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ARTICLE INFO ABSTRACT

With increasing evidences of climate change affecting coastal waters, there is a strong need to understand future
climate conditions and assess the potential responses of delicate coastal ecosystems. Results of climate change
studies based on only one GCM-RCM combination should be interpreted with caution as results are highly
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Ph)(/jtoliolankton dependent on the assumptions of the selected combination. In this study we examined the uncertainty in the
Is_l\ilv;TO ogy hydrological and ecological parameters of the Zero river basin (ZRB) — Palude di Cona (PDC) coastal aquatic
AQUATOX ecosystem generated by the adoption of an ensemble of climate projections from ten different combinations of

General Circulation Model (GCM) — Regional Climate Model (RCM) under two emission scenarios (RCP4.5 and
RCP8.5) implemented in the hydrological model (SWAT) and the ecological model (AQUATOX). The baseline
period of 1983-2012 was used to identify climate change variations in two future periods: mid-century
(2041-2070) and late-century (2071-2100) periods. SWAT outputs from the ensemble indicate a summer re-
duction in inorganic nitrogen loadings of 1-22% and a winter increase of 1-19%. Inorganic phosphorus loadings
indicate a yearly increase of 32-61%. AQUATOX outputs from the ensemble show major changes in the summer
period, with an increase in Chl-a concentration of 9-56%, a decrease in diatoms of 74-98% and an increase in
cyanobacteria of 421-3590%. Obtained results confirm that the use of multiple GCM-RCM projections can
provide a more robust assessment of climate change impacts on the hydrology and ecology of coastal waters, but
at the same time highlight the large uncertainty of climate change-related impact studies, which can affect the
decision-making processes regarding the management and preservation of sensitive aquatic ecosystems such as
those in coastal areas.

1. Introduction provide to society such as coastal protection, water purification, nu-
trient cycling and recreation activities (Barbier et al., 2011).
Several studies point out the increasing evidences of the impacts of

climate change on coastal phytoplankton, which plays a central role in

The scientific community agrees unequivocally that anthropogenic
emissions of greenhouse gases (GHGs) are warming the Earth’s climate

(Cook et al., 2016). Continued emissions of GHGs are expected to cause
a rise of the global mean temperatures by 0.3—4.8 °C by the end of the
21st century relative to the period 1986-2005, inducing long-lasting
changes in all components of the climate system (IPCC, 2013).
Changes in the global climate system are expected to have major
consequences for aquatic ecosystems, including those of coastal areas
(Altieri and Gedan, 2015; Glibert et al., 2014; Rabalais et al., 2009;
Snickars et al., 2015). Being situated at the interface between land and
sea, coastal ecosystems are subjected to the combined changes in the
atmosphere, oceans, and over the land surface (Raimonet and Cloern,
2016). Such changes in turn impact the benefits that coastal ecosystems
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biogeochemical cycles and is responsible for a large share of primary
production of coastal areas (Cloern and Jassby, 2008; Harding et al.,
2015; Holt et al., 2016; Huertas et al. 2011; Pesce et al., 2018). While
oceanic phytoplankton has a predictable yearly cycle, seasonal changes
of coastal phytoplankton is highly variable and complex. Therefore,
there is an urgent need to comprehensively explore the future climatic
conditions and try to anticipate the possible responses to climate
change of phytoplankton in coastal waters.

Climate projections are functional tools that can drive hydrological
and ecological models to attempt the assessment of climate change
impacts on aquatic ecosystems. Climate projections are plausible
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Fig. 1. Map representing the Zero River Basin (ZRB) and its sub-basins, Palude di Cona (PDC) and the monitoring stations used in the study.
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Fig. 2. Workflow of the integrated modelling approach applied in the study.

representations of future climate conditions and are the result of the
application of climate models based on GHGs emission and con-
centration scenarios (Moss et al., 2010). Specifically, a General Circu-
lation Model (GCM) is the primary tool in the generation of climate
projections. GCMs simulate the principal dynamics of the physical
components of the climate system (atmosphere, ocean, land and ice)
with a spatial horizontal resolution between 250 and 600 km (Mechoso
and Arakawa, 2015). However, there is an evident discrepancy between
this resolution and the scale of local hydrological and ecological pro-
cesses. As a result, environmental models driven directly by GCMs often
provide outputs with poor performance (Fowler et al., 2007). Various
downscaling methods have been developed to bridge this gap, from
simple regression models that change the values of meteorological time
series (Ficklin et al., 2009; Somura et al., 2009) to more complex dy-
namical methods (Caldwell et al., 2009; Giorgi and Gutowski, 2015;
Xue et al., 2014). A common solution to providing local projections of
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the climate is to dynamically downscale GCMs projections by using its
outputs to drive a Regional Climate Model (RCM). RCMs usually have a
resolution that goes from 50 to 8 km (Jacob et al., 2014) and add fur-
ther detail to GCMs by increasing the spatial resolution of a limited area
of interest by capturing the fundamental climatic and morphologic
features of that area (Rummukainen, 2010).

The simulated projections of the future climate are subject to un-
certainties that can be handled by using an ensemble of different cli-
mate models. Hawkins and Sutton (2009, 2011) identifies three major
categories of uncertainty: (i) scenario uncertainty, (ii) internal climate
variability and (iii) model uncertainty. Scenario uncertainty refers to
the uncertainties arising due to our limited understanding of future
emissions, GHG concentrations or forcing trajectories. Internal climate
variability describes the variability of the major climate system com-
ponents (atmosphere, hydrosphere, cryosphere, land surface, and bio-
sphere) and their coupled interactions. Finally, model uncertainty is
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Table 1

Calibration and validation results for the SWAT and AQUATOX models applied
to the ZRB and PDC case study. The coefficient of determination (R?), the Nash-
Sutcliffe Efficiency Index, NSE (Nash and Sutcliffe, 1970), and the overlap
between data and model distribution based on relative bias (rB) and variance
(F) were performed depending on the availability of data and model. For a
comprehensive description please refer to Pesce et al. (2018).

Parameter SWAT
Calibration (2007-2009) Validation (2010-2012)
R? NSE R? NSE
Q (m%/s) 0.63 0.58 0.61 0.20
N-NO3~ (t/mo.) 0.80 0.60 0.65 0.25
N-NH,;* (t/mo.) 0.59 0.51 0.25 -0.10

Calibration (2007-2009) Validation (2010-2012)

Relative bias  Variance ratio Relative bias  Variance ratio

(rB) F) (rB) (F)
P-PO.*” (t/mo.) —0.56 0.74 0.03 1.11
Parameter AQUATOX

Performance period (2007-2011)

Relative bias (rB) Variance ratio (F)

Sol. Rad. (Lyd/d) -0.03 0.91
Wind speed (m/s) —0.38 2.14
DO (mg/1) 0.16 0.17
DIN (mg/D) 0.14 0.18
DIP (mg/1) 0.76 0.44
DIN:DIP —0.66 0.34
Chl-a (ug/1) -0.01 1.32

Q: waterflow; DO: dissolved oxygen; DIN: dissolved inorganic nitrogen; DIP:
dissolved inorganic phosphorus.

Table 2

Scenarios adopted in the study. Mid-century (2041-2070) and late-century
(2071-2100) simulated periods were compared with the baseline simulated
period (1983-2012).
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Fig. 3. Mean monthly values of temperature (°C) from the observed data (Obs)
and the uncorrected data of the GCM-RCM simulations (SC1 to SC10) for the
baseline period 1983-2012.
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Fig. 4. Mean monthly values of precipitation (mm) from the observed data
(Obs) and the uncorrected data of the GCM-RCM simulations (SC1 to SC10) for
the baseline period 1983-2012.

caused by the different conceptual or mathematical formulations that

Emission scenario Time frames Years X o . . . X .
each modeling institute decides to use to describes the different climatic
Historical Baseline 1983-2005 processes. Gosling and colleagues (2011) define this uncertainty as
RCP4.5 2006-2012 “climate model structural uncertainty”, meaning that climate projec-
RCP8.5 2006-2012 " f inel h Do 0 differ for different
RGP4S Mid-century 2041-2070 ions for a sing e. grefzn ouse. gas emlsmqn sce.narlo iffer c.)r i ere}l
Late-century 2071-2100 GCM-RCM combinations. Being able to identify and quantify the dif-
RCP8.5 Mid-century 2041-2070 ferent sources of uncertainty is very important for decision-making
Late-century 2071-2100 processes. In fact, recommendations resulting from a single GCM-RCM
combination may be highly uncertain whereas the application of mul-
tiple combinations will highlight the scale of uncertainty. In the pre-
sence of high uncertainty, decision-makers should rather opt for no-
Table 3
GCM-RCM simulations selected for the study.
N. Simulations GCM RCM Spatial Resolution Institute
CMCC SC1 CMCC-CM Scoccimarro et al. (2011) CCLM (Rockel et al. (2008) 0.0715 deg (8 km) CMCC
EURO-CORDEX SC2 HadGEMZ2-ES Collins et al. (2011) RCA4 Strandberg et al. (2014) 0.11 deg (12 km) SMHI
SC3 IPSL-CM5A-MR Dufresne et al. (2013) RCA4 Strandberg et al. (2014) 0.11 deg (12 km) SMHI
SC4 CNRM-CMS5 Voldoire et al. (2013) RCA4 Strandberg et al. (2014) 0.11 deg (12 km) SMHI
SC5 EC-EARTH Hazeleger et al. (2010) RCA4 Strandberg et al. (2014) 0.11 deg (12km) SMHI
SC6 MPI-ESM-LR (Giorgetta et al. (2013) RCA4 Strandberg et al. (2014) 0.11 deg (12 km) SMHI
SC7 CNRM-CMS5 Voldoire et al. (2013) CCLM Rockel et al. (2008) 0.11 deg (12 km) CLMcom
SC8 HadGEMZ2-ES Collins et al. (2011) RACMO22E VanMeijgaard et al. (2008) 0.11 deg (12km) KNMI
SC9 EC-EARTH Hazeleger et al. (2010) HIRHAMS5 Christensen et al. (2007) 0.11 deg (12 km) DMI
SC10 EC-EARTH Hazeleger et al. (2010) RACMO22E VanMeijgaard et al. (2008) 0.11 deg (12 km) KNMI

CTRL: Baseline period; SCEN: future scenario; CMCC: Centro Euro-Mediterraneo Cambiamenti Climatici; KNMI: Royal Netherlands Meteorological Institute, Ministry
of Infrastructure and the Environment; SMHI: Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrkoping Sweden; DMI: Danish Meteorological

Institute, Copenhagen, Denmark.

123



M. Pesce, et al.

2041-2070
20
10
8 b °
T 0 ® 'y
<1
-10 A
A
-20
0 2 2 3 4 5
AT (°C)
RCP4.5 SC1 eSC2 Sc3 Sca
RCP8.5 SC1 aSC2 »SC3 asC4

SC5
SC5

Ecological Engineering 133 (2019) 121-136

2071-2100
20
10
&
s 0
<1
& ai .
-10 ® e
o
-20
0 1 2 3 4 a
AT °0)
SC6 ©SC7 ©SC8 eSC9 ©SC10
SC6 ASC7T 4SC8 ASCO 45C10

Fig. 5. Scatter plots of annual temperature and precipitation changes for all GCM-RCM combinations for both RCP4.5 and RCP8.5 scenarios in the mid-century
(2041-2070) and late-century (2071-2100) periods compared to the baseline period (1983-2012).
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Fig. 6. Anomaly (°C) in mean monthly temperature for RCP4.5 and RCP8.5 in the mid- and late-century periods relative to the baseline period. The blue line within
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pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

regret measures that can yield benefits even in the absence of sig-
nificant changes in the climate. On the contrary, when multiple models
lead to similar environmental changes, more robust decisions can be
taken (Teklesadik et al., 2017).

Uncertainty assessment of climate change impacts on hydrology has
received much attention in the research community. Studies make use
of projections resulting from the adoption of multiple GCMs (Khoi and
Hang, 2015), downscaling methods (Joseph et al., 2018), GHGs emis-
sion scenarios (Shen et al., 2018), and hydrological models (Teklesadik

124

et al.,, 2017). However, in an ecosystem management context, what
matters is how the biological component might respond to changes in
climate and associated abiotic changes in the environment. In this
perspective, fewer investigations have been made and the focus has
been put mostly on lakes (Mooij et al., 2010).

In this respect, this study investigates the uncertainty of the po-
tential mid- and late-century impacts of climate change on the pro-
ductivity and community structure of coastal phytoplankton of the
hydrological system composed of the Zero River Basin (ZRB) and the
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Fig. 7. Anomaly (mm) in mean monthly precipitation for RCP4.5 and RCP8.5 in the mid- and late-century periods relative to the baseline period.
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Fig. 8. Comparison between monthly mean of monitored and simulated water discharge values (m?/s).

receiving waters of Palude di Cona (PDC), a shallow waterbody in the
lagoon of Venice in Italy. Results are obtained from the application of
an ensemble of ten GCM-RCM combinations that drive the hydrological
model SWAT (Arnold et al., 1998) and the ecological model AQUATOX
(Park et al., 2008). Specifically, we evaluated the uncertainty due to
GCM-RCM structure and representative concentration pathway (RCP)
scenarios. The paper is structured as follows: a brief description of the
case study area is presented in Section 2, followed by a detailed de-
scription of method and selected climate change scenarios in Section 3.
Section 4 elaborates on the results by analyzing the climatic, hydrologic
and ecological changes and their uncertainty. Finally, the paper

presents the resulting conclusions in Section 5.

2. Study area

The lagoon of Venice, Italy, is one of the most important and studied
transitional environment in the world (Cataudella et al., 2015; Guerzoni
and Tagliapietra, 2006). This study focuses on the hydrological system
composed of the Zero River Basin (ZRB) and the receiving waters of
Palude di Cona (PDC), a shallow salt marsh located in the northern part
of the lagoon (Fig. 1).

The ZRB extends over a surface area of 140km? and has an
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Fig. 12. Comparison between monthly mean of monitored and simulated DIN
concentrations (mg/1).

elevation range that goes from 1 to 110 m above sea level. The land-use
of ZRB is dominated by agricultural activities (72%), with corn, soy and
wheat as dominant crops. The remaining surface is divided into urban
and industrial areas (24%), and semi-natural and forested areas (4%)
(ARPAV, 2009). The ZRB is located within a transitional climatic area
between Mediterranean and continental climates featuring cold winters
and summers with frequent storms (ARPAV, 2000). From the meteor-
ological observations for the period 2002-2012 (ARPAV, 2013), the
yearly average temperature is 14 °C, with January and December being
the coldest months (~4 °C), and July and August the warmest (~25 °C).
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Fig. 13. Comparison between monthly mean of monitored and simulated DIP
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Fig. 15. Comparison between monthly mean of monitored and simulated chl-a
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The yearly average rainfall is ~1000 mm, with peaks in spring and
autumn and minimums in winter and summer.

The PDC is a shallow waterbody positioned in the upper-north basin
of the lagoon of Venice and circumscribed by salt-marshes. PDC covers
a surface of 3.6 km? and features an average depth of 0.8 m during the
mean tidal conditions of the microtidal cycle of the lagoon of Venice
(Sarretta et al., 2010). From the meteorological observations for the
period 2002-2012 (ARPAV, 2013) temperatures are, on average,
0.5-1 °C warmer than those of the ZRB and yearly precipitations are, on
average, 200-300 mm lower (Guerzoni and Tagliapietra, 2006). The
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Fig. 16. Anomaly (m®/s) in mean monthly discharge for RCP4.5 and RCP8.5 in the mid- and late-century periods relative to the baseline period.

shallow waters of PDC promote rapid equilibrium between air and
water temperatures, with the latter showing the highest values in the
summer, reaching 26-27 °C, and the lowest values in winter, around
5-7°C, as indicated by monitoring data for the period 2007-2012
(SAMANET, 2013). Solar radiation reaches the highest peaks (25MJ/
m? day) in summer and the lowest (5 MJ/m? day) in winter (ARPAV,
2013).

The trophic state of PDC follows the classic cycle of aquatic eco-
systems in a temperate climate (Facca and Sfriso, 2009; Guerzoni and
Tagliapietra, 2006): in winter, primary production is low and nutrient
concentrations, which show high values, are mainly controlled by nu-
trient loading and transport events; in spring, solar radiation triggers
the first phytoplankton blooms, which can be further stimulated or
inhibited by the availability of nutrients; in summer, nutrient con-
centrations reach the minimum concentration values and phytoplank-
tonic blooms reach their peak. In autumn, phytoplankton concentra-
tions progressively decrease to minimum levels of abundance and,
consequently, nutrient concentrations start to increase once again. In
regard to the fractions of the main phytoplankton groups, PDC is re-
presentative of the community structure of the Lagoon of Venice where
diatoms represent the dominant group (72%), followed by flagellates
(27%) and dinoflagellates (1%) (Guerzoni and Tagliapietra, 2006).

3. Methods and data
3.1. Integrated modelling approach

To understand the complexity of the interaction between the cli-
mate, hydrology and ecosystem of the ZRB-PDC system, we adopted the
integrated modelling approach represented in Fig. 2. The approach
incorporates: (1) climate simulations generated by coupling of a Gen-
eral Circulation Model (GCM) with a Regional Climate Model (RCM)
and by applying the tool CLIME for the downscaling of climate pro-
jections; (2) the hydrological model Soil and Water Assessment Tool
(SWAT) for the modelling of river basin discharge and nutrient loads;
and (3) the ecological model AQUATOX for the modelling of coastal
phytoplankton.

This section will focus on the description of the “Climate” module of
Fig. 2. For a comprehensive description of the hydrological and eco-
logical modelling with SWAT and AQUATOX, their spatial and tem-
poral input datasets, parameterization, calibration and validation pro-
cedures for their application to the ZRB-PDC system, please refer to the
study developed and performed by Pesce et al. (2018). Table 1 sum-
marizes the SWAT performance in modeling the hydrology and nutrient
loadings of the ZRB, and the AQUATOX performance in modeling the
physicochemical and biological properties of PDC.

3.2. Climate projections

Climate impact assessment studies require future climate conditions
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Fig. 17. Anomaly (t/mo.) in mean monthly N-NO3~ loadings for RCP4.5 and RCP8.5 in the mid- and late-century periods relative to the baseline period.

to be translated into potential changes in hydrology, ecology or other
aspects- of the examined area. In this study, modelling results for daily
maximum and minimum temperature and mean precipitation from a
multi-model-ensemble of 10 GCM-RCM combinations for two GHG
concentration pathways were employed to provide daily time series for
the models SWAT and AQUATOX. Other climate variables such as solar
radiation, relative humidity, and wind speed affects hydrological pro-
cesses and dynamics of phytoplankton. However, expecting that the
majority of changes in phytoplankton dynamics and composition will
be associated to changes in temperature stratification and nutrient
concentrations, which highly depend on temperature and precipitation
(Winder and Sommer, 2012), it was decided to focus on changes in
these variables while keeping the others equal to the baseline period.

In our analysis, simulation along 30-year time horizons, minimum
period length for climatological studies as suggested by the World
Meteorological Organization (WTO, 2007), were used to compare mid-
century (2041-2070) and late-century (2071-2100) future time frames
against the baseline period 1983-2012. For the baseline period, we
considered GCM-RCM simulations under the “historical” experiment for
the period 1983-2005 and simulations under the RCP4.5 and RCP 8.5
experiments from 2006 to 2012.

Two RCPs were considered: RC4.5 and RCP8.5. The RCP4.5
(Thomson et al., 2011) is a stabilization scenario where emissions peak
in 2040 and decline strongly until 2080 by employing technologies and
strategies to reduce GHG emissions, thus generating a total radiative
forcing of 4.5Wm™2 by 2100 (approximately 650 ppm CO,-equiva-
lent). The RCP8.5 (Riahi et al., 2011) is a business as usual scenario
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with increasing GHG emissions over time, leading to high GHG con-
centration levels; it represents a rising radiating forcing pathway
leading to 8.5Wm ™2 in 2100 (approximately 1370 ppm CO,-equiva-
lent). Table 2 provides a summary of the scenarios adopted in this
study. RCP2.6 was not considered because it is not consistently used
among climate models (Mora et al., 2013). It also describes a scenario
where CO, peaks by 2020 and is followed by reduced emissions which
is considered, according to the current situation and necessary carbon
emission reduction and mitigation efforts (IPCC, 2013), as currently
unfeasible and no longer achievable (van Vliet et al., 2009). RCP 6.0
was not included as it was not a CMIP5 required simulation (IPCC,
2013), resulting in only a limited number of climate models providing
projections under it.

Outputs of nine GCM-RCM combinations were obtained from the
EURO-CORDEX project (Jacob et al., 2014). EURO-CORDEX is part of
the CORDEX initiative (Giorgi et al., 2009), which has the task to co-
ordinate regional downscaling of CMIP5 project to all terrestrial regions
of Earth. The EURO-CORDEX project provides outputs from models that
run with two spatial resolutions: 50km (0.44deg) and 12km
(0.11 deg). For the current study, the 12km (0.11 deg) resolution has
been selected. Additionally, outputs for temperature and precipitation
resulting from the coupling of the GCM CMCC-CM (Scoccimarro et al.,
2011) with the RCM COSMO-CLM (Rockel et al., 2008) under the
configuration adapted to the Italian territory (Bucchignani et al., 2016;
Cattaneo et al., 2012) were also used. The model combinations and
their characteristics are presented in Table 3.
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Fig. 18. Anomaly (t/mo.) in mean monthly N-NH,* for RCP4.5 and RCP8.5 in the mid- and late-century periods relative to the baseline period.

3.2.1. Bias correction of future climate projections

RCMs are used to dynamically downscale the output of GCMs.
However, biases preventing a proper reproduction of the observed cli-
mate conditions persist (Muerth et al., 2013). Consequently, the ap-
plication of a bias correction method is required to impact models
(Teutschbein and Seibert, 2012). In this study, the linear scaling bias
correction method (Lenderink et al., 2007) was adopted to correct the
output for temperature and precipitation of each GCM-RCM combina-
tion. Linear scaling consists in adjusting the mean value by adding a
temporally constant offset to the simulated data for temperature, and
by multiplying them by a temporally constant correction factor for
precipitation, usually at the monthly period. This additive or multi-
plicative constant (delta) represents the average deviation between the
simulated and the observed time series over the baseline period
(Hempel et al., 2013). The obtained delta factors were then applied to
the daily projections of the two future periods providing bias-corrected
values that were used as direct input for SWAT and to serve AQUATOX
application. Linear scaling was performed for temperature and pre-
cipitation data at each weather station (Castelfranco, Mogliano Veneto,
Zero Branco; see Fig. 1) with simulated values in the nearest point from
the RCM spatial grid along the baseline period. Figs. 3 and 4 portray,
respectively, the mean monthly values of temperature (°C) and pre-
cipitation (mm) from the observed data and the uncorrected data of the
GCM-RCM simulations for the baseline period 1983-2012. The raw
data of simulated projections for temperature show a tendency to un-
derestimate observed data throughout the year (Fig. 3). It can be ob-
served an overestimation for the June-September period for SC2, SC3
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and SC8. For precipitation, January, February and March are over-
estimated by all simulations, with the exception of SC2 and SC9 in
February (Fig. 4). In the remaining months the situation is reversed,
with an underestimation in all the GCM-RCM uncorrected output. The
only exception is represented by the simulation SC7 which overestimate
the observed values throughout the whole year.

3.3. Uncertainty analysis

Within the uncertainty analysis, the mean monthly climate (pre-
cipitation and temperature), hydrological (water discharge, inorganic
nitrogen and phosphorus loadings) and ecological parameters (dis-
solved oxygen, DO, dissolved inorganic nitrogen, DIN, and phosphorus,
DIP, Chl-a concentration, diatoms and cyanobacteria concentration) in
the mid-century (2041-2070) and late-century (2071-2100) simulated
periods were compared against the baseline period (1983-2012).
Uncertainties in projected climate, hydrological and ecological changes
due to the application of an ensemble of 10 GCM-RCM couples for two
different RCPs scenarios were quantified. To calculate the uncertainties,
the projected changes in mean monthly values were calculated for each
scenario. Box and whiskers plots were used to describe the distribution
of monthly values, where the blue lines show the median values, the
boxes depict the lower and upper quartiles and the whiskers mark the
endpoints at 1.5 X the interquartile range (see Fig. 6 as example).
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Fig. 19. Anomaly (t/mo.) in mean monthly P-PO,>~ for RCP4.5 and RCP8.5 in the mid- and late-century periods relative to the baseline period.

4. Results and discussion
4.1. Climate change projections

The scatter plot of Fig. 5 shows the mean precipitation deltas (AP) as
a function of the mean temperature deltas (AT) for each GCM-RCM
projection for the mid- (2041-2070) and late-century (2071-2100)
periods compared to the baseline period (1983-2012). As expected, and
in agreement with the findings of previous studies (Tomozeiu et al.,
2014; Zollo et al., 2016), the annual temperature showed a univocal
increasing trend among all the projections. The spread of temperature
projections is smaller for the mid-century period (0.97-2.55 °C) com-
pared to the late-century (1.13-4.93 °C). In the mid-century period, all
RCP4.5 projections show an expected increase that goes not above 2 °C,
while five RCP8.5 projections go beyond that value. In the late-century
period, RCP4.5 projections show a slight increase from the mid-century
period (+0.44 °C), while RCP8.5 projections display a larger increase of
(+1.8°C). Projections for precipitation show an unclear tendency,
especially in the mid-century period. Mid-century projections show
significant discrepancies among the GCM-RCM models, indicating a
change within the range of —14.9% to +5.9%. Five RCP4.5 projections
suggest an increase in precipitation from +0.6% to +5.9%, while the
other five show a decrease between —1.2% and —6.7%. Only one
RCP8.5 projection show an increase in precipitation (+1.6%), while
the other nine display a decrease from —3.9% to —14.9%. Projections
for the late-century period show a more defined trend, with most pro-
jections indicating a reduction in precipitation between —0.4% and
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—16.5%. Only four projections predict a slight increase in precipita-
tion, from +0.3% to +7.2%.

Projected monthly changes of temperature and precipitation are
observable in all future scenarios when compared to the baseline period
(see Table 2). However, not all months show the same pattern of
change. Fig. 6 displays the monthly change in temperature obtained
from the monthly values representative of the baseline period com-
pared to the monthly values of the ten projections. In the mid-century
period, the medians of the simulated temperature changes show shifts
from the reference mean temperature from + 0.9 °C (April, RCP4.5) to
+2.8°C (August, RCP8.5). In the late-century period, the median shifts
from +1.2°C (April, RCP4.5) to +5.1°C (August, RCP8.5). For each
scenario, the greatest increase is observed during the months of July,
August and September. Projections for RCP4.5 show a higher level of
agreement when compared to those for RCP8.5. The greatest dis-
crepancies among projections are observable in the late-century period
of the RCP8.5 scenarios, where projections for the months from June to
October shift from a minimum of +1.01°C (June) to a maximum of
+8.41 °C (September).

Fig. 7 illustrates the monthly change in precipitation obtained from
the monthly values representative of the baseline period compared to
the monthly values of the 10 projections. The general trend of the four
scenarios shows an increase in the late autumn-winter period and a
decrease in the late spring-summer period. Specifically, in the mid-
century, the medians of the simulated precipitation changes show shifts
from the reference mean precipitation from —11.6mm (August,
RCP4.5) to +22.4 mm (November, RCP8.5). In the late-century period,



M. Pesce, et al.

Ecological Engineering 133 (2019) 121-136

Change in DO concentrations (mg/l) for the two periods

0.00 !
-0.50 ! ! ‘ * ! * *
3
é -1.00
=
£
o -1.50
c
<
-2.00
-2.50
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.00 *
-0.50 = + ﬁ ’ i * i . F
3
é -1.00
=
£
o -1.50
c
<
-2.00
-2.50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

RCP4.5

Anomaly (mg/I)

Anomaly (mg/1)

0.00
-0.50

+!i*lﬁ !ﬁi*

-1.00

2041-2070

-1.50
-2.00

-2.50
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

H'ii“ -*"j

0.00

-0.50

-1.00

2071-2100

-1.50

-2.00

-2.50
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

RCP8.5

Fig. 20. Anomaly (mg/1) in mean monthly dissolved oxygen for RCP4.5 and RCP8.5 in the mid- and late-century periods relative to the baseline period.

the median shifts from —12.3mm (August, RCP8.5) to +18.1 mm
(November, RCP8.5). The level of agreement is similar for both RCP4.5
and RCP8.5 scenarios. Projections show a higher level of agreement in
the first semester, while the second part of the year is characterized by
higher discrepancies.

4.2. Comparison between monitored and simulated hydrologic and
ecological parameters in the baseline period

A graphic comparison between monitored and simulated values of
selected hydrological and ecological parameters is presented in
Figs. 8-15. Daily monitored data for the period 2007-2012 were
available for the water flow and nitrogen loadings (N-NO5~, N-NH, ")
of ZRB, and for the dissolved Oxygen (DO) and Chl-a characterizing
PDC. Seasonal values for the period 2007-2011 were available for
phosphorus loadings (P-PO4>~) of ZRB and for dissolved Inorganic ni-
trogen (DIN) and phosphorus (DIP) in PDC. Figures compare monthly
means of monitored values with monthly means of the projections
during the baseline period 1983-2012.

In terms of water discharge from the ZRB flowing into PDC, the
projections for the baseline period show agreement throughout the
year. Projections are in agreement with observed values in the spring
months but are underestimated in summer and winter (Fig. 8). This
underestimation also affects late autumn-winter projections of N-NO3 ™~
(Fig. 9) and N-NH,* (Fig. 10). Finally, P-PO,°~ projections are un-
derestimated in the late-winter period and overestimated in autumn-
early winter. In spring and summer projections are in good agreement

with observed data (Fig. 11).

With regard to PDC, projections of DIN are in good agreement with
observed seasonal data (Fig. 12). Differently, DIP is overestimated in all
seasons except for the winter months (Fig. 13). Regarding DO, all
projections are in agreement with each other and slightly overestimate
observed data in the late spring-summer season (Fig. 14). Finally, future
projections of Chl-a feature an observable variability. Specifically,
projections underestimate Chl-a concentrations in the months of De-
cember and January, and overestimate concentrations in the summer
months (Fig. 15).

4.3. Hydrological responses to climate change

Hydrology of ZRB is influenced by changes in climate conditions. As
a result, nutrient loadings in the Zero river are also affected. Here,
variability of water discharge and nutrient loadings are analyzed. In
general, future water discharge, as projected by climate models, is on
the verge of decreasing during the spring-summer period and increasing
during the autumn-winter period. Differences are observable among
RCP4.5 and RCP8.5 scenarios, where water discharge simulated pro-
jections show lower agreement for RCP4.5 for both mid- and late-cen-
tury periods when compared to those of RCP8.5 (Fig. 16). These results
are consistent with temperature (Fig. 6) and precipitation (Fig. 7)
projections, which respectively display an increase in summer tem-
perature with a consequent increase in evapotranspiration, coupled
with an increase of precipitation in winter and a reduction in summer.
Results conform to other studies concluding that water discharge of
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Fig. 21. Anomaly in the mean monthly DIN-DIP ratio for RCP4.5 and RCP8.5 in the mid- and late-century periods to the baseline period.

rivers in the future will be taken on an extreme level, with increase in
the winter-rainy period and decrease in summer-dry period (Cervi
et al., 2018; Pandey et al., 2019; Radchenko et al., 2017). RCP4.5
scenarios, both in mid- and late-century periods, feature a greater un-
certainty compared to RCP8.5. The greatest variability among projec-
tions takes place in the two rainy periods, spring and autumn-early
winter. This can be explained by the fact that climate models have in-
trinsically more uncertainty during wet days, compared to dry days,
due to different simulation models for precipitation (Aryal et al., 2018).

Changes in climate and consequent modifications in hydrological
regimes are reflected on nutrient loadings (Chang et al., 2001; Jeppesen
et al., 2009) (Fig. 17). Data for this study indicate that N-NO3 "~ loadings
projections are consistent with water discharge in each scenario
(R2 > 0.7). Accordingly, RCP4.5 projections reflect the large variability
of water discharge simulations when compared to RCP8.5 scenarios.
Observing median values, mid-century projections show a slight de-
crease in summer loadings for both RCP4.5 (—12%) and RCP8.5
(—2%), and a slight increase in winter for both RCPs (+4%). Late-
century projections feature a similar behavior for RCP4.5, with a slight
reduction in summer (—5%) and a small increase in winter (+1%).
Differently, late-century RCP8.5 projections portray a more evident
decrease of loadings in summer (—20%) and increase in winter (+7%).

Changes in a N-NH4" loadings over the modeled time period are
observable for both RCP4.5 and RCP8.5 in Fig. 18. Median values for
the mid-century period of RCP4.5 feature an increase (+8%) in the
spring months, a consistent decrease in summer (—22%) and autumn
(—18%), and a slight increase (+1%) in winter. RCP8.5 displays more
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marked changes in the spring season, with an increase in loadings of
+20%. Summer decrease is in line with RCP4.5 projections (—11%),
while autumns shows the biggest difference among the two RCPs, with
RCP8.5 displaying an +3% increase. Winter projections indicate a
slight increase (+4%). Greater mid-century loadings of N-NH, " for the
month of April when compared to late-century projections can be ex-
plained by the role of soil water content and soil temperature in the
nitrogen dynamics of nitrogen (e.g. mineralization, nitrification, and
volatilization). These processes reach their optimal values within a
range of temperature and humidity in the soil (Hedin et al., 1998).

P-PO,>~ loadings show a marked increase in all scenarios during
the autumn-early winter period (Fig. 19). Median values for the period
from September to December indicate an increase of inorganic phos-
phorus loading from 48% to 53% in the mid-century, and from 28% to
98% in the late-century period. This is caused by the intensification of
leaching and erosion processes caused by an increased in the pre-
cipitation. Also, projected drier summers can increase the erosion in the
autumn season by contributing to soil structure breakdown, and con-
sequently increase the runoff of sediments and adsorbed inorganic
phosphorus. Finally, SWAT projections show an increase of inorganic
phosphorus concentration in the topsoil (Pesce et al., 2018), which can
be attributed by an over-fertilization and by accelerated mineralization
and sorption to clay particles due to higher temperatures, as also re-
ported in previous studies such as Jennings et al. (2009). A marked
variability among projections is observed in the autumn-early winter
period and can be attributed to variability characterizing precipitation
(see Fig. 7).
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Fig. 22. Anomaly (pg/1) in mean monthly chl-a for RCP4.5 and RCP8.5

4.4. Ecological responses to climate change

Parameters describing the ecology of PDC are subject to the varia-
bility of ZRB loadings and of climate conditions. In terms of DO, all
scenarios indicate a reduction throughout the entire year, with peaks in
the summer period (Fig. 20). Median values in the month of August
project a reduction between 7 and 10% in the mid-century and between
8 and 23% in the late-century period. The diminishing concentration of
DO can be attributed to the projected rise in air and water tempera-
tures, which diminishes the solubility of oxygen (Schmidtko et al.,
2017).

Mid-century projections indicate agreement among each other for
both RCP4.5 and RCP8.5. In the late-century period, RCP8.5 displays a
greater variability, especially in the months of August and September.
This variability reflects the variability the can be observed in summer
air temperatures for RCP8.5. This is made even more evident by the
shallow nature of PDC, which promotes a rapid temperature equili-
brium between water and air.

In terms of DIN-DIP ratio, projections for all scenarios portray a
marked decrease in the autumn-winter period, and a slight decrease to
slight increase in spring-summer (Fig. 21). Median values for the No-
vember-February period show a reduction of 23-39% of the ratio.
Summer months are projected to undergo a reduction of the ratio be-
tween 22 and 9% for three scenarios, while in the RCP8.5 late-century
scenario a slight increase of the ratio (2%) is projected. Future pro-
jections of DIN-DIP ratio in PDC are an answer to the increase in DIP
concentrations in autumn and winter, which have as an effect the
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in the mid- and late-century periods relative to the baseline period.

diminishing of the DIN-DIP ratio. Higher variability is shown in the
winter-early spring months, while summer and autumn display agree-
ment among projections. This behavior can be associated to the un-
certainty related to the nutrient loadings from ZRB. By observing the
results, it can be inferred that the events in which nitrogen become the
limiting nutrient may increase in frequency, as indicated by other stu-
dies on the lagoon of Venice (Zirino et al., 2016).

Regarding Chl-a concentrations, both RCP4.5 and RCP8.5 project an
increase in summer of total phytoplankton biomass concentrations
throughout the century (Fig. 22). The observed reduction in the month
of April that brings to the disappearance of the spring peak typical of
the lagoon of Venice is caused by the extinction in PDC of the re-
presentative diatom species for that period (see Pesce et al., 2018,
Fig. 20). In the late-century, a shift in the summer peak of Chl-a can also
be observed. In the RCP4.5 scenario the peak shifts from June to July,
while for RCP8.5 it is shifted to August.

The observed variability in Chl-a can be attributed mostly to
changes in nutrient concentrations, especially in DIP. Variability among
projections is observable only in summer, as winter months feature an
extremely low abundance of phytoplankton.

Finally, the variability among projections of diatom and cyano-
bacteria is illustrated in Fig. 23. First, it can be observed that for each
scenario projections agree in portraying a decrease in diatom and an
increase in cyanobacteria concentrations during the summer-early au-
tumn period. In the period June-August, median values indicate a
diatom decrease of 74-98% and cyanobacteria increase from 421% to
3590%. Such high values are justified by the great decrease of diatoms
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baseline period.

in the mid-century period of both scenarios and in the late-century
period of RCP4.5 scenarios, and by the complete extinction of diatoms
in the late-century period of RCP8.5 scenario. The disappearance of
competitors for nutrients creates the conditions for cyanobacterial
blooms in PDC. All projections show the same seasonality, with summer
concentrations of diatoms diminishing and cyanobacteria increasing.
However, differences in changes of concentration can be observed. In
the mid-century period, highest variability is attributed to changes in
diatoms concentrations, while in the late-century is attributed to
changes in cyanobacteria concentrations.

5. Conclusions

The main objective of this study was to investigate the potential
mid- (2041-2070) and late-century (2071-2100) impacts of climate
change, represented by an ensemble of 10 GCM-RCM model combina-
tions on the hydrology of a coastal watershed and on the productivity
and community structure of phytoplankton of a coastal salt marsh. In
addition, the uncertainty related to the implementation of 10 GCM-
RCM combinations forced by the emission scenarios RCP4.5 and
RCP8.5 for the mid- and late-century periods were analyzed.

Based on our analysis of future climate conditions for the ZRB, we
found that all projections showed an increase in annual mean tem-
perature for both RCPs, with greatest increase in the months of July,
August and September. In terms of precipitation, the general trend of

the four scenarios indicate an increase in the late autumn-winter period
and a decrease in the late spring-summer months.

Results based on the SWAT modeling of ZRB indicate that the pro-
jected changes in climate will likely modify present hydrological con-
ditions and consequently have implications on future patterns of ni-
trogen and phosphorus loadings into PDC. Specifically, water discharge
is projected to increase in the late autumn-winter period and decrease
in summer and so will do nutrient loadings. Results based on the
AQUATOX modeling of PDC predict changes in the productivity and
community structure of phytoplankton caused by warmer temperatures
and altered loadings of nutrients. Projections suggest that new warm
tolerant species will replace the current species and will likely generate
greater blooms. Also, increased temporal span of nitrogen-limiting
conditions and a greater availability of inorganic phosphorus will sti-
mulate the growth of nitrogen-fixing cyanobacteria.

The considerable disparity in projected hydrological and ecological
outcomes generated by different GCM-RCM combinations emphasizes
the importance of using multi-model methodologies of climate change
impact assessment. The results obtained from this study indicate that it
is not possible to provide a univocal answer and that studies based on
only one GCM-RCM combination should be interpreted with caution as
results are highly dependent on the assumptions of the selected com-
bination. Accordingly, more than one combination should be applied in
order to consider the uncertainty generated by future climate projec-
tions. The use of multiple GCM-RCM projections can provide a more
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robust assessment of climate change impacts on the hydrology and
ecology of coastal waters, but at the same time highlight the large
uncertainty of these studies, which can affect the decision-making
processes related to the management and preservation of sensitive
aquatic ecosystems such as those in coastal areas.

Future studies will be necessary to perform similar assessments in
the remaining relevant ecological areas of the lagoon of Venice to
support the outcomes and conclusions of this research. Moreover, un-
certainty originating from the adoption of different hydrological and
ecological models, together with different bias-correction methods
should be investigated to provide a useful guideline for evaluating the
uncertainties in studies of climate change impacts on aquatic ecosys-
tems. This study indicates that local coastal ecosystem could be vul-
nerable to climatic changes and therefore should be considered in the
decision-making processes for ecological conservation and adaptation
policies.
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