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Abstract

The statistical modeling of space-time extremes in environmental applications is key to understanding

complex dependence structures in original event data and to generating realistic scenarios for impact

models. In this context of high-dimensional data, we propose a novel hierarchical model for high

threshold exceedances defined over continuous space and time by embedding a space-time Gamma

process convolution for the rate of an exponential variable, leading to asymptotic independence in

space and time. Its physically motivated anisotropic dependence structure is based on geometric

objects moving through space-time according to a velocity vector. We demonstrate that inference

based on weighted pairwise likelihood is fast and accurate. The usefulness of our model is illustrated

by an application to hourly precipitation data from a study region in Southern France, where it

clearly improves on an alternative censored Gaussian space-time random field model. While classical

limit models based on threshold-stability fail to appropriately capture relatively fast joint tail decay
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rates between asymptotic dependence and classical independence, strong empirical evidence from our

application and other recent case studies motivates the use of more realistic asymptotic independence

models such as ours.

Keywords: Asymptotic independence, space-time extremes, gamma random fields, space-time convolution,

composite likelihood, hourly precipitation.
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1. INTRODUCTION

The French Mediterranean area is subject to heavy rainfall events occurring mainly in the fall season.

Intense precipitation often leads to flash floods, which can be defined as a sudden strong rise of the

water level. Flash floods often cause fatalities and important material damage. In the literature, such

intense rainfalls are often called flood-risk rainfall (Carreau and Bouvier, 2016); characterizing their spatio-

temporal dependencies is key to understanding these processes. In this paper, we consider a large data

set of hourly precipitation measurements from a study region in Southern France. We tackle the challenge

of proposing a physically interpretable statistical space-time model for high threshold exceedances, which

aims to capture the complex dependence and time dynamics of the data process.

Fueled by important environmental applications during the last decade, the statistical modeling of

spatial extremes has undergone a fast evolution. A shift from maxima-based modeling to approaches

using threshold exceedances can be observed over recent years, whose reasons lie in the capability of

thresholding techniques to exploit more information from the data and to explicitly model the original

event data. A first overview of approaches to modeling maxima is due to Davison et al. (2012). A

number of hierarchical models based on latent Gaussian processes (Casson and Coles, 1999; Gaetan and

Grigoletto, 2007; Cooley et al., 2007; Sang and Gelfand, 2009) have been proposed, but they may be

criticized for relying on the rather rigid Gaussian dependence with very weak dependence in the tail,

while the lack of closed-form marginal distributions makes interpretation difficult and frequentist inference

cumbersome. Max-stable random fields (Smith, 1990; Schlather, 2002; Kabluchko et al., 2009; Davison and

Gholamrezaee, 2012; Reich and Shaby, 2012; Opitz, 2013) are the natural limit models for maxima data

and have spawned a very rich literature, from which the model of Reich and Shaby (2012) stands out for

its hierarchical construction simplifying high-dimensional multivariate calculations and Bayesian inference.

Generalized Pareto processes (Ferreira and de Haan, 2014; Opitz et al., 2015; Thibaud and Opitz, 2015)

are the equivalent limit models for threshold exceedances. However, the asymptotic dependence stability

in these limiting processes for maxima and threshold exceedances has a tendency to be overly restrictive

when asymptotic dependence strength decreases at high levels and may vanish ultimately in the case of

asymptotic independence. The results from the empirical spatio-temporal exploration of our French rainfall
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data in Section 6.2 are strongly in favor of asymptotic independence, which appears to be characteristic

for many environmental data sets (Davison et al., 2013; Thibaud et al., 2013; Tawn et al., 2018) and may

arise from physical laws such as the conservation of mass. This has motivated the development of more

flexible dependence models, such as max-mixtures of max-stable and asymptotically independent processes

(Wadsworth and Tawn, 2012; Bacro et al., 2016) or max-infinitely divisible constructions (Huser et al.,

2018) for maxima data, or Gaussian scale mixture processes (Opitz, 2016; Huser et al., 2017) for threshold

exceedances, capable to accommodate asymptotic dependence, asymptotic independence and Gaussian

dependence with a smooth transition. Other flexible spatial constructions involve marginally transformed

Gaussian processes (Huser and Wadsworth, 2018). Such threshold models can be viewed as part of the

wider class of copula models (see Bortot et al., 2000; Davison et al., 2013, for other examples) typically

combining univariate limit distributions with dependence structures that should ideally be flexible and

relatively easy to handle in practice.

Statistical inference is then often carried out assuming temporal independence in measurements typi-

cally observed at spatial sites at regularly spaced time intervals. However, developing flexible space-time

modeling for extremes is crucial for characterizing the temporal persistence of extreme events spanning sev-

eral time steps; such models are important for short-term prediction in applications such as the forecasting

of wind power and atmospheric pollution, and for extreme event scenario generators providing inputs to

impact models, for instance in hydrology and agriculture. Early spatio-temporal models for rainfall were

proposed in the 1980s (Rodriguez-Iturbe et al., 1987; Cox and Isham, 1988, and the references therein) and

exploit the idea that storm events give rise to a cluster of rain cells, which are represented as cylinders in

space-time. Currently, only few statistical space-time models for extremes are available. Davis and Mikosch

(2008) consider extremal properties of heavy-tailed moving average processes where coefficients and the

white-noise process depend on space and time, but their work was not focused on practical modeling. Sang

and Gelfand (2009) propose a hierarchical procedure for maxima data but limited to latent Gauss–Markov

random fields. Davis et al. (2013a,b) extend the widely used class of Brown–Resnick max-stable processes

to the space-time framework and propose pairwise likelihood inference. Spatial max-stable processes with

random set elements have been proposed by Schlather (2002); Davison and Gholamrezaee (2012), and
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Huser and Davison (2014) have fitted a space-time version to threshold exceedances of hourly rainfall data

through pairwise censored likelihood. Huser and Davison (2014) model storms as discs of random radius

moving at a random velocity for a random duration, leading to randomly centered space-time cylinders; our

models developed in the following rely on similar geometric representations. A Bayesian approach based

on spatial skew-t random fields with a random set element and temporal autoregression was proposed by

Morris et al. (2017). The aforementioned space-time models may capture asymptotic dependence or exact

independence at small distances but are unsuitable for dealing with residual dependence in asymptotic

independence. In this paper, we propose a novel approach to space-time modeling of asymptotically in-

dependent data to avoid the tendency of max-stable-like models to potentially strongly overestimate joint

extreme risks. In a similar context, Nieto-Barajas and Huerta (2017) have recently proposed a spatio-

temporal Pareto model for heavy-tailed data on spatial lattices, generalizing the temporal latent process

model of Bortot and Gaetan (2014) to space-time.

Our model provides a hierarchical formulation for modeling spatio-temporal exceedances over high

thresholds. It is defined over a continuous space-time domain and allows for a physical interpretation of

extreme events spreading over space and time. Strong motivation also comes from Bortot and Gaetan

(2014) by developing a generalization of their latent temporal process. Alternatively, our latent process

could be viewed as a space-time version of the temporal trawl processes introduced by Barndorff-Nielsen

et al. (2014) and exploited for extreme values by Noven et al. (2015), with spatial extensions recently

proposed by Opitz (2017). Our approach is based on representing a generalized Pareto distribution as a

Gamma mixture of an exponential distribution, enabling us to keep easily tractable marginal distributions

which remain coherent with univariate extreme value theory. We use a kernel convolution of a space-time

Gamma random process (Wolpert and Ickstadt, 1998a) based on influence zones defined as cylinders with

an ellipsoidal basis to generate anisotropic spatio-temporal dependence in exceedances. We then develop

statistical inference based on pairwise likelihood.

The paper is structured as follows. Our hierarchical model with a detailed description of its two stages

and marginal transformations is developed in Section 2. Space-time Gamma random fields are presented

in Section 2.1 where we also propose the construction and formulas for the space-time objects used for
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kernel convolution. Section 3 characterizes tail dependence behavior in our new model yielding asymptotic

independence in space and time. Statistical inference of model parameters is addressed in Section 4 based

on a pairwise log-likelihood for the observed censored excesses. We show good estimation performance

through a simulation study presented in Section 5 involving two scenarios of different complexity. In

Section 6, we focus on the dataset and explore in detail how our fitted space-time model captures spatio-

temporal extremal dependence in hourly precipitation. Since a natural choice of a reference model for

asymptotically independent data is to use threshold-censored space-time Gaussian processes, we show the

good relative performance of our model by comparing it to such alternatives. A discussion of our modeling

approach with some potential future extensions closes the paper in Section 7.

2. A HIERARCHICAL MODEL FOR SPATIO-TEMPORAL EXCEEDANCES

When dealing with exceedances of a random variable X above a high threshold u, univariate extreme

value theory suggests using the limit distribution of Generalized Pareto (GP) type. The GP cumulative

distribution function (cdf) is defined for any y > 0 by

GP (y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−(1/ξ)

+
, (1)

where (a)+ = max(0, a), ξ is a shape parameter and σ a positive scale parameter. The sign of ξ characterizes

the maximum domain of attraction of the distribution of X: ξ > 0 corresponds to the Fréchet domain of

attraction while ξ = 0 and ξ < 0 correspond to the Gumbel and Weibull ones, respectively.

When ξ > 0, the GP distribution can be expressed as a Gamma mixture for the rate of the exponential

distribution (Reiss and Thomas, 2007, p.157), i.e.

V |Λ ∼ Exp(Λ), Λ ∼ Gamma(1/ξ, σ/ξ) ⇒ V ∼ GP ( · ;σ, ξ), (2)

where Exp(b) refers to the Exponential distribution with rate b > 0 and Gamma(a, b) to the Gamma

distribution with shape a > 0 and rate b > 0. Based on this hierarchical structure, we will here develop

a stationary space-time construction for modeling exceedances over a high threshold, which possesses

marginal GP distributions for the strictly positive excess above the threshold.
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2.1 First stage: generic hierarchical space-time structure

We consider a stationary space-time random field Z = {Z(x), x ∈ X} with x = (s, t) and X = R2 × R+,

such that s indicates spatial location and t time. Without loss of generality, we assume that the margins

Z(x) belong to the Fréchet domain of attraction with positive shape parameter ξ. To infer the tail behavior

of {Z(x)}, we focus on values exceeding a fixed high threshold u, and we consider the exceedances over u,

Y (x) = (Z(x)− u) · 1(u,∞)(Z(x)). (3)

Standard results from extreme value theory (de Haan and Ferreira, 2006) establish the GP distribution

with ξ > 0 in (1) as the limit of suitably renormalized positive threshold exceedances in (3), such that

it represents a natural model for the values Y (x) > 0. Following Bortot and Gaetan (2014), we use the

representation of the GP distribution as a Gamma mixture of an exponential distribution to formulate

a two-stage model that induces spatio-temporal dependence arising in both the exceedance indicators

1(u,∞)(Z(x)) and the positive excesses Z(x) − u > 0 by integrating space-time dependence in a latent

Gamma component. A key feature of our model is that it naturally links exceedance probability to the

size of the excess and therefore provides a joint space-time structure of the zero part and the positive part

in the zero-inflated distribution of Y (x).

In the first stage, we condition on a latent space-time random field {Λ(x)} with marginal distributions

Λ(x) ∼ Gamma(α, β) and assume that

Y (x) | [Λ(x), Y (x) > 0] ∼ Exp (Λ(x)) , (4a)

Pr(Y (x) > 0 | Λ(x)) = e−κΛ(x), (4b)

where κ > 0 is a parameter controlling the rate of upcrossings of the threshold. The resulting marginal

distribution of Y (x) conditionally on Z(x) > u corresponds to the GP distribution, and the unconditional

marginal cdf of Y (x) is

F (y;σ, ξ) =

 p for y = 0,

p+ (1− p)GP (y; ξ, σ) for y > 0,
(5)
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with shape parameter ξ = 1/α, scale parameter σ = (κ + β)/α, and with 1 − p the probability of an

exceedance over u, i.e. Pr(Z(x) > u) = Pr(Y (x) > 0) = 1− p. The probability of exceeding u,

Pr(Z(x) > u) = E (Pr(Y (x) > 0|Λ(x))) = E
(
e−κΛ(x)

)
=

(
β

κ+ β

)α
(6)

depends on κ and corresponds to the Laplace transform of Λ(x) evaluated at κ. The constraint ξ > 0

is not restrictive for dealing with precipitation in the French Mediterranean area, which is known to

be heavy-tailed. For general modeling purposes, we can relax this assumption by following Bortot and

Gaetan (2016): we consider a marginal transformation within the class of GP distributions for threshold

exceedances, for which we suppose that α = 1 and β = 1 for identifiability. By transforming Y (x) through

the probability integral transform

g(y) = GP−1(GP (y; 1, 1 + κ);σ∗, ξ∗) = (σ∗/ξ∗)

{(
1 +

y

κ+ 1

)ξ∗
− 1

}
(7)

with parameters ξ∗ ∈ R and σ∗ > 0 to be estimated, we get a marginally transformed random field Y ∗(x) =

g(Y (x)) which satisfies Y ∗(x) ∼ GP ( · ; ξ∗, σ∗), conditionally on Y ∗(x) > 0. Notice that it is straightforward

to develop extensions with nonstationary marginal excess distributions by injecting response surfaces σ?(x)

and ξ?(x) into (7). Moreover, nonstationarity could be introduced into the latent Gamma model (4) in

different ways. If κ = κ(x) depends on x or other covariate information, exceedance probabilites become

nonstationary. If Gamma parameters α = α(x) and β = β(x) depend on covariates, then the GP margins

in Y (x) become nonstationary. Finally, one could combine the two previous nonstationary extensions.

2.2 Second stage: space-time dependence with Gamma random fields

Spatio-temporal dependence is introduced by means of a space-time stationary random field {Λ(x), x ∈

X} with Gamma(α, β) marginal distributions. In principle, we could use an arbitrarily wide range of

models with any kind of space-time dependence structure, for instance by marginally transforming a

space-time Gaussian random field using the copula idea (Joe, 1997). However, we here aim to propose

a construction where Gamma marginal distributions arise naturally without applying rather artificial

marginal transformations. Inspired by the Gamma process convolutions of Wolpert and Ickstadt (1998a),
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we develop a space-time Gamma convolution process with Gamma marginal distributions. The kernel

shape in our construction allows for a straightforward interpretation of the dependence structure, and

it offers a physical interpretation of real phenomena such as mass and particle transport. Moreover, we

obtain simple analytical formulas for the bivariate distributions, which facilitates statistical inference,

interpretation and the characterization of joint tail properties.

We fix X = R3 and consider A ∈ Bb(X ), a subset of X belonging to the σ−field Bb(X ) restricted to

bounded sets of X . A Gamma random field Γ(dx) (Ferguson, 1973) is a non negative random measure

defined on X characterized by a base measure α(dx) and a rate parameter β such that

1. Γ(A) :=
∫
A

Γ(dx) ∼ Gamma(α(A), β), with α(A) :=
∫
A
α(dx);

2. for any A1, A2 ∈ Bb(X ) such that A1 ∩ A2 = ∅, Γ(A1) and Γ(A2) are independent random variables.

The calculation of important formulas in this paper requires the Laplace exponent of the random measure

given as

L(φ) := − log E

(
exp

{
−
∫
φ(x)Γ(dx)

})
=

∫
X

log

{
1 +

φ(x)

β

}
α(dx)

where φ is any positive measurable function; in our case, it will represent the kernel function (see the

Appendix section 8). We propose to model {Λ(x), x ∈ X} as a convolution using a 3D indicator kernel

K(x, x′) with an indicator set of finite volume used to convolve the Gamma random field Γ(dx) (Wolpert

and Ickstadt, 1998a), i.e., Λ(x) =
∫
K(x, x′)Γ(dx′). The shape of the kernel can be very general (although

non indicator kernels usually do not lead to Gamma marginal distributions), and particular choices may

lead to nonstationary random fields, or to stationary random fields with given dependence properties

such as full symmetry, separability or independence beyond some spatial distance or temporal lag. In

order to limit model complexity and computational burden to a reasonable amount, we use the indicator

kernel K(x, x′) = 1A(x − x′), for A ∈ Bb(X ), where A is given as a slated elliptical cylinder, defining

a 3-dimensional set Ax that moves through X according to some velocity vector. More precisely, let

E(s, γ1, γ2, φ) be an ellipse centered at s = (s1, s2) ∈ R2 (see Figure 1-(a)), whose axes are rotated

counterclockwise by the angle φ with respect to the coordinate axes, whose semi-axes’ lengths in the rotated
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coordinate system are γ1 and γ2, respectively. A physical interpretation is that the ellipse describes the

spatial influence zone of a storm centered at s. For the temporal dynamics, we assume that the ellipses

(storms) E(s, γ1, γ2, φ) move through space with a velocity ω = (ω1, ω2) ∈ R2 for a duration δ > 0. The

volume of the intersection of two slated elliptical cylinders (see Figure 1-(b)) is given by

V (s, t, s′, t′) = (δ − |t− t′|)+ × ν2(E(s, γ1, γ2, φ) ∩ E(s̃, , γ1, γ2, φ))

where s̃ = (s̃1, s̃2) with s̃i = s′i − |t′ − t| × ωi, i = 1, 2, where νd(·) is the Lebesgue measure on Rd.

For two fixed locations, the strength of dependence in the random field Λ(x) is an increasing monotone

function of the intersection volume; other choices of A are possible, provided that we are able to calculate

efficiently the volume of the intersection. To efficiently calculate the ellipse intersection area, we use an

approach for finding the overlap area between two ellipses, which does not rely on proxy curves; see Hughes

and Chraibi (2012)1.

In the sequel, we consider the measure

α(B) = ανd(B)/νd(A), B ∈ Bb(X ). (8)

It follows that Λ(x) ∼ Gamma(α, β), as required for model (4). Exploiting the formulas of the Appendix

section 8, the univariate Laplace transform of Λ(x) is

LP (1)
x (v) := E

(
e−vΛ(x)

)
=

(
β

v + β

)α
, (9)

and the bivariate Laplace transform of Λ(x) and Λ(x′) is

LP
(2)
x,x′(v1, v2) := E

(
e−v1Λ(x)−v2Λ(x′)

)
=

(
β

v1 + β

)α(Ax\Ax′ )
(

β

v1 + v2 + β

)α(Ax∩Ax′ )
(

β

v2 + β

)α(Ax′\Ax)

. (10)

This model for Λ(x) is stationary, but nonstationarity in Gamma marginal distributions and/or de-

pendence can be generated by using nonstationary indicator sets Ax whose size and shape depends on x.

More general sets Ax with finite Lebesgue volume ν3(Ax) could be used for constructing Λ(x) = Γ(Ax).

1The code is open source and can be downloaded from http://github.com/chraibi/EEOver.
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In all cases, the intersecting volume ν3(Ax1 ∩ Ax2) tends to zero if ‖x2 − x1‖ → ∞, which establishes the

property of α-mixing over space and time for the processes Λ(x) and Y (x). This property is paramount

to ensure consistency and asymptotic normality in the pairwise likelihood estimation that we consider in

the following (see Huser and Davison (2014)).

3. JOINT TAIL BEHAVIOR OF THE HIERARCHICAL PROCESS

Extremal dependence in a bivariate random vector (Z1, Z2) can be explored based on the tail behavior

of the conditional distribution Pr(Z1 > F←1 (q)|Z2 > F←2 (q)) as q tends to 1, where F←i , i = 1, 2 denotes

the generalized inverse distribution functions of Zi (Sibuya, 1960; Coles et al., 1999). The random vector

(Z1, Z2) is said to be asymptotically dependent if a positive limit χ, referred to as the tail correlation

coefficient, arises:

χ(q) :=
Pr(Z1 > F←1 (q), Z2 > F←2 (q))

Pr(Z2 > F←2 (q))
→ χ > 0, q → 1−.

The case χ = 0 characterizes asymptotic independence.

To obtain a finer characterization of the joint tail decay rate under asymptotic independence, faster

than the marginal tail decay rate, Coles et al. (1999) have introduced the χ index defined through the

limit relation

χ̄(q) :=
2 log Pr(Z2 > F←2 (q))

log Pr(Z1 > F←1 (q), Z2 > F←2 (q))
− 1→ χ̄ ∈ (−1, 1], q → 1−.

Larger values of |χ̄| correspond to stronger dependence. We now show that {Z(x), x ∈ X} is an asymptotic

independent process, i.e., for all pairs (x, x′) ∈ X 2 with x 6= x′ the bivariate random vectors (Z(x), Z(x′))

are asymptotically independent.

Owing to the stationarity of the process, it is easy to show that for any (x, x′) ∈ X 2, x 6= x′ and for

values v exceeding a threshold u ≥ 0, we get

Pr(Z(x) > v) = LP (1)
x (v − u+ κ)

=

(
1 +

v − u+ κ

β

)−α(Ax)
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and

Pr(Z(x) > v,Z(x′) > v) = LP
(2)
x,x′(v − u+ κ, v − u+ κ)

=

(
1 +

v − u+ κ

β

)−α(Ax\Ax′ )
(

1 +
2v − 2u+ 2κ

β

)−α(Ax∩Ax′ )

×
(

1 +
v − u+ κ

β

)−α(Ax′\Ax)

.

To simplify notations, we set c0 := α(Ax), c1 := α(Ax\Ax′), c2 := α(Ax ∩Ax′) , c3 := α(Ax′\Ax), such that

c1 = c3 = c0 − c2 ≥ 0 and c1 + 2c2 + c3 = 2c0. For c2 = 0 characterizing disjoint indicator sets Ax and Ax′ ,

it is clear that Z(x) and Z(x′) are independent. Now, assume u = 0 without loss of generality and x 6= x′;

then,

χx,x′(v) :=
Pr(Z(x) > v,Z(x′) > v)

Pr(Z(x′) > v)

=

(
1 +

2v + 2κ

β

)−c2 (
1 +

v + κ

β

)−c1−c3+c0

=

(
1 +

2v + 2κ

β

)−c2 (
1 +

v + κ

β

)2c2−c0

∼ 2−c2
(
v

β

)c2−c0
, for large v.

Since c2 < c0, we obtain

χx,x′ = 0.

We conclude that Z is an asymptotic independent process.

To characterize the faster joint tail decay, we calculate

χ̄xx′(v) :=
2 log Pr(Z(x) > v)

log Pr(Z(x) > v,Z(x′) > v)
− 1

=
− 2c0 log (1 + (v + κ)/β)

−c1 log(1 + (v + k)/β)− c2 log (1 + 2(v + k)/β)− c3 log(1 + (v + k)/β)
− 1

=
2c0

c1 + c2

log (1 + 2(v + k)/β)

log (1 + (v + k)/β)
+ c3

− 1.
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Taking the limit for v →∞ yields

χ̄x,x′ =
2c0

c1 + c2 + c3

− 1 =
c2

2c0 − c2

,

which describes the ratio between the intersecting volume of Ax and Ax′ and the volume of the union of

these two sets. The value of χ̄ confirms the asymptotic independence of the process Z. A larger intersecting

volume between Ax and Ax′ corresponds to stronger dependence.

4. COMPOSITE LIKELIHOOD INFERENCE

To infer the tail behavior of the observed data process {Z(x)}, without loss of generality assumed to have

generalized Pareto marginal distributions with shape parameter α, we focus on values exceeding a fixed

high threshold u. We let θ denote the vector of unknown parameters. For simplicity, we assume that we

have observed the excess values Y (si, t) for a factorial design of S locations si, i = 1, . . . , S and T times

t = 1, . . . , T .

To exploit the tractability of intersecting volumes of two kernel sets, we focus on pairwise likelihood for

efficient inference in our high-dimensional space-time set-up. The pairwise (weighted) log-likelihood adds

up the contributions f(Y (si, t), Y (sj, t + k); θ) of the censored observations Y (si, t), Y (sj, t + k) and can

be written

pl(θ) =
T∑
t=1

plt(θ) =
T∑
t=1

∆T∑
k=0

S∑
i=1

S∑
j=1

{1− 1{i≥j, k=0}} log f(Y (si, t), Y (sj, t+ k); θ)wsi,sj (11)

where wsi,sj is a weight defined on [0,∞) (Bevilacqua et al., 2012; Davis et al., 2013b; Huser and Davison,

2014). We opt for a cut-off weight with wsi,sj = 1 if ||si − sj|| ≤ ∆S and 0 otherwise, which bypasses

an explosion of the number of likelihood terms and shifts focus to relatively short-range distances where

dependence matters most. This also avoids that the pairwise likelihood value (and therefore parameter

estimation) is dominated by a large number of intermediate-range distances where dependence has already

decayed to (almost) nil.
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The contributions f(Y (x), Y (x′); θ) are given by

f(y1, y2; θ) =



∂2

∂v1∂v2
LP

(2)
x,x′(v1, v2)J(y1)J(y2) y1 > 0, y2 > 0(

− ∂
∂v1
LP (1)(v1) + ∂

∂v1
LP

(2)
x,x′(v1, v2)

)
J(y1) y1 > 0, y2 = 0(

− ∂
∂v2
LP (1)(v2) + ∂

∂v2
LP

(2)
x,x′(v1, v2)

)
J(y2) y1 = 0, y2 > 0

1− 2LP (1)(v1) + LP
(2)
x,x′(v1, v2) y1 = 0, y2 = 0

with vi = (κ + 1) (1 + ξ∗yi/σ
∗)1/ξ∗ − 1 and J(yi) = κ+1

σ∗

(
1 + ξ∗yi

σ∗

)1/ξ∗−1
, i = 1, 2. We provide analytical

expressions for LP (1) and LP
(2)
x,x′ in the Appendix section 9.

Since the space-time random field {Λ(x)} is temporally α-mixing, the maximum pairwise likelihood

estimator θ̂ can be shown to be asymptotically normal for large T under mild additional regularity con-

ditions; see Theorem 1 of Huser and Davison (2014). The asymptotic variance is given by the inverse of

the Godambe information matrix G(θ) = H(θ)[J (θ)]−1H(θ). Therefore, standard error evaluation requires

consistent estimation of the matrices H(θ) = E(−∇2pl(θ)) and J (θ) = Var(∇pl(θ)). We estimate H(θ)

with Ĥ = −∇2pl(θ̂) and J (θ) through a subsampling technique (Carlstein, 1986), implemented as follows.

We define B overlapping blocks Db ⊂ {1, . . . , T}, b = 1, . . . , B, containing db observations; we write plDb

for the pairwise likelihood (11) evaluated over the block Db. The estimate of J (θ) is

Ĵ =
T

B

B∑
b=1

1

db
∇plDb

(θ̂)∇plDb
(θ̂)′.

The estimates Ĥ and Ĵ allow us to calculate the composite likelihood information criterion (Varin and

Vidoni, 2005)

CLIC = −pl(θ̂) + tr{Ĥ−1Ĵ }

with lower values of CLIC indicating a better fit. Similar to Davison and Gholamrezaee (2012), we improve

the interpretability of CLIC values through rescaling CLIC∗=cCLIC by a positive constant c chosen to

give a pairwise log-likelihood value pl(θ) comparable to the log-likelihood under independence.

5. SIMULATION STUDY

We assess the performance of the pairwise composite likelihood estimator through a small simulation study.

For each replication, we consider S = 30 randomly chosen sites on [0, 1] × [0, 1] observed at time points
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t = 1, . . . , T = 2000. The realizations of the Gamma random field are simulated by adapting the algorithm

of Wolpert and Ickstadt (1998b). In the simulations, we fix parameters ξ = 1, σ = 10 and an exceedance

probability of 1 − p = 0.2. We focus on estimating dependence parameters while treating the margins as

known. For estimation, we fix the site-dependent threshold u to an empirical quantile of order greater

than p. Here, we fix p = 0.9 corresponding to κ = 9.

Two scenarios with different model complexity are considered, involving different specifications of the

cylinder (see Table 1). Scenario A uses a circle-based cylinder without velocity, while Scenario B comes

with a slated ellipse-based cylinder, yielding non null velocity. Technically, the model in Scenario A is

over-parametrized since the rotation parameter φ cannot change the volume of the cylinder.

Model parameters are estimated on 100 data replications using the composite likelihood approach de-

veloped in Section 4. We have considered a larger number of replications for some parameter combinations,

but in general the number of 100 replications is enough to satisfactorily illustrate the estimation efficiency.

The evaluation of pl(θ) depends on the choice of ∆S and ∆T , where greater values increase the computa-

tional cost. Results in the literature indicate that using as much as computationally possible or all of the

pairs will not necessarily lead to an improvement in estimation owing to potential issues with estimation

variance (see Huser and Davison (2014), for instance). We have considered different values of ∆T and

have identified ∆T = 15 as a good compromise for the estimation quality. The parameter ∆S has been set

to 1 which is large enough with respect to the spatial domain limits. Main results are illustrated in the

boxplots in Figures 2 and 3.

When the cylinder is circle-based, i.e. γ1 = γ2, and without velocity (scenario A), the orientation

parameter φ can take any value. In the simulation experiment we estimate all parameters without con-

straints, such that the optimization algorithm gives also an estimate of φ. It is reassuring to see in the

boxplots of Fig. 2 that the other parameters are still well estimated.

Results are fairly good for the scenario B where the velocity is non null. The estimates of the velocity

present slightly higher variability, and the estimation of ω2 appears slightly biased. On the other hand,

the duration δ and the lengths of the semi-axes of the ellipse (γ1 and γ2) are still well estimated. T he

angle φ is well defined in scenario B, but it is still estimated with relatively high variability. This may
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seem as disappointing at first glance, but it may be due to the only moderate difference in the length of

the semi-axes. To check this conjecture, we consider a modified scenario B where the second semi-axis is

modified from γ2 = 0.3 to γ2 = 0.5 and other parameters remain unchanged. As illustrated by the boxplots

in Figure 4, estimation of φ clearly improves when the shape of the ellipse departs more strongly from a

circular shape.

Even with only a relatively small number of spatial sites and time steps, the simulation study shows

that the pairwise composite likelihood approach leads to reliable estimates of model parameters that are

well identifiable. We underline that results are consistently good whatever the complexity of the scenario.

6. SPACE-TIME MODELING OF HOURLY PRECIPITATION DATA IN SOUTHERN FRANCE

6.1 Data

We apply our hierarchical model to precipitation extremes observed over a study region in the South of

France. Extreme rainfall events usually occur during fall season. They are mainly due to southern winds

driving warm and moist air from the Mediterranean sea towards the relatively cold mountainous areas

of the Cevennes and the Alps, leading to a situation which often provokes severe thunderstorms. The

data were provided by Météo France (https://publitheque.meteo.fr). Our dataset is part of a query

containing hourly observations at 213 rainfall stations for years 1993 to 2014. To avoid modeling complex

seasonal trends, we keep only data from the September to November months, resulting in observations

over 54542 hours. For model fitting, we consider a subsample of 50 meteorological stations with elevations

ranging from 2 to 1418 meters, for which the observation series contain less than 70% of missing values

over the full period. The spatial design of the stations is illustrated in Figure 5.

6.2 Exploratory analysis

We fit the univariate model (5) for each station by fixing a threshold u that corresponds to the empirical

99% quantile. We use such a rather high probability value since we have many observations, and there is

a substantial number of zero values such that a high quantile is needed to get into the tail region of the

positive values. Figure 5 clearly shows that spatial nonstationarity arises in the marginal distributions.
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Figure 7 displays the results of a bootstrap procedure in which we calculate estimates of χ(q) and χ̄(q) for

probabilities q = 0.99, 0.995 for pairs Z(s, t), Z(s, t+h) with only temporal lag, and for pairs Z(s, t), Z(s′, t)

with only spatial lag. The curves for spatial lags are the result of a smoothing procedure. Confidence bands

are based on 200 bootstrap samples, drawn by the stationary bootstrap (Politis and Romano, 1994). Our

procedure samples temporal blocks of observations and the block length follows a geometric distribution

with an average of 20 days. These plots support the assumption of asymptotic independence at all positive

distances and at all positive temporal lags. Moreover, the strength of tail dependence as measured by the

subasymptotic tail correlation value χ(q) strongly decreases when considering exceedances over increasingly

high thresholds, which provides another clear sign of continuously decreasing and ultimately vanishing

dependence strength. On the other hand, the values of the subasymptotic dependence measure χ(q) (well

adapted to asymptotic independence) decrease with increasing spatial distances or temporal lags, but they

tend to stabilize at a non zero value. This behavior indicates the presence of residual tail dependence that

vanishes only asymptotically.

6.3 Modeling spatio-temporal dependence

While the preceding exploratory analysis has shown that marginal distributions are not stationary, our

model detailed in Section 2 requires a specific type of common marginal distributions. It would indeed be

possible to extend the model to accommodate non stationary patterns (an example can be found in Bortot

and Gaetan (2016)) and to jointly estimate marginal and dependence parameters. However, our focus

here is to illustrate that our modeling strategy is capable to capture complex stationary spatio-temporal

dependence patterns at large values, which would render joint estimation of margins and dependence highly

intricate. Therefore, we fit a GP distribution separately to each site with thresholds chosen as the empirical

99% quantile. With respect to positive precipitation, this quantile globally corresponds to a probability

of 0.91, with a minimum of 0.86 and maximum of 0.95 over the 50 sites. Next, we use the estimated

parameters ξ̂ and σ̂ to transform the raw exceedances Y (x) observed at site x to exceedances Ỹ (x) with

17



cdf (5) such that ξ = 1 and σ = κ+ 1, i.e.,

Ỹ (x) = (κ+ 1)


(

1 +
ξ̂ Y (x)

σ̂

)1/ξ̂

− 1

 .

Since κ must satisfy Pr(Ỹ (x) > 0) = (κ+ 1)−1 = 0.01, see Equation (6), we get κ = 99.

We fit our hierarchical models to the censored pretransformed data Ỹ (x) by numerically maximizing

the pairwise likelihood. We set the spatial cut-off distance to ∆S = 110 km, which retains about 60% of

the pairs of meteorological stations, and we choose the temporal cut-off as ∆T = 10 hours. The resulting

number of pairs of observations is approximately 4.6 × 109, taking into account missing values. The full

pairwise likelihood counts around 1.7 × 1011 pairs, which shows that we have attained a huge reduction.

Pairwise likelihood maximization is coded in C, and it runs in parallel using the R library parallel. All

calculations were carried out on a 2.6 GHz machine with 32 cores and 52Gb of memory. One evaluation

of the composite likelihood requires approximately 18 seconds. For calculating standard errors and CLIC∗

values, we use the previously described subsampling technique based on temporal windows by considering

B = 500 overlapping blocks, each corresponding to 1000 consecutive hours, i.e. db = 50× 1000.

We consider two settings for the hierarchical model, with (G1) and without velocity (G2). Then, we

compare these two models to three variants of a censored Gaussian space-time copula model labeled C1,

C2 and C3 (Bortot et al., 2000; Renard and Lang, 2007; Davison et al., 2013) pertaining to the class of

asymptotic independent processes. The fits of the censored Gaussian space-time copula models match a

censored Gaussian random field with transformed threshold exceedances; i.e., we transform original data to

standard Gaussian margins G(x) = Φ←(GP(Ỹ (x))) (with Φ the standard Gaussian cdf), and we suppose

that {G(x), x ∈ X} is a Gaussian space-time random field with space-time correlation function ρ(x1, x2; θ).

We denote by ρe(a) = exp(−a) and by ρs(a) = (1 − 1.5a + 0.5a3)1[0,1](a), a ≥ 0, the exponential

and spherical correlation models with scale 1, respectively. We introduce the scaled Mahalanobis distance

between spatial locations s1 and s2, written

a(s1, s2; τ) = {(s1 − s2)′Ω(τ)−1(s1 − s2)}1/2
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where

Ω(τ) =

 cos(τ1) − sin(τ1)

sin(τ1) cos(τ1)

 1 0

0 τ−1
2

 cos(τ1) sin(τ1)

− sin(τ1) cos(τ1)

 .

The Mahalanobis distance defines elliptical isocontours. Here, τ1 ∈ [0, π) is the angle with respect to the

West-East direction, and τ2 > 0 is the length ratio of the two principal axes. We choose three specifications

of the space-time correlation function:

C1 Space-time separable model:

ρ(x1, x2; θ) = ρe(a(s1, s2; τ)/ψS) ρe(|t1 − t2|/ψT ) (12)

with θ = (τ1, τ2, ψS, ψT ). We assume anisotropic spatial correlation in analogy to models G1 and G2.

The model is isotropic for τ2 = 1.

C2 Frozen field model 1 (see Christakos, 2017, for a comprehensive account):

ρ(x1, x2; θ) = ρe(a(s1 − νt1, s2 − νt2; τ)/ψ) (13)

where θ = (τ1, τ2, ψ, ν
′) and ν ∈ R2 is a velocity vector.

C3 Frozen field model 2 with compact support:

ρ(x1, x2; θ) = ρs(a(s1 − νt1, s2 − νt2; τ)/ψ). (14)

In this model, two observations separated by Mahalonobis distance a(s1 − νt1, s2 − νt2; τ) greater

than ψ will be independent.

Evaluation of the full likelihood of the models C1, C2 and C3 requires numerical operations such as

matrix inversion, matrix determinants and high-dimensional Gaussian cdfs (Genz and Bretz, 2009), which

are computationally intractable in our case. Therefore, we opt again for a pairwise likelihood approach,

which also simplifies model selection through the CLIC∗.

Estimation results are summarized in Table 2. The CLIC∗ in the last column shows a preference for

our hierarchical models with the best value for model G1, followed closely by G2. Estimated durations
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vary only slightly between G1 and G2. Estimates of φ differ more strongly, but one has to take into

account that estimates of both semi-axis are very close. Moreover, estimates of γ1 and γ2 are similar for

G1 and G2, which suggests coherent results for the two models and allows reliable physical interpretation of

estimated parameter values. Regarding the results for model G1, we observe that the estimated parameters

γ1 and γ2 characterize an ellipse covering a large part of the study region, which indicates relatively strong

dependence even between sites that are far separated in space.

The estimate of φ underlines the low inclination of the ellipse, while γ2 ≈ 2 γ1, which leads to an

ellongated shape of the ellipse. It corresponds well to the orientation of the mountain ridges in the

considered region.

The estimate of δ, which may be interpreted as the average duration of extreme events, correponds well

to empirical measures of the actual durations of extreme events in the study region. The orientation of the

reliefs seems to play an important role for the estimated velocity characterized by the values of ω1 and ω2,

with ω1 being considerably larger than ω2. For visual illustration, Figure 6 shows a simulation of model

G1 where the velocity effect in precipitation intensities becomes apparent. This simulation shows heavy

precipitation arriving from the north, predominantly spreading over the eastern slopes of a mountain range

in the study region, and then becoming more intense and finally gradually evacuating towards the south.

Among the Gaussian copula models, the preference goes to the separable model C1.

To underpin the good fit of our models through visual diagnostics, Figure 8 shows estimated probabil-

ities Pr(Z(s, t) > q|Z(s′, t′) > q) along different directions and at different temporal lags |t − t′|. These

plots suggest that the behavior of models G1 and G2 is very close; there is no strong preference for one

model over the other. The ranking of the copula models based on the CLIC∗ is also confirmed by the

visual diagnostics. For contemporaneous observations with time lag 0, the models C1, C2 and C3 have

comparable performance in capturing spatial dependence. However, for lags of 1 hour, models C2 and C3

represent the space-time interaction not satisfactorily.

Finally, we gain deeper insight into the joint tail structure of the fitted models by calculating empirical
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estimates p̂i(h) of the multivariate conditional probability

χ∗si;h(q) := Pr(Z(sj, t) > q, sj ∈ ∂si|Z(si, t− h) > q)

where ∂si is the set of the four nearest neighbors of site si, i = 1, . . . , 50. We compare these values with

precise Monte-Carlo estimates p̃
(j)
i (h), j = 1, . . . , 200, based on a parametric bootstrap procedure using

200 simulations of the models G1, G2 and C1 with the leading CLIC∗ values. We compute site-specific

root mean squared errors (RMSE)

RMSEi(h) =

{∑200
j=1(p̃

(j)
i (h)− p̂i(h))2

200

}1/2

,

as well as the resulting total RMSE, RMSE(h) =
∑50

i=1 RMSEi(h), as an overall measure of goodness of

fit. Table 3 reports such values for fitted models using contemporaneous observations or lags of 1 or 2

hours (h = 0, 1, 2) between the reference site and its neighbors. If we consider the quantile q0.99 used as a

threshold for fitting models, our hierarchical models present the best fit in terms of RMSE only for lagged

values. However, models G1 and G2 extrapolate better for larger values of the threshold such as q0.995.

7. CONCLUSIONS

We have proposed a novel space-time model for threshold exceedances of data with asymptotically vanish-

ing dependence strength. In the spirit of the hierarchical modeling paradigm with latent layers to capture

complex dependence and time dynamics, it is based on a latent Gamma convolution process with nonsep-

arable space-time indicator kernels, and therefore amenable to physical interpretation. This framework

leads to marginal and joint distributions that are available in closed form and are easy to handle in the

extreme value context. The assumption of conditional independence as in our model is practical since

it avoids the need to calculate cumulative distribution functions in large dimensions, although difficulty

remains in evaluating the volume of the intersections of more than two cylinders and in calculating partial

derivates for full likelihood formula. We can draw an interesting parallel to the max-stable Reich-Shaby

process ZRS(x) (Reich and Shaby, 2012), which is one of the more easily tractable spatial max-stable

models and has a related construction. Indeed, the inverted process 1/ZRS(x) can be represented as the
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embedding of a dependent latent convolution process (based on positive α-stable variables) for the rate of

an exponential distribution. Conditional independence models cannot accurately capture the smoothness

of the data generating process. Nevertheless, the α-parameter in our model of the Gamma noise in (8)

partially controls the smoothness of the latent Gamma field Λ(s), with smaller values yielding more rugged

surfaces.

In cases where data present asymptotic dependence, our asymptotically independent model may sub-

stantially underestimate the probability of jointly observing very high values over several space-time points.

Asymptotic dependence in our construction (4) is equivalent to lower tail dependence in Λ(x). There is

no natural choice for introducing such dependence behavior, but a promising idea is to use what we label

Beta scaling : given a temporal process B(t) independent of Λ(s, t) with Beta(α̃, α) distributed margins,

0 < α̃ < α, we could replace Λ(s, t) in our construction by the process Λ̃(s, t) = B(t)Λ(s, t) possessing

margins following the Γ(α̃, β) distribution. This construction has asymptotic dependence over space, and it

will be asymptotically dependent over time if B(t) has lower tail dependence. Follow-up work will explore

theoretical properties and practical implementation of such extensions.

We have developed pairwise likelihood inference for our models, which scales well with high-dimensional

datasets. We point out that handling observations over irregular time steps and missing data is straight-

forward with our model thanks to its definition over continuous time. While we think that MCMC-based

Bayesian estimation of the relatively high number of parameters may be out of reach principally due to the

very high dimension of the set of latent Gamma variables in the model’s current formulation, we are confi-

dent that future efforts to tackle the conditional simulation of such space-time processes based on MCMC

simulation with fixed parameters could be successful; i.e., by using frequentist estimation of parameters,

space-time prediction requires to iteratively update only the latent Gamma field through MCMC, but not

parameters.

The application of our novel model to a high-dimensional real precipitation dataset from southern

France was motivated from clear evidence of asymptotic independence highlighted at an exploratory stage.

It provides practical illustration of the high flexibility of our model and its capability to accurately predict

extreme event probabilities for concomitant threshold exceedances in space and time. Based on meteoro-
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logical knowledge about the precipitation processes in the study region, we had hoped to estimate a clear

velocity effect. As a matter of fact, the fitted hierarchical model with velocity appeared to be only slightly

superior to other models in some aspects. This interesting finding may also be interpreted as evidence for

the highly fragmented structure arising in precipitation processes at small spatial and temporal scales.

Ongoing work aims to adapt the current latent process construction to the multivariate setting by

considering constructions with Gamma factors common to several components, specifically structures with

a hierarchical tree-based construction of the latent Gamma components, and extensions to asymptotic

dependence using the above-mentioned Beta-scaling. Ultimately, such novelties could provide a flexible

toolbox for multivariate space-time modeling with scenarios of partial or full asymptotic dependence.
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8. APPENDIX 1 : FORMULAS FOR THE LAPLACE EXPONENT OF A RANDOM MEASURE

The Laplace exponent of the random measure Γ(·) is defined as

L(φ) := − log E

(
exp

{
−
∫
φ(x)Γ(dx)

})
=

∫
X

log

{
1 +

φ(x)

β

}
α(dx),

where φ is any positive measurable function.

Consider φ = v1A(x). Then,

L(φ) = − log E (exp{−vΓ(A)}) =

∫
A

log

{
1 +

v

β

}
α(dx) = α(A) log

{
1 +

v

β

}
,

i.e.,

E (exp{−vΓ(A)}) =

(
β

v + β

)α(A)

.

For bivariate analyses, choosing φ(x) = v11A1(x) + v21A2(x), yields

L(φ) = − log E (exp{−v1Γ(A1)− v2Γ(A2)})

= − log E (exp{−v1Γ(A1\A2)− (v1 + v2)Γ(A1 ∩ A2)− v2Γ(A2\A1)})

=

∫
A1\A2

log

{
1 +

v1

β

}
α(dx) +

∫
A1∩A2

log

{
1 +

v1 + v2

β

}
α(dx)

+

∫
A2\A

log

{
1 +

v2

β

}
α(dx)

= α(A1\A2) log

{
1 +

v1

β

}
+ α(A1 ∩ A2) log

{
1 +

v1 + v2

β

}
+ α(A2\A1) log

{
1 +

v2

β

}
and therefore

E(exp{−v1Γ(A1)− v2Γ(A2)}) =

(
1 +

v1

β

)−α(A1\A2)(
1 +

v1 + v2

β

)−α(A1∩A2)(
1 +

v2

β

)−α(A2\A1)

.
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9. APPENDIX 2 : FORMULAS FOR THE PAIRWISE CENSORED LIKELIHOOD

Let LP (1)(v) and LP
(2)
x,x′(v1, v2), x 6= x′ denote the univariate and bivariate Laplace transform of Λ(Ax) i.e.,

LP (1)(v) := E
(
e−vΛ(Ax)

)
=

(
β

v + β

)c0
,

and

LP
(2)
x,x′(v1, v2) := E

(
e−v1Λ(Ax)−v2Λ(Ax′ )

)
=

(
β

v1 + β

)c1 ( β

v1 + v2 + β

)c2 ( β

v2 + β

)c3
with c0 = α(Ax) c1 = α(Ax\Ax′), c2 = α(Ax ∩ Ax′), c3 = α(Ax′\Ax).

We obtain

∂

∂v
LP (1)(v) = −c0β

c0(v + β)−c0−1,

∂

∂v1

LP
(2)
x,x′(v1, v2) = −βc1+c2+c3

{
c1(v1 + β)−c1−1(v1 + v2 + β)−c2(v2 + β)−c3

+ c2(v1 + β)−c1(v1 + v2 + β)−c2−1(v2 + β)−c3
}
,

∂

∂v2

LP
(2)
x,x′(v1, v2) = −βc1+c2+c3

{
c3(v1 + β)−c1(v1 + v2 + β)−c2(v2 + β)−c3−1

+ c2(v1 + β)−c1(v1 + v2 + β)−c2−1(v2 + β)−c3
}
,

∂

∂v1∂v2

LP
(2)
x,x′(v1, v2) = βc1+c2+c3

{
c1c2(v1 + β)−c1−1(v1 + v2 + β)−c2−1(v2 + β)−c3

+ c1c3(v1 + β)−c1−1(v1 + v2 + β)−c2(v2 + β)−c3−1

+ c2(c2 + 1)(v1 + β)−c1(v1 + v2 + β)−c2−2(v2 + β)−c3

+ c2c3(v1 + β)−c1(v1 + v2 + β)−c2−1(v2 + β)−c3−1
}
.
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Parameters

Scenario γ1 γ2 φ δ ω1 ω2

A 0.2 0.2 - 10 0.00 0.00

B 0.2 0.3 π/4 5 0.05 0.10

Table 1: Design of the two simulation scenarios.
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Model Parameters

γ1 γ2 φ δ ω1 ω2 CLIC∗

G1 165.062 318.823 0.085 20.184 0.723 0.446 404480.8

23.459 19.811 0.026 0.948 0.195 0.009

G2 175.817 294.323 0.041 20.036 0 0 404488.1

11.879 25.291 0.064 1.039 - -

C1 τ1 τ2 ψS ψT CLIC∗

0.057 2.568 137.692 10.128 404626.2

0.060 0.309 7.615 0.523

τ1 τ2 ψS ν1 ν2 CLIC∗

C2 1.034 2.025 108.755 6.672 16.358 404750.3

0.040 0.318 7.299 0.908 1.502

C3 0.481 5.125 174.980 6.614 10.406 405020.4

0.005 0.262 6.955 0.095 0.226

Table 2: Estimates, standard errors (in italic) and CLIC∗ values of fitted models. Parameter units are

kilometers for φS, γ1 and γ2, radians for φ and τ1, hours for δ and φT and kilometers per hour for ω1, ω2,

ν1 and ν2.
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RMSE(0) RMSE(1) RMSE(2)

q0.99 q0.995 q0.99 q0.995 q0.99 q0.995

G1 2.614 2.096 1.901 1.643 1.475 1.496

G2 2.605 2.072 1.907 1.626 1.477 1.480

C1 2.240 2.455 2.053 2.428 1.779 1.928

Table 3: Total root mean squared errors for the estimates of χ∗si;h(q).
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Figure 1: Space-time kernels. Left display: a spatial ellipse E(s, γ1, γ2, φ) centered at s. Right display: an

intersection of two slated elliptical cylinders As,t and As′,t′ with duration δ.
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Figure 2: Summary of parameter estimates for Scenario A of the simulation study: boxplots of parameter

estimates for 100 simulated datasets.
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displays, their diameter is proportional to empirical 99% quantiles u(s) (top right plot) and to estimates
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2.82 3.36 3.9 4.43 4.97 5.51 6.04 6.58 7.12 7.65 8.19

Figure 6: A simulation example showing exceedances of the 0.95-quantile for the model G1 fitted to pre-

cipitation data. Dots correspond to the stations used for fitting. The evolution over time during 19 hours

is presented row-wise starting from the top left. The bottom right display illustrates the estimated ellipses,

centred at the barycenter of the locations, and the movement induced by the velocity vector.
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Figure 8: Estimated probabilities Pr(Z(s, t) > q|Z(s′, t′) > q) along different directions (expressed in

radians) and at different temporal lags for the precipitation data. Dotted points correspond to empirical

estimates. The value q is fixed to the empirical 99% quantile.
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