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Actors, decision-making, and institutions in 
quantitative system modelling 

 

 

Abstract: Increasing realism in quantitative system modelling with respect to the representation of 
actors, decision-making, and institutions is critical to better understand the transition towards a 
low-carbon sustainable society. Yet, studies using quantitative system models, which have become 
a key analytical tool to support sustainability and decarbonization policies, focus on outcomes, 
therefore overlooking the dynamics of the drivers of change. We explore opportunities that arise 
from a deeper engagement of quantitative systems modeling with social science. We argue that 
several opportunities for enriching the realism in model-based scenario analysis can arise through 
model refinements oriented towards a more detailed approach in terms of actor heterogeneity, as 
well as through integration across different analytical and disciplinary approaches. Several 
opportunities that do not require major changes in model structure are ready to be seized. 
Promising ones include combining different types of models and enriching model-based scenarios 
with evidence from applied economics and transition studies. 
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1 Introduction 

Model-based scenario analysis has become a key analytical approach to explore low-carbon 
transitions in line with pre-defined future global environmental and sustainability goals. An 
important reason for this is that models, which in this paper always refers to quantitative systems 
models, can provide insights into interactions between sectors, different sustainability goals, 
linkages across topics, scales, regions, as well as into indirect economic linkages (van Vuuren and 
Kok, 2012). The approach makes it possible to examine the relationship between near-term 
decisions and long-term trends and objectives by accounting for relevant (environmental, 
economic, energy) system inertia. Model-based scenarios have provided support to high-level 
decision-making in the fields of environment, sustainable development, and transitions towards 
low-carbon economies. For example, the conclusions of the Fourth Assessment Report (AR4) by 
the Intergovernmental Panel on Climate Change (IPCC) provided the evidence for the European 
Union to adopt a greenhouse gas emission reduction target of 80%-95% in 2050 compared to 1990 
levels to remain aligned with the 2°C global climate objective1 (Gupta et al., 2007, IPCC, 2007). 
Model-based scenarios have also been helpful in informing negotiators and heads of state during 
the establishment of the Paris Climate Agreement2 (UNFCC, 2015). 
 
The increasing focus on the implementation of low-carbon policies and the considered transition 
dynamics toward achieving long-term objectives requires greater attention to how these changes 
will take place and to ways to accelerate them. The fundamental transformation of consumption 
and production systems required by deep decarbonization strategies involves a reconfiguration of 
technologies, infrastructures, and industries but computational models often overlook other 
important elements such as the implicated change in business models, dominant ideas, cultural 
discourses, and institutions, as they are inherently restricted to quantifiable techno-economic 
relationships. As a result, decarbonization strategies are characterized by elements that have been 
empirically quantified or estimated, such as future technological performance or costs. Elements 
that go beyond the techno-economic realm, such as actors, individual decision-making, and 
institutions that involve more than one state of being (such as co-existing ideals, hence no clear 
solid trend to extrapolate) are difficult to represent. 

Model-based analysis has already shifted from first-best transition pathways (fully oriented towards 
cost-optimality under perfect conditions, Clarke et al., 2014) to second-best transition pathways 
(exploring socio-political and innovative limitations, e.g. Kriegler et al. 2013a; 2013b; Staub-
Kaminski et al., 2013; Tavoni et al. 2013; Kriegler et al., 2015; Riahi, 2015). However, given the 
rather techno-economic orientation of this type of assessment, contextual factors such as 
institutions, actors, and power structures, all of which influence the behavior both at the aggregate 
and individual levels, remain underexplored as it remains difficult to represent these factors 
mathematically.   

The need to improve the representation of the behavioral and institutional components in models 
is being explored by a growing number of researches3. In this paper, we investigate how model-
based scenarios can be enriched by looking into the role of actors, decision-making, and institutions 
in different model types, and outline possible connections that could lead to a deeper engagement 
with social sciences (Victor, 2015). We discuss how opportunities to improve behavioral realism, 
the degree of heterogeneity, and the representation of institutional and governance factors can arise 
through collaboration among scientists from different disciplines such as modelers, sociologists, 

                                                           
1 Council of the European Union, 2009. Brussels European Council 29/30 October 2009 - Presidency conclusions, 
https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/110889.pdf.  
2 G7, 2015. Leaders’ declaration G7 summit - Think Ahead, Act Together, 7-8 June 2015, Schloss Elmau. 
3 See for example COBHAM (http://cordis.europa.eu/project/rcn/191138_en.html), ADVANCE (http://www.fp7-advance.eu/ 
and Wilson and McCollum, 2014), WholeSEM  http://www.wholesem.ac.uk/).  

https://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/110889.pdf
http://cordis.europa.eu/project/rcn/191138_en.html
http://www.fp7-advance.eu/
http://www.wholesem.ac.uk/
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empirical economists, and political scientists. We illustrate the potential of this collaboration by 
focusing on three types of quantitative system models widely used in scenario transition studies; 
Integrated Assessment Models (IAMs), Energy System Models (ESM), and Agent-Based Models 
(ABMs). 

IAMs provide simplified representations of both the human and natural systems. With regard to 
the human systems, most IAMs are outcome-oriented, i.e. they provide insights into systemic 
change and focus on the consequences of exogenously specified policies, with limited attention to 
the processes and the social interactions leading to outcomes (Hofman et al., 2004). The 
representation of non-technological factors, such as interactions among actors and interest groups, 
political economy factors and institutions, remains therefore stylized, as they are difficult to capture 
in the mathematical equations of the models (van Vuuren and Kok, 2012), often addressed through 
detailed scenario narratives (see e.g. SRES (Nakicenovic et al., 2003) and SSPs (O’Neill et al., 2010; 
2015)). The representation of governance and institutions is limited to the actions of the state or 
the government, for which regulations and policies are generally represented as an exogenous 
shock/disruption implemented by a social planner. Some IAMs have dedicated more attention to 
the role of different actors and actor heterogeneity, as reviewed by Krey (2014) and Wilson and 
McCollum (2014). Examples of heterogeneities included in models are urban-rural divide, income 
distribution, consumer groups, and household composition (Ekholm et al., 2010; van Ruijven et 
al., 2011; Eom et al., 2012; O’Neill et al., 2012; Krey et al., 2012; Melnikov et al., 2012; McCollum 
et al. 2017; Melnikov et al., 2017).  

Energy System Models share many of the characteristics and limitations of IAMs. They are also 
outcome-oriented, despite the higher level of technological detail in the energy sector. These 
models have a stronger focus on detailed technological changes of the energy sector or of a part of 
it (e.g. electricity system), while the macroeconomic system is modeled exogenously, thus 
disregarding potential inter-sectoral feedbacks. Demand is usually an exogenous input to the model, 
while market prices are calculated endogenously. Decisions are represented by actions of one or 
more representative social planners, while the representation of institutions is limited and indirect.  
 
A different approach is offered by ABMs, which are dedicated models to analyze the decision-
making of different actors. They provide an explicit representation of agent heterogeneity and of 
interactions across agents (Epstein and Axtell, 1996). ABMs are designed to capture the agents’ 
perception of the relevant aspects of their environment and their decision-making according to 
their rationality. They often describe the interactions among different actors that operate according 
to prescribed behavioral rules and can capture emergent phenomena (Farmer et al.; 2015). Most 
ABM applications focus on specific regions or depict only parts of the energy system, e.g., 
investments in renewable electricity, improvements in buildings, or the transportation sector.  
 
The differences in the representation of actors, decision-making, and institutions between IAMs, 
ESMs, and ABMs arise from their different objectives. IAMs are intended to illustrate long-term, 
global emissions, interactions and implications across natural and human systems. ESMs are 
intended to provide more technologically detailed information on the energy system specifically. 
ABMs can illustrate possible pathways of change at the level of individual decision-making, taking 
into account the behavioral implications of agents’ heuristics and interactions with other agents. 
IAMs and ESMs are cost-oriented models as the decisions in these models are based on choices 
regarding relative costs of technologies (e.g. capital, operation and maintenance), while decisions 
in ABMs depend on a richer diversity of technological and non-technological factors.  

The remainder of the paper is organized as follows. Section 2 provides a detailed discussion on the 
models’ assumptions regarding actors, decision-making, and institutions by drawing on examples 
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of the three streams of models; Section 3 discusses opportunities for model improvements; and 
Section 4 concludes.  

2 Representations of actors, decision-making, and institutions in models 

This section describes the characterization of actors, their decision-making, and institutions in 
IAMs, ESMs, and ABMs. We build on the experience of the authors with four specific models; 
two IAMs - IMAGE (Stehfest, van Vuuren et al., 2014) and WITCH (Emmerling et al., 2016), one 
Energy System Model - Enertile4 and one ABM - MATISSE-KK (Köhler et al., 2009; 2018). 
Section 2.1 discusses the representation of actors and decision-making, while Section 2.2 focuses 
on the representation of institutions.  

2.1 Actors and decision-making 

A first important element that varies across models is the decision making and the decision makers. 
Table 1 summarizes the main features regarding the representation of actors, decision variables, 
and decision-making in models. We can distinguish between optimization/equilibrium (implicit 
social planner with limited or perfect foresight) and simulation (recursive decision-making based 
on a representative agent and current relative costs differences for concurrent services and 
technologies) models.  
 

Table 1: Representation of actors and decision-making across models  
IMAGE 

Simulation IAM 
WITCH 

Optimization IAM 
Enertile 

Optimization energy 
system model 

MATISSE-KK 
Agent-based model 

 
Actors 

Implicitly represented, 
decisions are described 
for individual markets. 
Differentiation between 
urban and rural 
households. 

Aggregate regional 
social planners  

Aggregate European 
social planner 

Agents are modeled explicitly, 
differentiating between 
consumers, niches, regime 

 
Decision-
making 

Constrained cost 
minimization without 
perfect foresight 

Constrained welfare 
maximization with 
perfect foresight 

Constrained cost 
minimization with 
perfect foresight 

Niches: change the technology-
lifestyle characteristics to 
survive 
Regimes: maximize market 
share 
Consumers:  adopt the regime 
or a niche lifestyle/technology 

 
Decision 
variables 

Investments and 
dispatch 

Investments and 
dispatch 

Investments and 
dispatch  

Niche and Regime: Direction of 
technological change 
Consumer:  Technology -
lifestyles adoption 

Source: Authors’ compilation 

 
In WITCH and Enertile, decisions are taken by one or more social planners, who make a top-down 
decision between a broad set of investment choices and consumption. In WITCH, regional social 
planners maximize a welfare function and choose the intertemporal resource allocation between 
consumption and investments. In Enertile, a European social planner minimizes total system costs 
across technologies and across EU countries. As both WITCH and Enertile are full optimization 
models with perfect foresight, they have full future knowledge and optimize investment decisions 
over the entire time horizon. In WITCH, investments decisions are based on country-specific 
returns on investment (endogenous in the model), which in turn are affected by exogenously 
specified capital and operation and maintenance costs. WITCH builds on neoclassical economic 
theory, viewing agents as rational with a clear objective achieved through optimization. Both 

                                                           
4 www.enertile.eu  

http://www.enertile.eu/
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WITCH and Enertile rely on rational choice and optimizing decision-making rules in the form of 
either welfare maximization or cost minimization. Simulation models such as IMAGE optimize 
investment decisions year-by-year in a recursive-dynamic way. Decisions regarding services and 
technologies are made based on the relative costs of an ensemble of choices (consisting out of 
explicit (e.g. capital, Operation and Maintenance (O&M)), and implicit (e.g. preferences) cost 
factors), which are specified per region and programmed to develop over time under the effect of 
various exogenous and endogenous time-based factors (e.g. carbon tax) and other 
interdependencies (e.g. economies of scale). Using a multinomial logit formulation, the option with 
the relatively lowest costs will acquire the largest market share.  
 
In both techno-economic modelling styles, the representation of agency is mostly conflated to 
global or regional governments, rather than individuals making decisions. However, despite such 
aggregation, a multitude of actors is implicitly assumed responsible for investment decisions (Table 
2). Even if the same technology is adopted in different scenarios, the associated actors may differ 
depending on the assumed narrative. Investments in solar PV, for instance, can be made by large 
utilities in the form of large-scale PV or by consumers in the form of small-scale rooftop PV. While 
Enertile distinguishes between these two technologies, IMAGE and WITCH do not. In case of 
the latter, one is more dependent on the interpretative capabilities of the modeler to distinguish 
between the different social causal chains. Even then, this interpretative capacity is bounded by the 
cost-optimal techno-economic framework of the applied computational model, as outcomes need 
to be framed in terms of rational, economic behavior, and assumptions of perfect knowledge. 
 

Table 2: Examples of implicit actors in models 

Factors influencing investment decisions in models Associated actor 

Purchasing price Manufacturers / R&D 

Fuel cost OPEC 

Preferences Consumers 

Capital costs Investors 

O&M costs Mechanics 

CO2 tax Government 

System integration costs Energy companies 

Cost curves Research institutes 

Exogenous assumptions Politics 

    Source: Authors’ compilation  

 
An explicit representation of actors is provided in the MATISSE-KK ABM, which specifies 
different types of agents characterized by different decision-making processes in the transportation 
sector. MATISSE-KK is intended to address changes in a society through changes in mobility 
patterns or lifestyles. These changes are modeled as the decisions of households to keep the current 
pattern of mobility or to change it. The model incorporates the concepts of niches and the regime 
in the sense of the Multi-Level Perspective (MLP) on transitions (Köhler et al, 2009). A regime 
refers to the dominant structure consisting of the dominant culture and practices in a system. The 
regime in mobility is the conventional internal combustion engine, which the majority uses for 
most of their mobility needs. Niches refer to individuals or a small group of actors with local 
practices, which differ from the regime. Consumers choose whether to adopt the regime or a niche 
lifestyle/technology. A large number of simple agents whose function is to allocate support to the 
regime or a niche determine the relative strength of the regime and niches.  
 
ABMs such as MATISSE-KK can specify different rules and differentiate among them by type of 
agents. Consumers make decisions regarding the adoption of the regime or niche technologies 
based on a set of attributes (practices) including environmental performances (e.g. emissions), 
technology costs, demand split, Information and Communication Technologies (ICT) use, and the 
structure of the built environment with regards to provision for the different transport modes. 
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Consumers choose regime or niches technologies/lifestyles based on their preferences. The 
technologies or lifestyles form niches and a regime, which are also represented as agents in the 
model. The regime and niches develop over time as technology improves, depending on the 
support that the technology/lifestyle receives from the consumers.  
 
Despite the differences in disciplinary philosophy between ABMs and the other types of models, 
the four models reviewed in Table 1 share similarities in terms of a choice variable that is always 
related to technology adoption. Across all these models, the decision of actors is primarily 
determined by technological and contextual factors. Technological factors describe the 
characteristics, costs, and environmental performance of technologies in terms of lifetime, 
efficiency, learning, and emission performance. Contextual factors include social, behavioral, or 
regulatory changes such as the implementation of climate policy or technology subsidies. We refer 
to these regulatory changes as institutions and discuss them in detail in Section 2.2.  
  

2.2 Institutions 

Contextual factors such as institutions influence the decision-making process in models. In models, 
institutions are often represented through exogenous decision rules describing the decision process 
of aggregate/representative actors or through exogenous factors influencing the outcome of the 
decision process. This is a narrow approach, as institutions encompass many aspects of society, 
despite the different definitions of institutions across disciplines. A broad definition of institutions 
is provided by Scott (1995), who groups institutions into three large sets; regulative, normative, and 
socio-cognitive (Table 3). This definition implies that institutional change refers not only to the 
direct effect of policies and regulations but also to changes in our vision of the world, as well as 
changes in our normative aspirations and what we consider being good.  
 

Table 3: Different types of institutions  
 Regulative Normative Socio-cognitive 

Examples Formal rules, laws, sanctions, 
incentive structures, reward and cost 
structures, governance systems, 
power systems, protocols, standards, 
procedures 

Values, norms, 
role expectations, 
authority systems, 
duty, codes of 
conduct 

Priorities, problem 
agendas, beliefs, bodies of 
knowledge (paradigms), 
models of reality, 
categories, classifications, 
jargon/language, search 
heuristics 

Basis of compliance Incentives Social obligation Many, including cognition 
around decision making 

Mechanisms Coercive (force, punishments) Normative 
pressure (social 
sanctions such as 
‘shaming’) 

Mimetic, learning, 
imitation 

Logic Instrumentality (creating stability, 
‘rules of the game’) 

Appropriateness, 
becoming part of 
the group (‘how 
we do things’) 

Orthodoxy (shared ideas, 
concepts) 

Source: Scott (1995) 

 
The applied economic literature uses a narrower definition of institutions, mostly referring to 
formal institutions (Acemoglu et al., 2005; Dasgupta and De Cian, 2018). They can be further 
grouped into legal (e.g. judiciary and legislature), political (e.g. form of government; democracy or 
autocracy), and economic (e.g. tax-collection agencies) institutions. Legal institutions take the form 
of legislature, public or state-devised legal institutions, and private legal institutions, while political 
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institutions shape policy decisions by constraining the set of feasible choices of the decision-makers 
and by creating and enforcing laws and governmental policy making. Economic institutions 
perform functions such as establishing and protecting property rights, facilitating transactions, 
permitting economic co-operation, and organization (Acemoglu and Robinson, 2010). A related 
and to some extent overlapping concept of governance can be broadly defined as the traditions 
and institutions that determine how authority is exercised in a country (Kaufmann et al., 2000) 
while the World Bank defines governance as the power exercised through a country’s institutions. 
In this context institutions and governance refers to the actions of the state or the government.  
 
Table 4 summarizes the representation of regulatory, normative, and socio-cognitive institutions in 
different models. Formal regulatory institutions as implemented by national or transnational 
political organizations are the main type of institutions commonly represented by IAMs and ESMs. 
The main drivers of change of regulatory institutions are climate policy instruments (e.g. carbon 
tax and emission trading scheme) and policy targets, which can be sector or technology specific 
(e.g. a PV subsidy).  These types of institutions are quantitatively modelled by describing the long-
term climate policy goals, the policy regimes and measures, as well as implementation limits and 
obstacles (Kriegler et al., 2015). 
 
When implemented, regulations are commonly assumed to be effective at achieving the objective. 
In both IAMs and ESMs, policies are often represented by a global uniform carbon tax or price 
applied to all sectors and regions, assuming cost-optimization over sectors, regions, and time 
(Clarke et al., 2009 and Kriegler et al., 2013b) with the main goal of providing insight into cost-
efficient reduction strategies. Once the policy is adopted, its effectiveness is generally assumed to 
be unaffected by the institutional framework, as models assume the same governance style and 
power structures over centuries (top-down steering).  
 
Even though models focus on the effects of regulations and policy prescriptions, contextual factors 
and normative dimensions (such as beliefs, mindsets, preferences, normative aspirations, and the 
notion of what is good) are also implicitly included in model assumptions and parameter choices. 
For example, in optimizing macroeconomic models, normative assumptions are embedded in the 
welfare function. The welfare function is used for intertemporal optimization, a process to evaluate 
the trade-off between current and future consumption. The representative agent of the model, a 
benevolent national or supranational government, decides on the allocation of resources between 
consumptions and savings. Similar to individual decisions on consumption and savings, this 
decision depends on the implemented subjective degree of risk aversion and the importance given 
to future consumption. A similar reasoning applies to the mechanisms that choose between 
investing in clean energy to reduce the future damages from climate change or to achieve a long-
term mitigation target. Models specify parameters affecting discounting of the future. These include 
the pure rate of time preference describing the weight of future generations in intertemporal 
welfare considerations and the intertemporal elasticity of substitution describing the willingness to 
smooth consumption over time. Lowering the discount rate in models places more weight on the 
future relative to current costs and benefits and therefore favors technologies with high initial 
investment such as wind power, which after the initial investments are carried out, delivers power 
at almost zero marginal cost. 
 
Socio-cognitive institutions refer to priorities, problem agendas, and beliefs, and can be represented 
in IAMs and ESMs implicitly by differentiating preferences for energy technologies by changing 
their relative costs. For example, societal preferences for energy technologies can be represented 
implicitly through ad-hoc adjustments in costs, or exogenous shifts imposed by modelers (e.g. 
phasing out of nuclear power, opposition to CCS, and services versus ownership). For example, 
IMAGE includes a premium factor (subsidy, tax, or preference for a certain technology) to modify 
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(investment) costs and to calibrate against historical data. Indeed, according to historical data, it is 
evident that some technologies have a higher market share than can be explained by costs alone. 
For instance, many consumers prefer an electric vehicle above a gasoline vehicle even if the costs 
of electric vehicles over the whole life time are (still) higher. The acceptance of households as 
power suppliers into the grid can also be represented by the inclusion of consumer power 
producers. Changes in norms about energy and mobility behavior (e.g. lowering indoor 
temperatures to save on energy use or a driving style that minimizes energy use rather than driving 
as fast as possible) can be modelled by modifying energy and fuel demand functions for the relevant 
technologies. This can be done for a representative consumer/producer and for a distribution of 
consumer and producer decision-making types. 
 
ABMs can explicitly control for normative institutions, such as lifestyle expectations of individuals 
in energy and mobility systems, as well as for markets and socio-cognitive institutions. For example, 
in the MATISSE-KK model consumers have different weights simulating different preferences for 
mobility lifestyles, as well as for climate issues. The MATISSE model was calibrated on transport 
modal split for the UK and the Netherlands using 2015 data from Eurostat (Köhler et al., 2018). 
The authors explain how the behavioral parameters were calibrated using the results of the 
transitions case studies of the UK and the Netherlands. These identified the alternative mobility 
lifestyles to be studied in addition to the regime: hybrid electric cars, battery electric cars, hydrogen 
fuel cell cars, car sharing, public transport, cycling and walking.  

 
Table 4: Representation of institutions in different types of models 

Institutional 
change 

IMAGE 
Simulation IAM 

WITCH 
Optimization IAM 

Enertile 
Optimization 
energy system 

model 

MATISSE-KK 
Agent-based model 

Regulatory Formal regulatory 
institutions as 
exogenous policy 
targets or instruments  

Formal regulatory 
institutions as 
exogenous policy 
targets or instruments  

Formal regulatory 
institutions as 
exogenous policy 
targets or 
instruments 
 
Adjustments in land 
use, technology and 
fuel prices or 
emission prices 
/limits 

Formal regulatory 
institutions as costs and 
environmental 
performance of the 
regime/niche. 
 
Changes in relative 
prices, changes in 
relative emissions 
performance, changes 
in service level of 
alternative modes, 
changes in urban form 

Normative & 
Socio-
cognitive 

Discounting. 
 
Preferences for energy 
technologies based on 
relative costs and 
substitutability 
  

Discounting 
 
Preferences for energy 
technologies based on 
relative costs and 
substitutability 
 

Discounting  
 
Interest rate driving 
investment choices 
across energy 
technologies  
 
Preference for 
technologies based 
on relative costs 
and substitutability 

Weighting of support 
for different 
technologies-lifestyles 
and of climate issues in 
consumers’ decisions. 
 
Rates of change of 
preference parameters  
 
Changes in relative 
prices, changes in 
relative emissions 
performance, changes 
in service level of 
alternative modes, 
changes in urban form 

Source: Authors’ compilation. The table is not meant to be exhaustive but to provide illustrative examples. 
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Overall, we can conclude that the representation of institutions in models is stylized and implicit. 
ABMs offer a richer framework for characterizing institutional heterogeneity, though still mostly 
exogenously as specified by the modeler. While institutions affect the decision process in models, 
actors cannot affect the broader institutional setting. Although the elements of models can be 
associated with different assumptions on institutions, modelers usually specify them exogenously.  

3 Improving the representation of actors, decision-making, and institutions in models 

As discussed in Section 2, models rely on mathematical equations, variables, and parameters to 
quantitatively describe contextual factors that influence models’ choices in addition to price and 
technological factors. When establishing different climate policy scenarios, models generally vary 
the regulatory or technological dimension (Kriegler et al., 2013a; 2013b; 2014; 2015; Tavoni et al., 
2013) but social and behavioral factors are often left unchanged. For example, stabilization 
scenarios aimed at achieving a predefined level of greenhouse gases concentration are often 
characterized by technological substitution without requiring major reconfiguration in the 
underlying societal configuration of actors. This section outlines possible routes of improvements 
in the modelling of actors, their decision-making, and institutions. Section 3.1 discusses the 
opportunities for enhancing realism with respect to actors and decision-making representation by 
(i) co-designing use of transition narratives, (ii) improving actor heterogeneity, (iii) linking ABMs 
and IAMs, and (iv) linking initiative-based learning and models. Section 3.2 discusses whether the 
existing framework of IAMs, ESMs, and ABMs can attend to the institutional dimensions outlined 
in Table 3 by (i) linking the applied economic literature and modelling or (ii) performing a 
comparative analysis of transition pathways. 

3.1 Actors and decision-making  

Co-designing transition narratives 

One way to strengthen the representation of actors and decisions-making in quantitative modelling 
is to complement the quantitative material with qualitative perspective. Several methods have been 
applied in literature to include qualitative aspects into quantitative modelling, which all comprise 
of embedding more contextual detail into the transition narrative. This can be done in a mono-
disciplinary setting (e.g. by the modelling community itself, such as found in Nakicenovic et al., 
2000; O'Neill et al., 2014) or in an interdisciplinary setting (e.g. via comprehensive co-creation 
structures with stakeholders, see Voinov and Bousquet, 2010; Voinov et al., 2014) or disciplinary 
bridging of (empirical) knowledge bases (Turnheim et al., 2015). 
 
In the latter case, soft forms of integrating quantitative system modelling with socio-technical 
transition studies have been proposed in the literature (Turnheim et al., 2015)5, suggesting it can 
deliver heuristic insights on long-term sustainability transition scenarios. As demonstrated in van 
Sluisveld et al. (this issue), quantitative modelling can be aligned to Multi-Level Perspective (MLP), 
although other theoretic frameworks that can provide insights on social actor behavior exist (e.g. 
Markard et al., 2012). MLP approaches analyze the multiple dimensions of change, including a 
broad range of technological, economic, political, and socio-cultural aspects at different levels and 
temporalities. They can be used to develop typologies as theoretical constructs and analytical 
devices to make sense of transitions (Turnheim et al. 2015). These typologies of transition 
narratives, often based on case studies (Geels and Schot, 2007), can be used to inform and 
characterize pathways from quantitative system models. In that sense, MLP provides a more 
(limited) forward-looking perspective allowing modelers to include a more ‘calibrated narrative’ to 

                                                           
5 See van Sluisveld et al., (2018) for a detailed description of this form of integration, specifically, MLP theoretical framework (Geels, 
2002 and Geels and Schot, 2007). 
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emerging future change than currently adopted in the long-run empirical trends on growth and 
diffusion.  
 
Examples illustrating the alignment between MLP and quantitative models have recently started to 
be published. In the mobility domain, actor heterogeneity can be expressed by reconsidering the 
preferences for modes and vehicles used to meet the total travel demand. Some degree of 
behavioral change can be implemented by tweaking specific parameters such as vehicle occupancy 
rates, time, and monetary budgets for travel and preference factors for certain modes or vehicle 
types. Köhler et al (2018), use evidence from transitions case studies of the UK and the Netherlands 
to model actor heterogeneity. Adoption of different mobility lifestyles depend not only on 
preferences towards less CO2 emissions but also on consumers’ preferences towards mixed use of 
urban structures and a shift away from private conventional car ownership. As described in van 
Sluiced et al. (this issue), MLP insights have provided indication of more emergent (short-term) 
directions of change across various economic sectors to the IMAGE model. By heeding to MLP-
based insights, the model shows to boost electricity-based technological substitutes more than 
compared to only techno-economic considerations. 

Increasing actor heterogeneity 

In order to increase the resolution of the social sphere on low-carbon transitions, one can also 
create more explicit representations of either (i) processes or (ii) representative agents in 
quantitative computational models. A more detailed model structure would offer more levers for 
integrating inputs and insights from other disciplines, providing further opportunities to address 
social actor behavior within the broader scope of global system change modelling (Li et al., 2017).  
Table 5 illustrates how IMAGE, due to its richer characterization of the household energy demand 
and transport sector, is able to implement a number of interventions to simulate social and 
behavioral change, such as smaller dwelling sizes, reduced ownership of appliances, and a more 
efficient use of household appliances (van Sluisveld et al., 2016; van Sluisveld et al., 2018). 
 
Actor heterogeneity can be accounted for by making regional and demographic elements explicit, 
such as differentiating between urban and rural areas, income classes, and cultural variation in 
energy demand. The decision mechanisms, however, remain broadly driven by techno-economic 
considerations without endogenously incorporating socio-technical aspects and influences. Hence, 
another line of development is to make actor behavior more internally dynamic and conditional to 
non-economic factors. For instance, recent developments in the IAM community have focused on 
expanding the representations of actors by explicating several types of consumer groups in the 
transport sector (e.g. McCollum et al., 2017). Specific attitudes towards technology adoption (e.g. 
early adopter, laggard) are implemented by monetizing qualitative concepts (such as preference, 
social influence, and risk aversion) and including these as factors in the decision-making 
mechanisms of the computational models.  
 
ABMs such as MATISSE-KK are also more suitable to differentiate between types of agents. 
MATISSE-KK indeed has four groups of actors in relation to transportation choices, namely 
conventional car drivers, green car drivers, public transport users, and cyclists or pedestrians. These 
groups have different preferences that reflect the characteristics of the dominant technologies in 
each of these mobility lifestyles. A critical limitation is that the agents are still individual 
decisionmakers, although there is strong evidence that individual consumers are influenced by the 
surrounding culture and social contacts (Shelley, 2012; Köhler, 2006). While the MATISSE-KK 
model does allow changes in preferences over time, as a representation of changes in mobility 
culture in the society to reflect situations such as an increasing priority of emissions reduction, the 
model could be extended to include direct interactions among the individual consumer agents. 
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Table 5: Examples of intervention changes to simulate actor re-configuration in transition pathways 

   IMAGE 
Simulation IAM 

WITCH 
Optimization 

IAM 

Enertile 
Optimizati
on energy 

system 
model 

MATISSE-KK 
Agent-based 

model 

 E
le

c
tr

ic
it

y
 

   

PV 
 

Equalize PV price to overall 
electricity price 

Learning rate to 
+25%, floor cost 
-12.5% 

Lower 
interest rate 
Higher land 
availability 

 
 
 
 

 

M
o

b
il

it
y
 

Car sharing Increased vehicle occupancy Increased vehicle 
occupancy 

 
Government 
support and 
publicity for car 
sharing. Restrictions 
and taxes on private 
car use, leading to 
increased costs and 
lower convenience 
of driving you own 
ICE car. 

Transportati
on mode 

Reducing available travel budget 
per person 
Increased preference for public 
transport 

Lower travel 
demand and 
vehicle ownership 
growth 

 
 
 

Change in lifestyle, 
with less car use, 
more emphasis on 
environment and on 
mixed zones and 
public transport 

 H
o

u
se

h
o

ld
 e

n
e
rg

y
 d

e
m

a
n

d
 Low-energy 

housing 
15% energy reduction due to 
improved insulation 

   

Behavioral 
change/ 
Smart 
metering 

Change base temperature by 1˚C 
No growth of appliance 
ownership after 2010 
No tumble dryer after 2010 
More efficient use of appliances 

   

Lower size 
of dwelling 

Floor space is fixed to 2010 values 
(rural 50m2/cap and urban 
40m2/cap) 

   

Source: Authors’ compilation. 

 

Empirical evidence from microeconomic studies could be used to introduce increased 
heterogeneity in preferences and behaviors across sectors and regions. Table 5 illustrates examples 
of model parameters that offer a lever to integrate evidence from other disciplines. There is indeed 
a broad empirical literature on microeconomic behaviors related to technology adoption, 
highlighting the great variety of technical and non-technical determinants of technology 
investments and adoption that could be used for this purpose. For opportunities in this direction 
see (Mundaca et al., 2010; Wilson and McCollum, 2014; Wilson et al., 2018). 
 
ABMs and IAMs 
In theory, it is possible to develop Agent-Based IAMs. One possibility would be to have two 
different types of agents instead of a single representative agent or a centralized social welfare 
maximizer. However, this would represent a change in the underlying theory, which would require 
a reconsideration of other principles of the model as well. An alternative approach is to use the 
results of ABMs to inform the calibration of the IAMs and the other way around. ABMs could 
provide insights on how the travelled per capita kilometers are spend in a higher resolution setting 
(e.g.  working from home, tele-calling to enrich the set of solutions for society that go beyond 
technological substitutions. This could be achieved by defining these lifestyle solutions and their 
emissions and price characteristics as part of the choice sets in the IAM. Yet, IAMs would deliver 
more aggregated outcomes, which would then need to be unpacked in plausible storylines. In the 
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field of passenger transport, an example of such a lifestyle change could entail a change from 
personal automobiles to public intermodal transportation. This could be achieved by changes in 
the preference structure of the consumers and by changes in the generalized costs of the different 
modes. In the field of energy, this could involve a shift from buying energy as a consumer to 
becoming a combined supplier and consumer, with an automated energy management system 
optimizing a combination of decentralized generation, energy storage, and energy purchase - 
depending on real time current prices and costs. However, this is a rather unexploited field of study 
and would require more applications and experience. 
 
Initiative-based learning and models  
The evidence from Initiative Based Learning (IBL) can be used to enrich the representation of 
actor behavior and decision-making in models regarding the process of technological diffusion and 
learning. IBL is a qualitative approach that uses case study analysis to examine the mechanisms and 
dynamics in concrete projects and local initiatives involving a wide range of societal actors such as 
citizens, businesses, civil society organizations, and (local) government. It reveals the emerging 
properties in processes of system change ignored by approaches such as quantitative system models 
and informs us about the configuration of actors and motives that lead to successful solutions that 
favor innovation (Turnheim et al. 2015). IBL focuses on entangled social dynamics in local 
transition initiatives and pays less attention to the broader and long-term perspectives on transition 
dynamics. IBL provides interesting insights into forms of learning that remain unobservable in 
quantitative system models. In this approach, learning focuses on social learning, namely the 
processes and interaction among actors that determine the success or failure of a given initiative, 
including organizational and cultural aspects.   
 
The evidence from IBL could also be used to offer a more realistic representation of learning 
dynamics in models, for example, in the context of renewable technologies. While IBL highlights 
mechanisms involving the interaction among agents and actors, models emphasize the learning 
mechanisms related to the process of production and use of specific technologies (learning-by-
doing). Quantitative system models rely on empirical evidence to parameterize the learning curves 
describing learning-by-doing dynamics, but the empirical estimates (i) span a very broad range and 
(ii) are not able to disentangle the role of less tangible forms of learning, such as social learning. 
The omission of the less tangible forms of learning may have important implications for the future 
penetration of technologies, energy transition, and energy systems in scenarios. A systematic 
analysis of a large sample of case studies, with a greater attention to the unfolding of short-run 
learning dynamics could yield robust general patterns that could be used by models. In turn, models 
such as IAMs could assess the sensitivity that learning dynamics have on energy and technology 
scenarios and could interpret the results in light of the insights provided by other disciplines such 
as IBL. 
 

3.2 Institutions  

As discussed in section 2.2, quantitative system models represent institutions either implicitly or in 
an exogenous, ad-hoc manner. As a result, models are unable to generate insights into the 
institutional changes entailed by certain transitions that rely on broader systemic changes. In this 
section, we describe two different opportunities for enriching this component by (i) linking the 
applied economic literature and modelling and (ii) performing a comparative analysis of transition 
pathways. 
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Linking the empirical literature and modelling 

The applied economic literature on the environment and institutions can offer empirical guidance 
by establishing quantitative patterns and stylized facts that can be used to improve models’ 
representation of institutions. It examines relationships between institutions as described in Table 
1 and indicators of policy adoption, policy effectiveness, and environmental outcomes 
quantitatively, relying on observed historical data. The literature provides empirical evidence on 
reduced-form relationships between decisions variables (e.g. R&D investments and policy 
stringency; see Dasgupta et al., 2016), outcomes (e.g. energy intensity, green investments, 
emissions), and institutional contextual factors at the aggregate country level, which is the scale 
relevant to most models.  
 
The most commonly used indicators are the Polity IV indicators (democracy, autocracy, and 
polity)6, the World Governance Indicators (rule of law, voice and accountability, government 
effectiveness, and control of corruption), the Freedom House Index, and Corruption Perception 
Index from Transparency International7 (Transparency International. (2015)).  Normative and 
cognitive institutions as defined by Scott (2005) are difficult to measure and most of the 
environmental economics literature has focused on regulatory institutions or formal institutions 
(Joskow, 2008 and Kunčič, 2014). The main insights from this field of study are that institutions 
affect policy adoption as well as their implementation and effectiveness (Dasgupta and De Cian 
2018). For example, democratic countries and open societies are generally associated with more 
participation into international environmental agreements and with better performance in terms of 
environmental indicators. Good governance encourages the adoption of environmental policies 
and generally leads to better environmental outcomes. Corruption can be a channel for 
environmental degradation, as it could lead to a sub-optimal use of resources and inefficiencies. 
 
Institutional factors influence not only the ability to implement environmental policies, but also 
the type of policy chosen, policy stringency, as well as the effectiveness of the policy implemented. 
Models do not take these factors into account. Instead, they assume that environmental policies, 
once implemented, are equally effective across regions. The empirical evidence available in the 
current literature might not be suitable to be directly used in computational models, either because 
the empirical specification is not directly comparable to the equations used in the computational 
models or because the indicators used are not represented in the models. An example of tailoring 
empirical evidence for use in models is provided by Iyer et al. (2015), who use historical data to 
conclude that investment risks are higher in regions with inferior institutions. That empirical result 
was then used to differentiate investment risks across regions in an IAM to assess the implications 
for regional mitigation costs. 
 
Future empirical research could explore the role of institutions in contexts that are more relevant 
for studies on low-carbon energy transitions. For example, IAM-based scenarios suggest strong 
absolute convergence in energy intensity across regions not only in the long-run but also in the 
short-run. However, empirical evidence does not necessarily support this assumption (Le Pen and 
Sévi, 2010). Instead, conditional convergence, i.e. countries tend to converge in energy intensity if 
they share common characteristics, seems more likely. Introducing more realism in the 
characterization of energy intensity convergence can improve the reliability of model-based 
assessments of climate policies. Comprehending the institutional factors that hinder convergence 
is also important to understand the complementary measures that need to be implemented in order 
to ensure policy effectiveness. Model-based scenarios assume strong convergence in energy 
intensity across regions, requiring improvement rates that for some regions (e.g. energy exporters) 
far exceed their historically observed rates. The question is why those regions have lagged behind 

                                                           
6 See Polity (2011) 
7 See Dasgupta and De Cian (2018) for a detailed review of institutional indicators used in this literature.   
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in terms of energy efficiency. Is it reasonable to assume that those factors will disappear in the 
future? If not, what are the implications of considering the institutional barriers that have prevented 
energy intensity convergence also in future scenarios? 
 

Comparative analysis of transition pathways 

Transition pathways derived from MLP studies can be used not only to improve the 
characterization of actors and decision making in computational models (section 3.1) but could 
also be used to enrich the characterization of the institutional dimension in general as described in 
Table 1. MLP approaches develop rich socio-technical scenarios, describing the change needed to 
make the quantitative, techno-economic oriented scenarios (Hof et al., 2018; Sluisveld et al., 2018) 
materialize (Geels et al., 2018). These socio-technical scenarios focus on societal and behavioral 
aspects such as types of actors, their goals, strategies, and resources (e.g. role of policy makers 
versus civil society) as well as institutional change (e.g. social and cultural changes to foster social 
acceptance of new technologies). Given the broad definition of institutions used in this paper, the 
transition narratives approach to enrich actor and decision-making representation in models using 
MLP insights, described in section 3.1, also involves some degree of institutional changes (e.g. see 
definition provided in Table 1). Some of the interventions described in Table 5 are indeed 
regulatory changes (e.g. government support for car sharing in the MATISSE-KK model) and 
social and behavioral changes (e.g. preferences for technologies). 
 
Neither the approach linking the empirical evidence and modelling, nor the comparative analysis 
of transition pathways would require major structural changes in quantitative system models, as 
they do not intend to achieve full integration. Thus, institution dynamics remain exogenous and 
mostly focused in current practices and power relations. Introducing endogenous dynamics of 
institutions more explicitly in the models used in transition scenarios would require deep structural 
changes in IAMs. Indeed, depicting both large energy systems and more complex social systems in 
the same model would imply extremely high computational requirements and extensive result 
evaluation processes. Schmitt (2014) developed a numerical IAM to analyze how endogenous 
political turnover between governments with heterogeneous preferences with respect to the level 
of greenhouse emissions affect climate change mitigation policies. The model builds on WITCH, 
but a number of simplifications were made to keep the problem computationally tractable. In other 
words, a richer and endogenous representation of institution dynamics comes at the expenses of 
realism with respect to the techno-economic components, which is the strength of quantitative 
models such as IAMs.  

4 Conclusions 

The increasing focus on implementation and transition dynamics towards long-term objectives 
requires a better understanding of what drives change and how those changes can be accelerated. 
Actors, decision-making, and institutions are important aspects for these drivers. Adopting greater 
realism with respect to these elements in low-carbon transition pathways is required to improve 
the understanding of transitions towards a low-carbon sustainable society. In this paper, we 
explored opportunities that arise from a deeper engagement of quantitative systems modelling with 
social science approaches such as socio-technical transitions studies, initiative-based learning, and 
applied economics. 
 
The explicit representation of actors and decision-making in models remains very limited. 
Limitations concerning (i) the lack of agent heterogeneity, (ii) weak empirical foundation for 
behavioral patterns and rules, (iii) stylized representations, (iv) decision mechanisms driven by 
techno-economic relationships and rational choice paradigms, and (v) the assumption of perfect 
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knowledge in achieving the objective. The representation of institutions is stylized and only 
implicitly accounted for in quantitative systems modelling. Although actors, behaviors, and 
institutions are recognized to affect the emulated decision process in computational models, many 
of the socio-institutional factors remain highly stylized and are only captured through proxies.  
 
The review carried out in Section 3 highlights several approaches for strengthening the 
representation of actors, decisions, and institutions in model-based scenario analysis (summarized 
in Table 6). Some opportunities rely on softer forms of integration and do not require major 
changes in the modelling infrastructure and therefore should have high priority. For example, with 
respect to actors and decision making, detailed transition narratives from socio-technical transition 
studies can be used to provide context to missing elements in quantitative systems modelling such 
as different configurations of actors. Actor heterogeneity could be increased by differentiating 
regional and demographic dimensions based on empirical data, such rural versus urban and income 
classes. A more demanding opportunity could entail model refinement in the form of improving 
actor heterogeneity to provide more explicit leads for assessing the influence of actors, behaviors, 
and institutional change by modelling actor behavior as internally dynamic and conditional to non-
economic factors as in ABMs. Agent-based IAMs could in principle be developed, though perhaps 
higher priority should be given to first soft-linking ABMs and IAMs by exchanging their input and 
output, provided a common denominator among different models exist. Evidence on social 
learning from initiative-based learning case studies can be used to enrich the representation of 
learning dynamics in IAMs, though some significant effort needs to be carried out to gather robust 
evidence from a larger set of case studies. 
 

Table 6: Opportunities for enhancing actors and institutions in quantitative system models 

Actors Ready to be implemented with existing 

modelling frameworks - Lower degree 

of integration across disciplines 

Need further model development - 

Higher degree of integration across 

disciplines 

Transition narratives Co-design transition narratives with 

insights from Multi-Level Perspective 

studies 

  

Increasing actor 

heterogeneity  

Use empirical evidence to differentiate 

parameters across regions 

Carry out model refinement to improve 

actor heterogeneity  

ABMs and IAMs Soft-link ABMs and IAMs Develop agent-based IAMs 

Initiative-based 

learning and 

modelling tools 

Enrich learning dynamics in models Gather more robust evidence from 

initiative-based learning case studies 

Institutions Ready to be implemented with existing 

modelling frameworks - Lower degree 

of integration across disciplines 

Need further model development - 

Higher degree of integration across 

disciplines 

Linking the applied 

economic literature 

and modelling  

Link modelling tools with the applied 

economic literature 

Introduce endogenous dynamics of 

institutions  

Comparative analysis 

of transition pathways 

Use transition narratives based on insights 

from Multi-Level Perspective studies 

 

Source: Authors’ compilation 
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Regarding the opportunities to improve the representation of institutions, the applied economic 
literature already provides several examples of evidence that could be implemented in models 
through simplified reduced-form relationships. Introducing endogenous dynamics in institutional 
factors might increase the computational requirement of models significantly and potentially 
increase structural uncertainty.  
 
The extent to which different analytical and modelling approaches across disciplines can be linked 
varies but it entails establishing common concepts, agreeing on a common problem frame that 
requires integration, identifying operational linkages, and agreement on parameters, metrics, 
indicators, and data. Integrating a much wider combination of real life aspects and dynamics into 
models leads to an increased complexity that would restrict them to smaller fields of applications 
(e.g. sectoral or country-level analysis). The respective weaknesses are inherent in their approaches 
and existing models are unable to cover all aspects of energy transition simultaneously. We believe 
that in the near future, a well-defined combination of models (e.g. soft-link) covering the same 
domain (e.g. electricity, heat) complemented by other social science approaches (e.g. comparative 
analysis of transition pathways and empirical evidence from the applied economic literature) could 
deliver new insights. Such an approach would also allow combining the strengths of the different 
approaches rather than trying to work around their respective weaknesses. 
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