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Abstract Numerical output from coupled atmosphere-ocean1

general circulation models is a key tool to investigate cli-2

mate dynamics and the climatic response to external forc-3

ings, and to generate future climate projections. Coupled4

climate models are, however, affected by substantial sys-5

tematic errors or biases compared to observations. Assess-6

ment of these systematic errors is vital for evaluating climate7

models and characterizing the uncertainties in projected fu-8

ture climates. In this paper, we develop a spatio-temporal9

model based on a Bayesian hierarchical framework that quan-10

tifies systematic climate model errors accounting for their11

underlying spatial coherence and temporal dynamics. The12

key feature of our approach is that, unlike previous studies13

that focused on empirical and purely spatial assessments, it14

simultaneously determines the spatial and temporal features15

of model errors and their associated uncertainties. This is16

achieved by representing the spatio-temporally referenced17

data using weighting kernels that capture the spatial variabil-18

ity efficiently while reducing the high dimensionality of the19

data, and allowing the coefficients linking the weighting ker-20

nels to temporally evolve according to a random walk. Fur-21

ther, the proposed method characterizes the bias in the mean22

state as the time-invariant average portion of the spatio-temporal23

climate model errors. To illustrate our method, we present24

an analysis based on the case of near-surface air tempera-25

ture over the southeastern tropical Atlantic and bordering26

region from a multi-model ensemble mean of historical sim-27

ulations from the fifth phase of the Coupled Model Inter-28
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comparison Project. The results demonstrate the improved 29

characterization of climate model errors and identification 30

of non-stationary temporal and spatial patterns. 31

Keywords Bayesian hierarchical method · Climate model · 32

Climate model errors · CMIP5 · Spatial statistics · Spatio- 33

temporal model 34

1 Introduction 35

Coupled climate models use mathematical approximations 36

of physical and biogeochemical processes to simulate the 37

transfer of energy and mass within and across the various 38

compartments of the climate system (Flato et al. 2013). Nu- 39

merical simulations performed with such models are used 40

to investigate climate dynamics and the climatic response to 41

external forcings, to predict climate evolution and to gen- 42

erate future climate projections, where climate changes as 43

a result of natural as well as anthropogenic forcings can be 44

investigated (Tebaldi et al. 2005; Flato et al. 2013). Despite 45

their continued improvements in representing atmospheric 46

and oceanic physical processes, simulations performed with 47

the current generation of coupled climate models suffer from 48

substantial deficiencies (e.g., Hooten et al. 2008). Among 49

these, of special relevance are the systematic errors that af- 50

fect the mean state, seasonality and interannual-to-decadal 51

variability simulated by climate models compared to obser- 52

vations (Hawkins et al. 2014; Wang et al. 2014). These sys- 53

tematic errors are commonly referred to as climate model 54

biases (e.g., Cannon 2017). 55

Systematic climate model errors develop due to inad- 56

equate representation of relevant oceanic and atmospheric 57

processes in climate models (e.g., Hawkins et al. 2014). These 58

imperfections are largely attributed to either the limited un- 59

derstanding of many of the interactions and feedbacks in 60

the climate system or to numerical oversimplifications of 61
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well-known processes, so-called parameterizations (Jun et62

al. 2008). One of the most serious errors shared by climate63

models is the strong warm sea-surface temperature bias in64

the south-eastern part of the tropical Atlantic (Flato et al.65

2013; Zanchettin et al. 2017). Multiple causes have been66

identified at its origin, in different models, including local67

factors, such as the along-shore wind-stress and surface heat68

fluxes (e.g., Wahl et al. 2015; Milinski et al. 2016), and69

larger-scale or even remote phenomena, such as the propa-70

gation into the south eastern tropical Atlantic of downwelling71

anomalies generated at the equator (e.g. Toniazzo and Wool-72

nough 2014).73

Due to the severity of climate model biases, and their74

unavoidable impacts on the quality of the simulations, er-75

ror identification, quantification and correction have become76

relevant topics of applied climate research (Cannon 2017).77

In general, current analytic approaches to evaluation and78

correction of coupled climate model errors determine how79

much the distributional properties of a climatically relevant80

quantity obtained from a climate simulation - or analogously81

from an ensemble of climate simulations - differ from those82

obtained from observational data for a certain time period83

and spatial domain (e.g., Jun et al. 2008; Liu et al. 2014).84

To this purpose, various statistical techniques have been pro-85

posed, including the empirical analyses of varying complex-86

ity (Richter and Xie 2008; Garcı́a-Serrano et al. 2012) and87

bias estimation on a grid point by grid point basis (e.g.,88

Boberg and Christensen 2012). Further, research interests89

on a Bayesian hierarchical assessment of climate model er-90

rors are increasing. The Bayesian paradigm allows quan-91

tifying systematic errors using full probabilistic inferences92

based on the posterior distributions derived from the pro-93

posed method. Recent studies focusing on the Bayesian es-94

timation of climate model errors using spatially aggregated95

geophysical data includes Tebaldi et al. (2005), Buser et al.96

(2009) and Buser et al. (2010). More recently, Arisido et al.97

(2017) devised a purely spatial Bayesian hierarchical model98

using gridded data to determine the underlying spatial pat-99

terns in climate model biases, thus resolving the limitations100

of previous works that relied on spatial aggregation or grid-101

points separately.102

In this paper, we develop a spatio-temporal model based103

on a Bayesian hierarchical approach in order to character-104

ize and quantify climate model errors by explicitly account-105

ing for their spatial and temporal dependencies within a sin-106

gle framework. Spatio-temporal characterization of climate107

model biases is motivated by the fact that such errors fea-108

ture the same spatial and temporal complexity of the sim-109

ulated climate itself, as both, climate and errors, stem and110

evolve based on the same numerical representation of phys-111

ical processes (Zanchettin et al. 2017). To determine the spa-112

tial and temporal features of model errors, and their associ-113

ated uncertainties, we represent the spatio-temporally refer-114

enced data using a set of weighting kernels (e.g., Higdon 115

1998) that capture the spatial variability efficiently while re- 116

ducing the high dimensionality of the large-scale data. Our 117

model specification is tailored to the well established state- 118

space approach (Durbin and Koopman 2012), in which the 119

spatio-temporal climate model error process is treated as a 120

time series of non-stationary spatial fields, where space is 121

assumed as continuous and time is discrete (Finley et al. 122

2012; Banerjee et al. 2014). We characterize the time-invariant 123

bias in the mean state as the average portion of the spatio- 124

temporally varying climate model error. 125

To illustrate our method, we present an analysis based on 126

the case of annual-average near-surface air temperature for 127

the period 1948-2005 over the southeastern tropical Atlantic 128

and bordering area from a multi-model ensemble mean of 129

historical simulations from the fifth phase of the Coupled 130

Model Intercomparison Project (CMIP5, Taylor et al. (2012)). 131

Focus on the ensemble mean allows reducing the complex- 132

ity of the Bayesian treatment and attributing the temporal 133

component of the error to the observed internal variability. 134

In the next section, we describe the data. In Section 3, we 135

present the methodology, including the definition of climate 136

model errors and our formulation of the Bayesian spatio- 137

temporal model. Section 4 illustrates the results of the anal- 138

ysis. We provide a concluding discussion in Section 5. 139

2 Data 140

The dataset comprises observational data and climate model 141

outputs. The latter are obtained from deterministic numer- 142

ical models, and it is a common practice to consider the 143

model output as data. We use monthly-mean data obtained 144

from the NCEP reanalysis (Kalnay et al. 1996) as our ob- 145

servational reference data. Reanalysis data are the output 146

of a state-of-the-art analysis/forecast system with data as- 147

similation using past data from 1948 to the present. The 148

data were provided by the NOAA/OAR/ESRL PSD, Boul- 149

der, Colorado, USA. Reanalysis data are therefore not direct 150

observations, yet they facilitate the purposes of this study by 151

providing gridded records of absolute temperatures. This is 152

an advantage compared to other observational products that 153

provide anomalies as main gridded output, such as the tem- 154

perature series produced by the Climatic Research Unit of 155

the University of East Anglia (Brohan et al. 2006). The use 156

of pseudo-observations as reference target to determine sys- 157

tematic climate errors is discussed in Zanchettin et al. (2017) 158

and Arisido et al. (2017). Our climate model outputs are 159

originally based on monthly-mean data from an ensemble 160

of six historical full-forcing climate simulations contribut- 161

ing to CMIP5. The data covers the period 1948-2005, for 162

which we derive yearly-mean time series of both observa- 163

tions and simulations over the southeastern tropical Atlantic 164

and bordering area, which is defined geographically as the 165
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region covering the latitude range 40◦S to 0◦N and the lon-166

gitude range 20◦W to 30◦E.167

3 Methods168

3.1 Definitions and notations169

Climate model error (hereafter referred to as deviation) is170

determined by comparing output data simulated from the171

climate models against observations. We let Yt(s) and Xt(s)172

to represent the observed and the simulated value of a cer-173

tain geophysical quantity, respectively, at spatial location s,174

s∈ {s1, . . . ,sn} in a region D ∈ R2 and time t, t ∈ {1, . . . ,T}.175

We derive the spatio-temporal climate model deviation as176

Dt(s) = Yt(s)−Xt(s), t = 1 . . . ,T (1)

where Dt(s) denotes the deviation of the simulated value177

relative to the observations at spatial location s and time178

t. For n spatial locations in D , we observe the deviations179

Dt(s1), . . . ,Dt(sn) for the time t. Generally, statistical anal-180

ysis of climate model deviations can be affected by the spa-181

tial misalignment between observations and model output182

since the model output and the observations are on differ-183

ent grids. We tackle this issue by linearly interpolating the184

model output data on the regular observational grid to en-185

sure that Yt(s) and Xt(s) are aligned on the same grid (see,186

e.g., Jun et al. 2008; Banerjee et al. 2014). One reason for187

using the linear interpolation method is that both reanal-188

ysis and climate model outputs feature high spatial reso-189

lution over the investigated domain. We therefore expect190

that the uncertainty due to the interpolation to minimally af-191

fects the results. For each year of the period 1948-2005, we192

consider a 19× 19 (n = 361) grid points. From the spatio-193

temporal deviation Dt(s), we calculate the empirical bias194

B(s) as B(s) = ∑
T
t=1 Dt(s)/T . In Figure 1(a), we show this195

spatially distributed B(s), which is calculated by averaging196

Dt(s) over the whole period 1948-2005. The spatial pattern197

of B(s) exhibits the typical features of the climate model198

bias in the mean state over this study region, including the199

strong warm bias up to 5 kelvin over the Angola-Benguela200

front region. Another notable feature is the cold bias over the201

southeastern sub-tropics. Figure 1(b) shows the time series,202

D(t), of the empirical deviation averaged over the consid-203

ered spatial domain. The time series reflects the evolution204

of the deviation over the years, in which both short-term205

and long-term components highlight the portion of observed206

variability that is not captured by the ensemble-mean evolu-207

tion. This includes, therefore, observed internal (i.e., spon-208

taneous) variability, which is smoothed out in the ensem-209

ble mean. The long-term temporal evolution of D(t) traces210

that of the Atlantic Multidecadal Oscillation (AMO), specif- 211

ically its phase transitions in the 1970s (warm to cold) (e.g. 212

Zanchettin et al. 2016). 213

3.2 Bayesian spatio-temporal model for climate model 214

errors 215

The aim here is to formulate a statistical model to quan- 216

tify and characterize climate model errors accounting for 217

their inherent spatial and temporal dependencies. We spec- 218

ify the model in the Bayesian hierarchical framework based 219

on three levels: data, process, and parameters (see, Berliner 220

2003; Cressie and Wikle 2015, for a comprehensive review). 221

In this setup, our model specification is structured with (1) 222

a data model describing the information given in the form 223

of the empirically observed deviation, conditional on un- 224

observed spatio-temporal deviation process under investiga- 225

tion; (2) the unobserved process featuring spatio-temporal 226

characters described using a set of parameters and (3) the 227

parameters that appear in the first two levels, and specify 228

their prior beliefs according to Bayesian reasoning. 229

3.2.1 Data model 230

The idea is that in the evaluation of the bias B(s) the local 231

spatio-temporal effects should be filtered out. To model the 232

deviation, we assume that the observed deviation Dt(s) can 233

be decomposed into two components: 234

Dt(s) = Mt(s)+ εt(s), (2)

where Mt(s) is a spatio-temporal Gaussian random field and 235

εt(s) is a temporally and spatially uncorrelated zero mean 236

Gaussian noise with variance σ2
t . Note that the model is al- 237

lowed to take into account for the heterogeneity in time. We 238

assume that the noise component εt(s) is independent of the 239

deviation process Mt(s). In practice we convey into the pro- 240

cess Mt(s) all smoothed spatio-temporal components that 241

actually are blurred by the noise term. We further assume 242

that the observed deviation Dt(s) is conditionally indepen- 243

dent in time given Mt(s). Such assumptions lead to the data 244

model in the form 245

[D1(s), . . . ,DT (s)|M1(s), . . . ,MT (s),σ2
1 , . . . ,σ

2
T ] =

T

∏
t=1

[Dt(s)|Mt(s),σ2
t ]

(3)

where [A] denotes the generic notation for the probability 246

distribution of the random quantity A. Accordingly [A|B] is 247

the conditional distribution given B. 248
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Fig. 1 (a) The empirical bias B(s) in near-surface air temperature over the southeastern tropical Atlantic and bordering regions; (b) the temporal
deviation D(t), which is obtained by averaging Dt(s) over the spatial domain.

3.2.2 Process model249

The process model characterizes the spatio-temporal devi-250

ation process Mt(s). Once we determine Mt(s), an impor-251

tant interest will be to estimate the more appropriate time-252

invariant bias B̃(s) for the study period as an average of253

Mt(s), i.e., B̃(s) = ∑
T
t=1 Mt(s)/T . The spatio-temporal pro-254

cess Mt(s) is driven by a large scale spatial component that255

changes stochastically but smoothly in time and a site spe-256

cific component. The spatial large scale component at time257

t is represented by a linear combination of p spatial kernel258

functions {ψk(s) : k = 1, . . . , p} as in Higdon (1998), i.e.,259

∑
p
k=1 ψk(s)βt,k, where βt,k is the coefficient parameter for260

kernel k. The whole formulation is given by261

Mt(s) = ψ(s)′β t +νt(s) (4)

β t = β t−1 +ω t (5)

νt(s) = νt−1(s)+δt(s) (6)

where ψ(s) = {ψ1(s), . . . ,ψp(s)}′ and β t =
(
βt,1, . . . ,βt,p

)′.262

The number of kernels p is chosen to be much less than the263

number of spatial data points n. The choice of the kernels264

is further discussed in section 3.3. Equation (5) states that265

the p×1 vector of the linear coefficients β t change accord-266

ing to a random walk process, where the evolution error ω t267

is assumed as an independently and identically distributed268

zero mean Gaussian process with variance-covariance ma-269

trix Σω . Then, equation (6) defines the site specific com-270

ponent νt(s) in order to account for the underlying spatial271

correlation, capturing it’s Markovian dependence in time.272

More specifically, δt(s) follows a zero mean spatial Gaus- 273

sian process with covariance function Ct , which is speci- 274

fied as Ct(s,s′;θ t) = τ2
t ρ(s,s′;φt), where θ t = {τ2

t ,φt} and 275

ρ(.;φt) is a correlation function with φt controlling the cor- 276

relation decay and τ2
t representing the spatial variance. Any 277

valid spatial correlation function can be used to define ρ(.;φ) 278

(e.g., see Cressie 1993). Here we use the exponential func- 279

tion, i.e., Ct(s,s′;θ t) = τ2
t exp(−φt ||s− s′||), where ||s− s′|| 280

is the Euclidean distance between locations s and s′. Further, 281

for each time point t, ω t is uncorrelated with εt(s). 282

Of note, the variance of Mt(s) at any time t is a function 283

of the site s, as can be shown by calculating it from equation 284

(4). Similarily, the covariance of the deviation between any 285

two sites is also a function of the sites. It follows that the 286

deviation Mt(s) at time t is a non-stationary spatial process. 287

The different levels of the Bayesian hierarchical approach 288

discussed above can be formulated within a state-space form 289

(Gelfand et al. 2005; Durbin and Koopman 2012). That is, 290

combining the data model (2) and the process models (4)-(6) 291

yields 292

Dt(s) = ψ(s)′β t +νt(s)+ εt(s) (7)

β t = β t−1 +ωt (8)

νt(s) = νt−1(s)+δt(s) (9)

where (7) is the measurement equation, and (8,9) are the 293

transition equations. While (7) is similar to the measure- 294

ment equation of the standard state space model, we rec- 295

ognize that assuming a random walk process in transition 296
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equations is a simplification from the more general specifi-297

cation (as provided in, e.g., West and Harrison 1997). The298

random walk is chosen to provide adequate flexibility for299

computation and eases the interpretation (e.g., Finley et al.300

2012). Nontheless, the model can be extended to a more301

general specification, including higher order autoregressive302

structure.303

3.2.3 Parameter model304

We complete the model specification by assigning prior prob-305

ability distributions for the initial conditions {β 0,ν0(s)} and306

the model parameters {Σω ,(σ
2
1 ,θ 1), . . . ,(σ

2
T ,θ T )}. Prior dis-307

tributions for these parameters are generally taken to be non-308

informative. For the initial conditions, we specify a Guas-309

sian process prior in the form β 0 ∼ N(µβ0
,Σ β0) where µβ0

310

is a vector of length p and Σ β0 is a p× p covariance matrix,311

and ν0(s) = 0. Recalling θ t = {τ2
t ,φt}, for the measurement312

error variance σ2
t and the spatial variance τ2

t we assign the313

Inverse-Gamma priors σ2
t ∼ IG(a1,b2) and τ2

t ∼ IG(a2,b2)314

for each t, where IG(a,b) denotes the inverse gamma distri-315

bution with shape parameter a and scale parameter b.316

Here {µβ0
,Σ β0 ,a1,b1,a2,b2} are called hyper-parameters317

in the Bayesian context, and their values could either be cho-318

sen or could be assigned another priors (see, e.g., Gelman319

2006). Some physical intuition is used for these the param-320

eters where relevant information is available. It should be321

noted that the space-time data is large, so the results are322

believed to be dominated by the data used, rather than the323

choice of the hyperparameters (Vanem et al. 2012). Indeed,324

a sensitivity analyses on some of the hyperparameters in-325

dicated that the results are not substantially sensitive to the326

choice of exact values.327

We choose µβ0
= 0,Σ β0 = Ip,a1 = a2 = 3 and b1 =328

b2 = 100. For the spatial decay parameter φt of the expo-329

nential spatial correlation function, we assign the uniform330

prior in the form φt ∼ U(0.001,0.03), which corresponds to331

the support ranges from 100 to 3000 km. Since the maxi-332

mum distance between any two locations in the study region333

is 1030 km, the specified support well covers the full ex-334

tent of the spatial domain. For the p× p evolution matrix335

Σω , we assume the inverse-Wishart prior probability distri-336

bution, Σω ∼ IW(p+1,Ip), with the degrees of freedom pa-337

rameter taking the value p+1 and the scale parameter being338

the p× p identity matrix Ip, as we assume independence be-339

tween the elements of the coefficient vector β t .340

3.3 Implementation341

First we discuss the choice of the spatial kernel vector ψ(s).342

Several types of kernel functions have been suggested, in-343

cluding Gaussian kernels (Stroud et al. 2001), harmonic func-344

tions (e.g., Furrer et al. 2007) and bisquare functions (Kang345

et al. 2012). In this paper we have considered a Gaussian 346

kernel specified as 347

ψk(s) = exp{−(s− ck)
′
Σ
−1(s− ck)/2}, k = 1, . . . , p (10)

where ck denotes the center of the kernel and Σ determines 348

the shape. The number of kernels p, their locations and shapes 349

must be chosen. These choices are often based on the pres- 350

ence of prior information such as smoothness and spatial de- 351

pendence related to the spatial process under study (Stroud 352

et al. 2001). If we choose spherically shaped kernels, i.e., 353

Σ = κI2 on R2 and κ > 0, and the centers belong to a reg- 354

ular grid over an unbounded domain, the resulting spatial 355

process approximates a covariance function of a stationary 356

isotropic process when the number of kernels p is very large. 357

Alternatively, a geometrically anisotropic process may be 358

obtained if we choose non-spherical Gaussian kernels. One 359

way to assess the shape of Σ is to perform variogram anal- 360

yses for different directions (see, e.g., Cressie 1993). Our 361

preliminary analysis using variograms at several time points 362

suggests that isotropy is a plausible assumption for Mt(s). 363

An example of the variogram plot for t = 1970 is shown in 364

Figure 2(a) for the directions: 0◦,45◦,90◦,135◦ (i.e. North, 365

Northeast, East and Southeast direction, respectively). The 366

variogram does not reveal strong anisotropy in the four di- 367

rections at small distances since the patterns are quite sim- 368

ilar to each other. Figure 2(b) shows the p = 25 equally- 369

spaced and spherically shaped Gaussian kernels with scale 370

Σ = 0.5I2 on R2 that are used in the main analysis. At the 371

end of section 4 we further investigate the sensitivity of re- 372

sults for the different choices of p. 373

Once a reasonable choice of the kernels ψ(s) is made, 374

the model can be implemented in the Bayesian framework. 375

For parameter estimation and associated inference, we seek 376

to obtain the posterior distribution of the unknown parame- 377

ters {β 0,Σω ,(β 1,σ
2
1 ,θ 1), . . . ,(β T ,σ

2
T ,θ T )}. For a particu- 378

lar location s, the posterior distribution can be given in the 379

form 380

[β 0,β 1:T ,Σω ,σ
2
1 ,θ , . . . ,σ

2
T ,θ T |D1:T (s)] ∝

T

∏
t=1

[Dt(si)i = 1, . . . ,n|β t ,σ
2
t ]× [β 0]×

T

∏
t=1

[β t |β t−1,Σω ]×
T

∏
t=1

[σ2
t ]×

T

∏
t=1

[θ t ]× [Σω ]

(11)

with notations as in Cressie and Wikle (2015). Clearly, 381

the normalizing constant for (11) cannot be found analyti- 382

cally. So, we use the Markov Chain Monte Carlo (MCMC) 383

method (Gilks et al. 1996) with Gibbs sampler and random 384

walk Metropolis steps (Robert and Casella 2013). For the 385

random walk Metropolis step, a multivariate normal (same 386
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Fig. 2 (a) Empirical variogram for the time t = 1970 for the four different directions (black solid 0◦, red dashed 45◦, gray dotted 90◦, blue dashed
135◦). The variogram was analyzed using the robust estimator by Cressie (1993); (b) The spherically-shaped 25 equally-spaced Gaussian kernels
used for the main analysis. Red crosses indicate the centers of the kernels.

dimension as the number of model parameters) proposal dis-387

tribution is used. Based on inspection of graphical tools of388

the simulation history to assess convergence, we run the389

Gibbs sampler for 10,000 simulation steps and discarding390

the first 5,000 as the burn-in period. We performed the anal-391

ysis using the spBayes package (Finley et al. 2015) in the392

freely available R computing environment. The computa-393

tion time depends mainly on the size of the kernel vectors,394

the spatial coverage and the number of time points. For our395

main analysis, a Gaussian kernel vector with length 25, a396

regular grid of 19× 19 = 361 sites and T = 58 years, the397

computations take about 15 hours on a 64-bit linux worksta-398

tion version Linux Mint 18.2. We then summarized draws399

from the posterior MCMC in terms of mean, median and400

standard deviation to perform posterior inference about the401

unknowns.402

4 Results403

Figure 3 shows the posterior means of the deviation process404

Mt(s) for the years t ∈{1950,1960,1970,1980,1990,2000}.405

The posterior means are estimated using the 25 Gaussian406

kernels that are shown in Figure 2(b). These results cor-407

roborate the purely spatial results of Arisido et al. (2017)408

where a broader tropical Atlantic region was considered.409

The most prominent feature is that the warm error over the410

Angola-Benguela front region persists throughout the sim-411

ulated period, with the maximum value exceeding 4 kelvin412

and extending westward beyond 10◦W. However, the sever-413

ity of the climate model error estimates is noticeably dif-414

ferent across the years, with differences in the local devia- 415

tion of more than 1 kelvin (e.g., between 1980 and 1950). 416

The shown exemplary posterior spatial fields reflect an (in- 417

ter)decadal modulation of the warm error over the south- 418

eastern tropical Atlantic, with alternating decades of strong 419

(roughly 1955-1965, 1980s and 1990s) and moderate (late 420

1940s-early 1950s, 1970s and early 2000s) errors. Further, 421

substantial variations through time are observed in the sever- 422

ity of the warm error extending southeastern over the Namibia 423

desert. 424

The corresponding uncertainty estimates of the posterior 425

Mt(s) are shown in Figure 4, which indicate that the pos- 426

terior estimates of Mt(s) are most uncertain in the regions 427

affected by cold errors and, more generally, they are more 428

uncertain over ocean than over the land. Particularly, uncer- 429

tainty is largest in the West-tropics with maximum standard 430

error reaching 0.8, which is more pronounced in the period 431

1960, 1970 and 1990. The posterior estimates of Mt(s) are, 432

conversely, more certain in regions affected by warm errors 433

particularly over the Angola-Benguela front region, where 434

the minimum standard error is estimated to be about 0.2. 435

This ocean-land contrast reflects topographic effects and the 436

different spatio-temporal scales of characteristic ocean and 437

land processes. 438

As pointed out in section 3.2.2, the posterior estimate 439

of the bias B̃(s) is obtained as an average of the posterior 440

Mt(s). Figure 5 presents the posterior B̃(s) (panel a) and 441

its associated uncertainty estimate (panel b). Overall, the 442

posterior estimate shows the obvious warm bias along the 443

Angola-Benguela front region. We notice that the posterior 444
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Fig. 3 The posterior means of the spatio-temporal deviation process Mt(s) over the southeastern tropical Atlantic and bordering regions for the
years t ∈ {1950,1960,1970,1980,1990,2000}.

bias B̃(s) agrees well in its general features, with the empir-445

ical bias estimate B(s) (Figure 1a), which implies that our446

model captures the most prominent features in the data. In447

particular, both B(s) and B̃(s) capture the warm error over448

the Angola-Benguela front region, particularly including its449

meridionally elongated core around 17◦S off the African450

coast and its elongated shape protruding west along 14◦S451

latitude. Nonetheless, the Bayesian spatio-temporal approach452

allows to gain deeper insights about the climate model error,453

in particular concerning the spatial dependency of the diag-454

nosed features, and the associated posterior uncertainty es-455

timation. The fact that physically plausible features emerge456

in Figure 5(a), including sharp coastal effects and the signa-457

ture of oceanic waves, manifests about the detail and quality458

of the spatial bias estimation allowed by the proposed statis-459

tical model. Furthermore, the posterior estimates of uncer-460

tainty (Figure 5b) highlight regions where the quantification461

of the bias is less certain. In particular, the small bias in the462

more equatorial regions of the south Atlantic Ocean are af-463

fected by large uncertainty, whereas the large bias over the464

Angola-Benguela front region is associated to small uncer-465

tainty.466

To determine the overall temporal character of the spatio-467

temporal process Mt(s), Figure 5(c) shows the posterior tem-468

poral deviation M(t) as spatially averaged Mt(s) overlay on469

the corresponding observed deviation D(t). The posterior470

deviation M(t) appears to be smaller than the correspond-471

ing observed deviation D(t). Furthermore, the posterior es-472

timate has a smoother evolution compared to that of the em- 473

pirical deviation, which in turn suggests that the variability 474

in the empirical deviation is greater than the variability in 475

the estimate of the posterior deviation. To further assess the 476

posterior estimate of the spatio-temporal process Mt(s) for 477

more localized features within the study domain, the upper 478

panel in Figure 6 depicts the time series trends of the poste- 479

rior averages of Mt(s) for four subregions, whose locations 480

are indicated in Figure 6 lower panel. The four subregions 481

were selected for illustrating the evolution of Mt(s) over: the 482

Angola-Benguela front region, the Namibia desert and two 483

open ocean regions at the northern and southern edges of the 484

south Atlantic gyre, respectively. A trend in a subregion is 485

calculated by averaging the posterior information over the 486

spatial domain of the subregion, where the spatial domain 487

of the subregions are not necessarily equal. The time series 488

of the local deviations indicate that a sharp transition from 489

a cold bias to a neutral bias is diagnosed over the south- 490

ern edge of the south Atlantic gyre, where the cold bias is 491

most severe in the decade 1950-1960 of the analysis (Trend 492

3). Over the northern edge of the gyre, the temporal evolu- 493

tion shows a slow transition, from the late 1960s to the early 494

1990s, from a warm bias to a neutral bias situation (Trend 495

4). As expected, the Angola-Benguela front region features 496

the highest warm bias over the whole period of study (Trend 497

1), consisting of a long-term warming trend with superim- 498

posed noticeable decadal variability. Similarly, the Namibia 499

desert experiences a relatively warm bias (Trend 2), indi- 500
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Fig. 4 Posterior standard errors associated to the posterior mean fields of Mt(s), which are shown in Figure 3.

cating a long-term warming with superimposed noticeable501

decadal variability as well.502

In Figure 7 we show the posterior medians and the asso-503

ciated 95% credible end points for the variance components504

{σ2
t ,τ

2
t }. The evolutions of the variance of the observed de-505

viation σ2
t (i.e., the nugget in the geostatistical term) and506

the spatial variance τ2
t exhibit temporal variability, validat-507

ing our assumption to define time dependent variance pa-508

rameters to take into account the heterogeneity in time of509

these parameters. Additionally, we can see that the spatial510

variance is greater than the nugget. In fact, the signal-to-511

noise ratio, which is computed as τ2
t /σ2

t for comparing the512

strength of the two variance components, is substantially513

greater than one (not shown), coherent with the hypothesis514

that the nugget effect is often smaller than the spatial vari-515

ance (e.g., Bakar and Sahu 2015). We note that the variance516

parameters here are allowed to change in time, but not ac-517

cording to a specific model structure. An interesting idea for518

further study is to explore the possibility of specifying the519

temporal dependence in terms of a variance model, such as520

the generalized autoregressive conditional heteroskedastic-521

ity (ARCH) oriented approach.522

Our model specification depends on the use of Gaussian523

kernel functions to describe the spatial features of the devia-524

tion process Mt(s). We therefore investigate the adequacy of525

our model to the choice of Gaussian weighting kernels. The526

parameters {p,Σ ,κ} associated to the kernels may impact527

the model fit and the prediction. In particular, the choice of528

p largely determines the level of spatial detail in the con-529

text of dimension reduction techniques (e.g., Finley et al. 530

2012; Arisido et al. 2017). Hence, we perform a sensitivity 531

analysis on the p parameter using three different sets of ker- 532

nels, that is p ∈ {9,18,36} fixing Σ = 0.5I2, to investigate 533

the sensitivity of the results to these choices of p. Figure 8 534

shows the three sets of kernels, along with the correspond- 535

ing posterior fields of the deviation process Mt(s). The three 536

different sets of kernels are shown in column (a). Notice- 537

able differences emerge in the shape of Mt(s) (column b) 538

including the location and magnitude of the deviation. With 539

p = 9, the larger separation between the kernels results in 540

a strongly smoothed posterior estimate. Clearly, the pattern 541

also misses detailed spatial features and misrepresents the 542

deviation along the Angola-Benguela front, a region known 543

to be affected by a strong warm bias. This suggests that 544

a too small number of kernels insufficiently represents the 545

spatial processes. With larger numbers of kernels, p = 18 546

and p = 36, the deviation process Mt(s) captures well know 547

features and produce detailed patterns with clearly appar- 548

ent topographic characteristics. The fact that both p = 18 549

and p = 36 choices lead comparable posterior estimates of 550

Mt(s) indicates that the optimal choice of number of kernel 551

would be between these two choices. Specifically, a choice 552

closer to p = 36 allows a better approximation of the devi- 553

ation process by capturing fine-scale local features, but the 554

benefit being gained has to be balanced with computational 555

feasibility and the applicability of the model with large num- 556

ber of kernels. 557
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Fig. 5 (a) The posterior bias B̃(s); (b) associated posterior standard error estimate; (c) time series plots of the posterior deviation M(t) obtained as
spatially averaged Mt(s), overlay on the corresponding empirical deviation D(t).

We also analyzed the predictive performance of the model558

to assess the goodness of the fit. In Figure 9(a) we show559

a residual, Dt(s)−Mt(s), surface plot at one randomly se-560

lected year. We observe that values of the residual surface561

plot varies from -0.3 to 0.3 kelvin and in most places the fit-562

ted values are close to the observations, particularly over the563

ocean. The largest discrepancies occur over land, in regions564

of strong climatic heterogeneity, where the residuals take the565

form of warm-cold dipoles. Figure 9(b) shows the observa-566

tion against the posterior median of the time-varying fitted567

values together with the 95% credible intervals for 10 ran-568

domly selected locations. Again the fitted values are close to569

the observations. In fact both the observations and the fitted570

values lie within the 95% credible bands.571

Finally, we assessed the sensitivity of the results to the572

assumption of isotropy for the spatial covariance structure573

of the deviation process Mt(s). The empirical variogram in574

Figure 2 showed that treating Mt(s) as an isotropic process575

was valid as no anisotropy was revealed. Nonetheless, when576

there is concern of strong anisotropy, it may be desirable to577

build a model that is able to handle such feature directly.578

There are various ways to address anisotropy (e.g., Higdon579

1998; Banerjee et al. 2014). In the context of the current580

method, we can account for anisotropy by defining the 2×2581

kernel covariance matrix Σ as diagonal where the first and582

the second diagonal elements are 0.8 and 0.3, respectively.583

Figure 9(c) and (d) show the p = 25 Gaussian kernels with 584

this modified Σ and the corresponding posterior bias B̃(s), 585

respectively. The impact of the modified Σ is evident as the 586

shape of the kernels is elliptical rather than spherical. Yet, 587

the effect of these spherical kernels on the posterior esti- 588

mate of B̃(s) is less clear, since this posterior estimate is 589

practically undistinguishable from the bias estimate in Fig- 590

ure 5. This supports the variogram analysis that considering 591

Mt(s) as an anisotropic process does not provide relevant 592

additional advantages over the asumption of isotropy. 593

5 Discussion 594

We have proposed a Bayesian spatio-temporal model for 595

assessing systematic errors in coupled climate models. A 596

key feature of the work presented here is that the statisti- 597

cal model does not only quantify the errors by accounting 598

for their spatial and temporal dependencies, but also deter- 599

mines the associated uncertainties using the posterior dis- 600

tributions. Spatio-temporal errors are characterized as non- 601

stationary spatial fields over a discrete period of time, and 602

the time-invariant bias in the mean state is estimated as the 603

temporal average portion of the spatio-temporally varying 604

climate model error. 605

The model was illustrated using the case of near-surface 606

air temperature over the southeastern tropical Atlantic and 607
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bordering regions from an ensemble average of six histor-608

ical simulations contributing to CMIP5. Substantial warm609

error is estimated over the Angola-Benguela front region,610

persisting throughout the simulated period, but with notice-611

able decadal variations with amplitude of up to one kelvin.612

The posterior analysis showed that not only the estimate of613

the bias changes through time, but also the associated uncer-614

tainty. Another notable feature of the results is that the poste-615

rior overall temporal evolution in the investigated domain is616

smaller than the corresponding empirical estimate (see, Fig-617

ure 5c). This is due to the fact that our statistical approach618

quantifies the error process by disentangling the noise com- 619

ponent linked to the data, particularly those linked to the in- 620

trinsic interannual variability of the climate system (driven, 621

for instance, by phenomena such as the El Nino-Southern 622

Oscillation), and accounting for the underlying spatial cor- 623

relation. The generality of the approach presented in this pa- 624

per suits for the estimation of unknown quantities as well as 625

their prediction for different spatial sites or forecast periods. 626

The conditional dependency on the state at the previous time 627

step allows for a straightforward extension of the model to 628

the purpose of error forecasting. In particular, the use of long 629
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Fig. 8 Comparison of the posterior mean surfaces of the spatio-temporal deviation Mt(s) at year t = 1985 for three different choices of the number
of kernels p: (a) map of the employed sets of Gaussian weighting kernels; (b) the posterior mean surfaces of Mt(s).

(spanning several decades) time series allows to obtain pre-630

cise forecasts with an interannual-to-decadal horizon (West631

and Harrison 1997).632

The proposed statistical model stimulates additional re-633

search, posing theoretical and computational challenges. We634

considered an ensemble average of climate simulations to635

be representative of climate simulation performances in the636

study region. A more comprehensive analysis can be envis-637

aged in the form of a multivariate spatio-temporal oriented638

approach to allow assessments of spatio-temporal simula-639

tion errors from several climate models jointly. Further, we640

considered the exponential function based on Euclidean dis-641

tance to specify the covariance function used to model the642

spatial dependence structure. Another future focus is a more643

flexible spatial covariance function and distance metric for a644

broader spatial region and a longer time period.645
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