/L (Figure 38, c and d). 

The log-normal curve does not have a high R2 value (0.774), neither a good KS pvalue (0.06). 
In this case, the curve does not represent well the experimental data, therefore the results 
are deemed unreliable. 

No specific pattern has been observed for the sensitivity of different species, based on the 
various SSWD graphs (All data, primary producers, primary consumers, secondary 
consumers), since the different species are distributed alongside the SSWD curves. 

 

Comparison of SSWD and conventional SSWD 

For all ecotoxicological data, all curves have the same range of distribution, while both log-
normal curves have good fitting of the data, as indicated by the two coefficients (R2 and KSp 
value). The R2 is slightly higher for the SSWD curve, which shows a slightly better fitting of the 
data with the use of the MCDA methodology for the assessment of the ecotoxicological data.  

For invertebrates, three curves have the same range of distribution and the log-empirical 

curve has a slightly greater range, while both log-normal curves have good fitting of the data, 

as indicated by the two coefficients (R2 and KSp value). The R2 is again slightly higher for the 

SSWD curve. 

For vertebrates, both log-empirical curves have the same range of distribution, which is 

smaller than the range of the log-normal curves. The log-normal curve of the conventional 

SSWD has a better fitting of the data, as indicated by the two coefficients (R2 and KSp value). 

In the case of vertebrates, the R2 is higher for the conventional SSWD curve. 

For the primary producers, it can be observed that the log-empirical and log-normal curves of 

the conventional SSWD have greater range of distribution in comparison with the 

corresponding curves of the SSWD. Both log-normal curves have good fitting of the data, as 

indicated by the two coefficients (R2 and KSp value). In the case of primary producers, the R2 

is slightly higher for the conventional SSWD curve. 

For the primary consumers, all curves have the same range of distribution, while both log-

normal curves have very good fitting of the data, as indicated by the two coefficients (R2 and 

KSp value).  
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For the secondary producers, it can be observed that the log-empirical and log-normal curves 

of the conventional SSWD have slightly greater range of distribution in comparison with the 

corresponding curves of the SSWD. The log-normal curves do not have a very good fitting of 

the data, as indicated by the two coefficients (R2 and KSp value). In the case of secondary 

producers, the R2 is slightly higher for the conventional SSWD curve. In both cases, the results 

are deemed unreliable and are not taken into consideration for further comparisons with 

other taxonomic groups or trophic levels.  

The weighted Species Sensitivity Distributions have been produced in two different ways and 
the results have been analysed, evaluated and compared. A conservative behaviour is 
expected with the production and use of the MCDA based SSWD graphs in the risk assessment 
process, especially for higher concentrations, in comparison with the use of the conventional 
SSWD graphs. 
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5.2.1.1. SSWD - All data 

 

 

Figure 33: Log-empirical (a, c) & log-normal (b, d) SSWD curves for all data. MCDA based SSWDs shown in graphs (a) and (b), conventional SSWD are shown in graphs (c) and (d). 
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5.2.1.2. SSWD – Invertebrates 

 

 

Figure 34: Log-empirical (a, c) & log-normal (b, d) SSWD curves for invertebrates. MCDA based SSWDs shown in graphs (a) and (b), conventional SSWD are shown in graphs (c) and (d). 
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5.2.1.3. SSWD – Vertebrates 

 

Figure 35: Log-empirical (a, c) & log-normal (b, d) SSWD curves for vertebrates. MCDA based SSWDs shown in graphs (a) and (b), conventional SSWD are shown in graphs (c) and (d). 
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5.2.1.4. SSWD – Primary producers 

 

Figure 36: Log-empirical (a, c) & log-normal (b, d) SSWD curves for primary producers. MCDA based SSWDs shown in graphs (a) and (b), conventional SSWD are shown in graphs (c) 

and (d). 
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5.2.1.5. SSWD – Primary consumers 

 

Figure 37: Log-empirical (a, c) & log-normal (b, d) SSWD curves for primary consumers. MCDA based SSWDs shown in graphs (a) and (b), conventional SSWD are shown in graphs (c) 

and (d). 
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5.2.1.6. SSWD – Secondary consumers 

 

Figure 38: Log-empirical (a, c) & log-normal (b, d) SSWD curves for secondary consumers. MCDA based SSWDs shown in graphs (a) and (b), conventional SSWD are shown in graphs (c) 

and (d). 
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5.2.2. Hazardous Concentrations (HCx) 
The summary of the calculated Hazardous Concentrations (HC5 and HC50, best estimate value 

with 50% confidence interval) for each of the produced SSWD are reported in Table 7 for (a) 

All data, (b) Vertebrates and (c) Invertebrates and in Table 8 for (a) Primary Producers, (b) 

Primary Consumers and (c) Secondary Consumers.  

It can be observed that the MCDA based SSWD curve present an evident conservative 

behaviour for the HC50 values in comparison with the conventional SSWD curves, since the 

HC50 values for all the log-normal and log-empirical curves of the taxonomic groups and 

trophic levels are lower for the MCDA based SSWD curves. The differences vary from 0.03-

0.06 for the secondary consumers trophic level, up to 1.42-2.13 for the primary producers 

trophic level, while the range is 0.17-0.91 for the primary consumers, the vertebrates, the 

invertebrates and the complete set of data. 

On the other hand, the HC5 values vary. In detail, the HC5 values are slightly lower for the 

MCDA based SSWD curves for the log-normal and log-empirical curves of the primary 

producers (0.07 and 0.17 μg/L) in comparison with the respective values of the conventional 

SSWD curves (0.08 and 0.20 μg/L). Similarly, they are slightly lower also for the MCDA based 

SSWD curves for the log-normal and log-empirical curves of the primary consumers (0.18 and 

0.20 μg/L) in comparison with the respective values of the conventional SSWD curves (0.24 

and 0.26 μg/L). The HC5 values of the MCDA based SSWD curves for all the ecotoxicological 

data, the vertebrates, the invertebrates and the secondary consumers are slightly higher 

(0.01-0.02) from the respective values of the conventional SSWD. 

According to the obtained HC5 values it is observed that primary producers are found to be 

the most sensitive trophic level according to both log-normal and log-empirical curves, while 

Invertebrates are the most sensitive taxonomic group. The analysis of the HC50 values, 

confirms the sensitivity of the primary producers in comparison with the primary consumers 

whereas vertebrates are found to be more sensitive than invertebrates for higher cyanide 

concentrations. In practice, for low cyanide concentrations (around 0.03-0.07 μg/L) the first 

trophic level to be affected is primary producers and the first taxonomic group to be affected 

is Invertebrates, while for high concentrations the most endangered trophic level is primary 

producers and the most sensitive taxonomic group is Vertebrates (for which 50% of species is 

affected for concentrations below 2 μg/L). 
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  All data Vertebrates Invertebrates 

 HCx (mg/L) 5% 50% 5% 50% 5% 50% 

Log-normal Best-Estimate 
(C.I. 50%) 

0.06 3.50 0.20 1.90 0.05 4.59 

Log-empirical 0.10 2.71 0.41 1.32 0.04 4.01 

  All data (W1) Vertebrates (W1) Invertebrates (W1) 

 HCx (mg/L) 5% 50% 5% 50% 5% 50% 

Log-normal Best-Estimate 
(C.I. 50%) 

0.06 4.24 0.20 2.14 0.04 4.88 

Log-empirical 0.09 3.48 0.40 1.49 0.02 4.83 

Table 7: HC5 and HC50 values in (mg/L) for (a) All data, (b) Vertebrates and (c) Invertebrates, reported for the MCDA based SSWD and the conventional SSWD (W1) 

 

 
 PRIMARY PRODUCERS PRIMARY CONSUMERS SECONDARY CONSUMERS 

 HCx (mg/L) 5% 50% 5% 50% 5% 50% 

Log-normal Best-Estimate 
(C.I. 50%) 

0.07 3.47 0.18 7.77 0.03 1.31 

Log-empirical 0.17 3.09 0.20 7.38 0.02 1.21 

  PRIMARY PRODUCERS (W1) PRIMARY CONSUMERS (W1) SECONDARY CONSUMERS (W1) 

 HCx (mg/L) 5% 50% 5% 50% 5% 50% 

Log-normal Best-Estimate 
(C.I. 50%) 

0.08 5.59 0.24 8.67 0.02 1.34 

Log-empirical 0.20 4.51 0.26 8.08 0.01 1.26 

Table 8: HC5 and HC50 values in (mg/L) for (a) Primary producers, (b) Primary consumers and (c) Secondary consumers, reported for the MCDA based SSWD and the conventional 

SSWD (W1) 
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5.3. Predicted Environmental Concentrations (PEC) and Potentially Affected 
Fraction (PAF) 

Following the calculations of the reliability and relevance scores of the ecotoxicological data 

used in the case study and the production of the SSWD graphs, the next steps in the 

probabilistic ecological risk assessment are: (1) the calculation of the Predicted Environmental 

Concentrations (PEC – paragraph 5.3.1) for each station of the case study, through the 

production of the Probability Density Functions of cyanide and (2) the calculation of the 

Potentially Affected Fraction (PAF – paragraph 5.3.2) through the production of the Joint 

Probability Curves from the cumulative distributions of the calculated PECs for each station 

and the produced SSWDs for the sensitivity of species on cyanide. The application of the DSS 

and the related results are described in the next paragraphs. 

 

5.3.1. Predicted Environmental Concentrations (PEC)  
The collected measurements of cyanide for the four stations have been inserted in the 1st 
module of the DSS for the statistical analysis of the measured concentration and the 
production of the ‘Probability Density Functions’ (PDF) of cyanide for the case study.  

The data have been considered as a continuous set of measurements, without taking into 
consideration their temporal information. In order to estimate the distribution of the 
observed concentrations and their probabilities of appearance, the ‘Winsorized’ distributional 
method has been selected, as it has been considered an appropriate and interesting statistical 
technique for estimating the PDF graphs. This is due to the fact that mean and standard 
deviation have been evaluated from the original data without taking into consideration 
undetected (missing) values. New data have been generated, following the behaviour of a 
Normal variable with mean and standard deviation previously computed as parameters. 

The measurements of cyanide in µg(CN)/L for the period 01/01/2005 – 20/08/2014, for the 
four stations of the case study, are presented in Table 9. The selected underlying model has 
been selected as ‘Normal’ and the Kernel parameters (kernel function and smoothness) have 
both been selected as ‘Normal’ respectively due to their convenient mathematical properties 
and the best estimated fit to the available dataset. The results of the application of the 
Exposure Assessment module of the DSS to the available exposure data are presented for each 
station separately, with the 4 graphs that are produced by the software. 

The graphs report the predicted probabilities of appearance of the various concentration 
levels of cyanide through a normal curve, an empirical PDF and a kernel density estimation. In 
addition, a comparison of the three graphs is provided. The four graphs for each station can 
be seen in Figure 39 (La Cance), Figure 40 (L’Airon), Figure 41 (L’Yvrande) and Figure 42 (La 
Selune). 

As expected from the available data, a higher probability of appearance of cyanide 
concentration is predicted for station 3 (03272235, L’Yvrande) in comparison with stations 1, 
2 and 4 (La Cance, L'Airon and La Selune respectively). The PEC graphs show a significant 
higher predicted concentration for station 3, where there is probability of appearance of 
concentrations up to 10 µg(CN)/L and higher, whereas the other three stations are restricted 
to lower concentrations, around 1.33 µg(CN)/L, therefore an expected difference by 1 order 
of magnitude.
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2005-2014 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18 m19 m20 m21 m22 m23 m24 m25 m26 m27 m28 

3271415 0.71 0.61 0.61 0.64 1.09 0.42 0.48 0.46 0.71 0.42 0.82 0.63 0.75 0.42 0.62 0.25 0.55 0.14 0.14 0.20 0.30 0.51 0.90 0.30 0.41 1.15 0.17 0.55 

3271965 0.41 0.62 1.28 0.62 0.65 0.83 0.94 0.39 0.68 0.18 0.35 0.57 0.66 0.46 0.50 0.40 0.79 0.14 0.20 0.30 0.80 0.32 0.34 0.50 0.50 0.14 0.50 0.94 

3272235 0.76 0.74 1.41 5.86 3.66 4.17 10.80 2.36 4.45 5.71 3.71 0.20 3.81 5.62 0.90 0.22 0.63 3.00 1.00 4.89 8.29 0.60 1.20 4.95 3.00 0.74 1.00 5.43 

3272685 0.48 0.42 0.78 0.51 0.54 0.55 0.70 0.66 0.80 0.60 0.72 0.81 0.58 0.35 0.44 0.55 0.86 0.14 0.30 0.38 0.21 0.40 0.65 0.25 0.46 0.90 0.14 0.20 

 

2005-2014 m29 m30 m31 m32 m33 m34 m35 m36 m37 m38 m39 m40 m41 m42 m43 m44 m45 m46 m47 m48 m49 m50 m51 m52 m53 m54 m55 m56 

3272235 0.80 0.14 0.18 0.40 0.14 0.40 0.55 0.14 0.20 0.40 0.86 0.14 0.20 0.43 0.50 0.14 0.21 0.30 0.40 0.14 0.50 0.69 0.30 0.60 0.61 0.16 0.48 0.80 

3272685 0.30 0.46 0.77 0.14 0.14 0.40 0.14 0.14 0.20 0.40 0.30 0.38 0.83 0.14 0.67 0.70 0.16 0.45 0.90 0.14 0.14 0.50 0.20 0.40 0.44 0.14 0.30 0.99 

3271965 3.00 3.99 7.66                          

3271415 0.47 0.14 0.20 0.40 0.77 0.20 0.20 0.26 0.31 0.14 0.30 0.42 0.50 0.16 0.40 0.68 0.42 0.50 0.68 0.30 0.47 0.69 0.21 0.40 0.44 0.20 0.33 0.83 

Table 9: Values of Cyanide in µg(CN)/L for measurements 1-56 for the period 01/01/2005 – 20/08/2014. 
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5.3.1.1. PEC graphs – Winsorized distributional method 

 

Figure 39: PEC graphs for station 1 (La Cance) 
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Figure 40: PEC graphs for station 2 (L’Airon) 
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Figure 41: PEC graphs for station 3 (L’Yvrande) 
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Figure 42: PEC graphs for station 4 (La Selune) 
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5.3.2. Potentially Affected Fraction (PAF)  
As mentioned in paragraph 5.2, the forward use of the SSWD in Ecological Risk Assessment 

allows the quantification of environmental risk through the calculation of the Potentially 

Affected Fraction, which expresses the fraction of species which is expected to be affected 

above its no-effect level at a given environmental concentration. 

In the case study, the analysis has been performed for the different taxonomic groups (as well 

as for all species) and trophic levels. The percentages of risk for the four analysed stations are 

reported in Table 10 below, for the different taxonomic groups and trophic levels. The first 

part reports the PAF percentages calculated with the use of the MCDA based SSWD 

methodology and the second with the conventional SSWD (where, all weights are equal). 

5.3.2.1. PAF – Distributional method (winsorised) PEC 

Risk - SSWD 

Station code All species Invertebrates Vertebrates 
Primary 

Prod. 
Primary 

Cons. 
Secondary 

Cons. 

Station 1 -
03271415   

16.4 16.7 11.7 16.6 
8.6 27.3 

Station 2 -
03271965   

16.5 16.8 12.0 16.8 
8.7 27.5 

Station 3 -
03272235   

36.4 35.3 39.3 36.4 
32.3 41.6 

Station 4 -
03272685   

16.0 16.5 11.1 16.3 
8.3 27.0 

Risk - conventional SSWD 

Station code All species Invertebrates Vertebrates 
Primary 

Prod. 
Primary 

Cons. 
Secondary 

Cons. 

Station 1 -
03271415   

15.8 17.0 11.1 14.3 
6.9 29.0 

Station 2 -
03271965   

15.9 17.1 11.3 14.4 
7.0 29.1 

Station 3 -
03272235   

35.6 35.0 38.5 34.3 
31.6 41.6 

Station 4 -
03272685   

15.5 16.7 10.5 14.0 
6.7 28.7 

Table 10: PAF percentages for different taxonomic groups and trophic levels, for the MCDA based 

SSWD and the conventional SSWD. 

 

The assessment shows a significant risk from the cyanide concentrations for all the species at 
the four analysed stations and especially for the L’Yvrande station (station 3 - 03272235) at 
which the 36.4% of species is expected to be affected by the predicted environmental 
concetrations, while on the other hand, the risk is 16-16.5% for the other three stations, which 
definitely cannot be neglected. 

The analysis of the PAF per trophic level shows, as expected, that the primary producers are 
the trophic level in higher risk, both for lower expected concentrations (27-27.5% in stations 
1, 2, 4) and higher expected concentrations (41.6% in station 3) in comparison with the risk of 
primary consumers (8.3-8.7% and 32.3% respectively).  

The analysis of the PAF per taxonomic groups shows, that Invertebrates are the taxonomic 
group in higher risk for lower expected concentrations since the PAF percentages (16.5-16.8%) 
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are higher than the percentages of the Vertebrates (11.1-12.0%) for stations 1, 2 and 4, where 
the predicted environmental concentrations are low. On the other hand, the reverse 
behaviour is observed for station 3, where the predicted environmental concentrations are 
higher than the other stations. Specifically, Vertebrates are found to be in higher risk for 
higher expected concentrations (39.3%) than Invertebrates (35.3%). 

These results are in compliance with the outcomes of the SSWD graphs. 

The comparison of the PAF percentages between the MCDA-based SSWD and the 
conventional SSWD shows that the MCDA-based SSWD shows a higher expected risk for all 
species, vertebrates, primary producers and primary consumers, whereas the percentages for 
invertebrates are almost the same for the two methods and the risk percentages for 
secondary consumers for stations 1, 2 and 4 are slightly lower for the MCDA based SSWD. 

The following figures (Figure 43 to Figure 48) show the graphs of the Joint Probability Curve 
(JPC) and the related PAF percentage for each of the four stations based on the MCDA based 
SSWD for all species, inverterbates, vertebrates, primary producers, primary consumers and 
secondary consumers. 
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5.3.2.2. PAF – All data 

 

  

Figure 43: Joint Probability Curve (JPC) and PAF percentage for the four stations based on the SSWD for all species 
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5.3.2.3. PAF – Invertebrates 

 

Figure 44: Joint Probability Curve (JPC) and PAF percentage for the four stations based on the SSWD for invertebrates 
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5.3.2.4. PAF – Vertebrates 

 

Figure 45: Joint Probability Curve (JPC) and PAF percentage for the four stations based on the SSWD for vertebrates 
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5.3.2.5. PAF – Primary producers 

 

Figure 46: Joint Probability Curve (JPC) and PAF percentage for the four stations based on the SSWD for primary producers 
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5.3.2.6. PAF – Primary consumers 

 

Figure 47: Joint Probability Curve (JPC) and PAF percentage for the four stations based on the SSWD for primary consumers 
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5.3.2.7. PAF – Secondary consumers 

 

Figure 48: Joint Probability Curve (JPC) and PAF percentage for the four stations based on the SSWD for secondary consumers        
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6. Conclusions – Future considerations 
 

The thesis presents the studies and research performed during the three years of my PhD 
programme. The activities were related with the AMORE research project and included three 
complex activities: 

 the development of the MCDA-based WoE methodology and the underlying 
mathematical model, 

 the supervision of the creation and development of the AMORE DSS as a standalone 
software application and 

 the application of the DSS to the selected cyanide case study in France. 

All the objectives have been fulfilled and a fully functional DSS has been developed, which 
utilises novel methodologies for performing probabilistic Ecological Risk Assessment. 

The developed MCDA methodology, which successfully analyses the reliability and relevance 
of ecotoxicological data, is based on Multi-Attribute Value Theory (MAVT) and is combined 
with fuzzy logic and the use of causal relations, in the form of ‘IF-THEN’ rules, in a unique and 
innovative way. Thus, it allows the analysis of data based on an unambiguous set of 
hierarchically structured objective criteria and the quantitative assessment of data based on 
a Weight of Evidence framework. Based on the review of the existing frameworks for the 
analysis of ecotoxicological data (chapter 3), the proposed methodology is considered a step 
forward in the sector. The methodology addresses the identified flaws of the existing 
frameworks, through the use: (1) of unambiguous criteria, (2) of a quantitative assessment 
scoring system and (3) of clearly distinguished reliability and relevance concepts. In addition, 
the proposed methodology allows incorporating in the risk assessment the knowledge 
gathered from an expert panel and gives significant strength to the risk assessors for the 
performed assessments, through the use of previously not widely available information and 
expertise. 

Even though the WoE framework has been designed specifically for the assessment of 
laboratory biotests for individual effects for the purposes of the AMORE project, the 
methodology is flexible and can be easily adapted to other types as well, e.g. laboratory 
biotests for population effects, multi species pseudo-field tests and modelling data. 

This would require the creation of the respective hierarchically structured sets of criteria and 
the gathering of an expert panel for the evaluation of the importance of the new criteria 
hierarchies, with the use of the same type of questionnaire (‘Questionnaire for expert 
consultation’ – chapter 3.1.2). The latter is an assessment which can be performed in an easy 
way by any selected expert, through an online questionnaire. In this way, different 
probabilistic risk assessments could be performed with the use of the same aggregation 
methodology and the same software, in a very efficient way. 

Regarding the DSS, it has been developed with the use of a rather simple programming 

language (VBA) and environment but it can run on any modern personal computer without 

the need for strong computing capabilities. Though, it is modular and scalable so that it can 

be improved, if necessary, in the future. This is possible not only by changing some of its 

elements (e.g. criteria hierarchy of the WoE methodology) but also by adding other 

modules/sub-modules. 



101 
 
 

The performed application of the AMORE DSS in the cyanide case study demonstrates a 

complete probabilistic Ecological Risk Assessment process with the use of Species Sensitivity 

Distributions and the utilisation of Multi-Criteria Decision Analysis.  

Section C includes in detail the results of the application of the three modules of the software 

for the estimation of the Predicted Environmental Concentrations, the weighted Species 

Sensitivity Distributions and the Potentially Affected Fractions, with the aim of estimating the 

risk from the presence of cyanide in the Selune watershed in France. 

The results, as analysed in Section C, provide to the Decision Maker/Risk Assessor a wealth of 

relevant information, which can be utilised for the different aspects of the Risk Assessment 

processes. The independent nature of the AMORE DSS modules, allows performing separately 

each process, therefore the user has the possibility of using the PEC or SDD modules stand-

alone for a specific analysis or both the PEC and SSD modules for a complete ERA, based on 

the needs of his/her analysis. In our case study, both modules have been used since the 

available environmental exposure data and the ecotoxicological data are highly relevant to 

the analysed region and the desired risk assessment. 

The statistical analysis of environmental exposure data has been used for predicting the 

concentrations of cyanide over time in the assessed area, based on the actual measurements 

at the stations. Furthermore, the analysis of the available ecotoxicological data for the toxicity 

of common European species, has allowed the production of relevant SSWD graphs that 

predict the sensitivity of species in the assessed area and the extraction of quality criteria. The 

SSWD results are available for all the data, as well as for the various taxonomic groups and 

trophic levels. The combination of the aforementioned results from modules 1 and 2, have 

allowed the estimation of the present risks for species in the watershed and the comparisons 

among taxonomic group and among trophic levels. 

The case study results have shown that the MCDA based WoE methodology has a robust 

performance and allows the estimation of more reliable SSWDs, based on the innovative 

methodology for the analysis of ecotoxicological data. In addition, the conclusions drawn 

indicate that the methods proposed in this thesis have, in our opinion, potential for adoption 

within the risk assessment research fields. However, there are aspects that require further 

research in order to provide extra refined tools and methodologies and lead to more refined 

tiered risk assessments for pollutants in aquatic environments. 

 Regularly during the research period, considerations and questions arose, regarding 

the tackled topics. Some of the most important ones are mentioned below, as they 

can be taken as future considerations: Group Decision processes and participatory 

processes require a high degree of common understanding, among all the involved 

parties. This is always a challenging task, both from the researcher’s point of view, as 

well as from an expert and decision maker’s point of view, since often different parties 

have different views and experiences on the assessed topic. For any similar research 

project, it is highly recommended, upon available funds restrictions, to plan as many 

live meetings, to ensure that all involved parties share the same visions and 

understanding and reach the maximum possible concensus. 

 The selection of MCDA methods and the selection of the related aggregation 

operators is always a delicate topic. Even if the selected MCDA methodologies (MAVT, 

fuzzy logic) have been considered as appropriate for their incorporation in the 
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proposed MCDA-based scoring system for the assessment of ecotoxicological data, it 

is impossible to declare that some other possible methodology would be less or more 

efficient or appropriate for handling the topic.  

 An open statistical issue in the SSD theory is the production of SSD graphs with small 

available datasets. Currently the DSS does not offer any specific functionality to 

handle this topic and therefore the exploration of how available Bayesian approaches 

could be combined with the proposed MCDA-based methodology for their possible 

addition as an option to the SSD module is considered highly interesting. 

Future research could be performed both on the environmental side of the PhD thesis, as well 

on the mathematical one. 

 The DSS is tailored for the assessment of ecotoxicological data from laboratory 

biotests with individual effects but it can be easily expanded to include other types of 

ecotoxicological data (Laboratory biotests - Population effects, Multi species pseudo-

field tests, Modelling data). To this end, firstly the respective criteria hierarchies have 

to be developed and secondly experts should be gathered and asked to evaluate the 

criteria hierarchies through the ‘Questionnaire for expert consultation’. The 

modularity of the DSS allows the fast and efficient incorporation of the new 

information. In addition, the DSS could be expanded to fit the needs of risk 

assessment for other environmental compartments (air, soil, sediments). 

 Robust Ordinal Regression (Greco et al., 2008; Corrente et al., 2013b) is a MCDA 

method, which allows the induction of marginal value functions based on preference 

information collected from the Decision Maker(s). In our methodology, the criterion 

evaluation scores CAi̅̅ ̅̅̅ are calculated through specific membership functions. It would 

be rather interesting to conduct research on the applicability of Robust Ordinal 

Regression for the induction of the proposed MCDA methodology membership 

functions. 

 The proposed MCDA methodology utilises the concept of priority ordered sets of 

causal relations (IF-THEN rules), hierarchically structured based on experts’ 

preferences. An alternative could be the ‘Decision Rule approach’ of the Dominance-

based Rough Set Approach (DRSA) (Greco et al., 1998, 1999), which allows the 

extraction of decision rules based on the preferential information contained in the 

decision table of the problem under analysis, therefore a comparison of the two 

approaches could be interesting. 
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Annex A – Hierarchical criteria structure 
 

 

Table 11: Hierarchical criteria structure of the assessment methodology based on LoEs, Categories, 

Criteria groups and Criteria-Questions 
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Table 11(continued): Hierarchical criteria structure of the assessment methodology based on LoEs, 

Categories, Criteria groups and Criteria-Questions 
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