
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

Luisa Bisaglia and 
Margherita Gerolimetto 

 
Estimation and forecasting 

in INAR(p) 
models using sieve 

bootstrap 
 

 
 
ISSN: 1827-3580 
No. 06/WP/2018 
 
 
      



W o r k i n g  P a p e r s   
D e p a r t m e n t  o f  E c o n o m i c s   

C a ’  F o s c a r i  U n i v e r s i t y  o f  V e n i c e   
N o .  0 6 / W P / 2 0 1 8  

ISSN 1827-3580 

The Working Paper Series  
is available only on line    

(http://www.unive.it/pag/16882/) 
For editorial correspondence, please contact: 

wp.dse@unive.it  

 Department of Economics 
Ca’ Foscari University of Venice 
Cannaregio 873, Fondamenta San Giobbe 
30121 Venice Italy 
Fax: ++39 041 2349210 
 

 

 
 

 
 

Estimation and forecasting in INAR(p) models  
using sieve bootstrap 

 
Luisa Bisaglia  

Department of Statistics, University of Padova 
 
 

Margherita Gerolimetto 
Ca’ Foscari University of Venice 

 
 
Abstract 
In this paper we analyse some bootstrap techniques to make inference in INAR(p) models. 
First of all, via Monte Carlo experiments we compare the performances of these methods 
when estimating the thinning parameters in INAR(p) models. We state the superiority of sieve 
bootstrap approaches on block bootstrap in terms of low bias and Mean Square Error (MSE). 
Then we apply the sieve bootstrap methods to obtain coherent predictions and confidence 
intervals in order to avoid difficulty in deriving the distributional properties. 
 
 
 
 
  
Keywords  
INAR(p) models, estimation, forecast, bootstrap 
 
 
JEL Codes 
C22, C53 
 

 Address for correspondence: 
Margherita Gerolimetto 
Department of Economics 

Ca’ Foscari University of Venice 
Cannaregio 873, Fondamenta S.Giobbe 

30121 Venezia - Italy 
e-mail: margherita.gerolimetto@unive.it 

This Working Paper is published under the auspices of the Department of Economics of the Ca’ Foscari University of Venice. Opinions 
expressed herein are those of the authors and not those of the Department. The Working Paper series is designed to divulge preliminary or 
incomplete work, circulated to favour discussion and comments. Citation of this paper should consider its provisional character. 

 



Estimation and forecasting in INAR(p)
models using sieve bootstrap

Luisa Bisaglia∗, Margherita Gerolimetto †

Abstract

In this paper we analyse some bootstrap techniques to make in-
ference in INAR(p) models. First of all, via Monte Carlo experiments
we compare the performances of these methods when estimating the
thinning parameters in INAR(p) models. We state the superiority of
sieve bootstrap approaches on block bootstrap in terms of low bias
and Mean Square Error (MSE). Then we apply the sieve bootstrap
methods to obtain coherent predictions and confidence intervals in
order to avoid difficulty in deriving the distributional properties.

Keywords: INAR(p) models, estimation, forecast, bootstrap
JEL codes: C22, C53

1 Introduction

A very important question in empirical time series analysis is how to predict
the future values of an observed time series on the basis of its past values, and
in particular how to obtain prediction intervals. In case of INAR(p) processes
this problem is even more challenging. Recently, there has been a growing
interest in studying nonnegative integer-valued time series and, in particular,
time series of counts. Examples are the number of road accidents, number of
traded stocks in a firm, number of visitors to a website, incidence of a disease,
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number of absent workers in a firm, number of guests in a hotel and so on. In
some cases, the discrete values of the time series are large numbers and may
be analyzed using continuous-valued models such as ARMA with Gaussian
errors. However, a good model for time series should be consistent with the
properties of the data and be unable to predict values which violate known
constraints. Thus, when the values are small, as in the case of counting
processes, the usual linear ARMA processes are of limited use for modeling
and forecasting purposes in that they would invariably produce non-integer
forecast values.

The most common approach to build an integer-valued autoregressive
(INAR) process is based on a probabilistic operator called binomial thin-
ning, as reported in Al-Osh and Alzaid (1987) and McKenzie (1985) who
first introduced INAR processes. While theoretical properties of INAR mod-
els with Poisson innovations have been extensively studied in the literature
(see, for instance, Freeland and McCabe (2004a), Bu et al. (2008), and the
references therein), relatively few contributions discuss the development of
methods for INAR models with innovations distributed differently from the
Poisson.

The classical approaches to the problem of finding prediction intervals for
time series assume that the distribution of the error term is known. Typi-
cally, this is not the case in practice and prediction intervals are constructed
under the assumption of a specific distribution. For example, in case of
ARMA models gaussianity is usually assumed. In case of INAR models, it is
assumed an integer distribution, usually a Poisson which, however, has the
disadvantage of allowing only for equi-dispersion. With this concern in mind,
in the current work we orient our interest to distributional assumptions dif-
ferent from Poisson in order to investigare over- and under-dispersion. One
good proposal is, for example, that of Sun and McCabe (2013). The authors
propose the use of the Katz family or the generalized Poisson as distribu-
tions for the innovation processes. These families of distributions take into
account under- and over- dispersion. Nevertheless, prediction intervals con-
structed under the assumption of a specific distribution may produce poor
results when this condition fails.

In this work we contribute to cater this problem by means of bootstrap
techniques. In particular, we propose a new approach based on the sieve
bootstrap that allows for the integer nature of data. We compare this ap-
proach with that of Cardinal et al. (1999) and Kim and Park (2008) that, to
the best of our knowledge, are the only attempts to forecast INAR models
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using bootstrap. In particular, these authors develop a bootstrap method
based on sieve bootstrap to calculate forecasts and confidence intervals, yet
they fall short from providing simulation results. Thus, we carry out some
extensive Monte Carlo experiments to evaluate the performance of our boot-
strap estimators and predictors also in comparative terms with these othor
proposals existing in literature. These experiments show evidence in favor of
the approach we propose.

The paper is outlined as follows. In section 2, INAR(p) models are de-
scribed. Section 3 details the bootstrap method we propose. Section 4 is
devoted to present the results of the Monte Carlo experiments. Section 5
concludes.

2 INAR(p) models

In spite of the central role of the Box-Jenkins ARMA, there is no such a
leading technique for count time series. A proposal is the integer-valued
autoregressive process (INAR) (McKenzie (1985), Al-Osh and Alzaid (1987)):

Xt = α1 ◦Xt−1 + . . .+ αp ◦Xt−p + εt

where ‘◦’is the thinning operator defined to satisfy α ◦ X =
∑X

i=1 Yi where
X ∈ N, α ∈ [0, 1] and Yi is a sequence of iid count random variables, typically
Ber(α), independent of X, with common mean α. While the INAR(1) model
is defined univocally, for the INAR(p) model there are additional complexi-
ties and different types of INAR(p) processes can be distinguished according
to the adopted thinning mechanism. Possibilities are the approach by Alzaid
and Al-Osh (1990) which is a direct extension of INAR(1), and that by Du
and Li (1991) which is closer to the linear Gaussian AR(p). The latter is
the approach adopted in this work. In particular, for this specification the
stationarity of the process is guaranteed if 0 ≤

∑p
j=1 αj < 1, the correla-

tion properties are identical to the linear Gaussian AR(p) model and the
conditional mean (regression) function is linear and given by:

E(Xt | Ft−1) = α1Xt−1 + . . .+ αpXt−p + µε

where Ft−1 = Xt−1, Xt−2, . . . and µε = E[εt]. INAR(p) models strongly de-
pends on the parametric assumption for the error term. Usually it is as-
sumed that εt is distributed as a Poisson (in this case the model is also
called PoINAR), but with count data it may be desirable to opt for other
distribution especially to model under- or over-dispersion.
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2.1 Forecasting INAR(p) model

In some cases, the discrete values of the time series are large numbers and may
be analysed by using continuous-valued models such as traditional ARMA
with Gaussian errors. However, according to Chatfield (2000), a good model
for time series should be consistent with the properties of the data and unable
to predict values which violate known constraints. This means that, when a
series consists of small non-negative values, like in case of counting data, we
have to consider a model that is forecast-coherent and a method of forecasting
that produces integer values. In the light of this requirement the well-known
linear ARMA processes and the minimum mean square error predictor are
of limited use for modeling and especially for forecasting purposes.

To circumvent this problem, Freeland and McCabe (2004b) move by con-
sidering the k−step ahead predictive probability mass function (pmf) itself
which, for the INAR(1) model with Poisson innovations, takes this form:

P (XT+k = x | XT = xT ) =
∑min(x,xT )

s=0

(
xt
s

)
(αk)s(1− αk)xT−s × (1)

1
(x−s)! exp

{
−λ1−αk

1−α

}
×
(
λ1−αk

1−α

)x−s
where xT+k ∈ {0, 1, 2, . . .} and k = 1, 2, 3, . . . . Then, in order to obtain
coherent predictions for XT+k, Freeland and McCabe (2004b) suggest us-
ing the median of the k−step-ahead pmf. Operatively, it is computed as
Pk(XT+k = x | XT , α̂, λ̂), where (α, λ) are parameters to be estimated (typi-
cally via maximum likelihood). An extension of this approach taking into ac-
count higher-order dependence structure can be found in Jung and Tremayne
(2006) and Bu and McCabe (2008).

The methods proposed to obtain coherent forecasts have some disadvan-
tages. On the one hand, they are problem-specific as they depend on the
distributional assumption of Poisson error terms, on the other hand, they
are computationally not simple. With this particular concern in mind, in the
present work we propose to estimate the probability mass function, condi-
tional on the data available at the time the forecast is made, via a revised sieve
bootstrap. In this way we can adapt the procedure of Jung and Tremayne
(2006) to obtain coeherent forecasting and the prediction for point mass of
the distribution, without distributional assumptions on the innovation term.
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3 Bootstrap for INAR(p) models

Bootstrap methods, initially proposed by Efron (1979) for independent ob-
servations, have revealed inefficient when data are dependent, as in case of
time series data. Under this circumstance the use of bootstrap for the esti-
mation of population characteristics must be judicious since the time series
structure may be lost in a careless resampling. Thus, time series data must
be resampled indirectly. A very recent and good review about bootstrap for
time series is, for example, that of Kreiss and Lahiri (2012). In the context
of INAR processes, to the best of our knowledge, we found only few papers
about bootstrap and INAR(p) model. Cardinal et al. (1999) and Kim and
Park (2008) propose a bootstrap approach for deriving forecasts and con-
fidence intervals while Kim and Park (2010) apply bootstrap to INAR(p)
models to obtain estimated standard errors for the estimated parameters of
the model.1

3.1 Block bootstrap

The first bootstrap method we consider is the block bootstrap (BB) intro-
duced by Künsch (1989) and Liu and Singh (1992) for time series that are not
assumed to have a specific structural form. Their idea is to resample blocks
of observations at time. By retaining the neighboring observations together
within the blocks, the dependence structure of the random variables as short
lag distances is preserved. As a result, resampling blocks allows one to carry
this information over to the bootstrap variables. The BB can be summarized
as follow.

Let be xt, t = 1, . . . , n a stationary time series. Let l be an integer
satisfying 1 ≤ l ≤ n. Define the overlapping blocks B1, . . . ,BN of length l
as Bi = (xi, . . . , xi+l−1) starting with xi, 1 ≤ i ≤ N where N = n − l + 1.
For simplicity, suppose that l divides n and let b = n/l. The BB sample is
obtained by selecting b blocks at random with replacement from the collection
B1, . . . ,BN . Since each resampled block has l elements, chaining the elements
of the b resampled blocks serially yields b·l bootstrap observations x∗1, . . . , x

∗
n.

1It is worth citing the work of McCabe et al. (2011) which estimate the forecast distri-
bution non-parametrically within the context of the integer auto-regressive class of models
an derive efficient probabilistic forecasts. To assess sampling variation in the full estimated
forecast distribution, the authors use a subsampling method and prove its validity. Their
approach is similar to that of ? and is different from that we propose.
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The performance of the BB method crucially depends on the choice of
the block size and on the dependent structure of the process. In this work
we choose l =

√
n.

For the other several variants of block bootstrap and further details, see
Kreiss and Lahiri (2012) and the reference therein.

3.2 Sieve bootstrap: traditional and INAR-tailored ver-
sion

The other bootstrap approach for time series we considered is the so called
sieve bootstrap (SB) first introduced by Kreiss (1992) and then developed
by Bühlmann (1997). This method is originally based on the idea of sieve
approximation: it approximates a general linear, invertible process by a fi-
nite autoregressive model with order increasing with the sample size, and
resampling from the approximated autoregressions. By viewing such autore-
gressive approximations as a sieve for the underlying infinite-order process,
the bootstrap procedure may still be regarded as a non parametric one. Car-
dinal et al. (1999) and Kim and Park (2008) employ this approach after some
modifications to incorporate the nature of the integer-valued time series.

In this vein, here we propose a parametric bootstrap algorithm, based on
sieve bootstrap (SB-INAR), to estimate the probability mass function (pmf)
h−steps ahead to obtain coherent predictions from the INAR model.

The steps of our algorithm are as follows:

1. Estimate the thinning parameters (α1, . . . , αp) with, for example, the
Yule-Walker estimator, as suggested by Bühlmann (1997).

2. Compute the residuals ε̂t = xt − (α̂1 ◦ xt−1 + . . . + α̂p ◦ xt−p), t =
p + 1, . . . , n. Observe that α̂i ◦ xt−i are realizations of Bi(xt−i, α̂i), for
i = 1, . . . , p.

3. Since computed residuals could be negative, if p = 1 we propose to use
the modified residuals

ε̃t =

{
ε̂t if ε̂t ≥ 0

0 if ε̂t < 0

If p > 1, modified residuals will be ε̃t = ε̂t if ε̂t ≥ 0, but if ε̂t < 0, one
computational solution is to recalculate ε̃t until it is greater than zero.
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4. For b = 1, . . . , B, define the bootstrapped series xbt by

xbt = α̂1 ◦ xbt−1 + . . .+ α̂p ◦ xbt−p + εbt

where xbs = xs for s = n − p + 1, . . . , n and εbt for t = 1, 2, . . . , n is an
i.i.d. sample from the residuals computed previously.

5. Given xb1, x
b
2, . . . , x

b
n from the previous step, compute the estimation of

the thinning parameters α̂bi , i = 1, . . . , p, as in step 1.

6. For h > 0 compute forecasts as

xbn+h = α̂b1 ◦ xbn+h−1 + . . .+ α̂bp ◦ xbn+h−p + εbh.

where xbn+k = xn+k if k ≤ 0, and εbh for t = 1, 2, . . . , n is sampled
from the residuals computed previously at step 3 (for example, xbn+1 =
α̂b1 ◦ xn + . . .+ α̂bp ◦ xn+1−p + εb1).

The bootstrap distribution function of xbn+h given by

F b
xn+h

=
#xbn+h ≤ x

B

is used to approximate the unknown distribution of xn+h given the observed
sample. We can obtain point forecasts h−steps ahead considering the median
of F b

xt+h
and bootstrap prediction intervals (for example at 95% confidence

level) by taking the 2.5th and the 97.5th percentile of the same distribution.
Our approach differs from Cardinal et al. (1999) and Kim and Park (2008)

approach in the computation of the residuals. In particular, these authors
compute the residuals as:

ε̂t = xt −
p∑
i=1

α̂ixt−i

for t = p+ 1, . . . , n, where
∑p

i=1 α̂ixt−i is the estimated conditional expecta-
tion of Xt, then consider the modified residuals defined by ε̃t = [ε̂t] where [·]
represents the value rounded to the nearest integer. Moreover, if ε̂t ≤ 0 then
ε̃t = 0.

In addition, up to step 4, the resampling scheme we propose is similar to
sieve bootstrap and can be used for bootstrapping some statistics of interest.
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However, if we are interested in bootstrap prediction, we have to replicate
the conditional distribution of xn+h given the observed data up to time n.
Thus, following the suggestion of Cao et al. (1997), at step 6 we fix the last
p observations and obtain resamples of the future values xbt+h given xbs = xs
for s = n− p+ 1, . . . , n.

It is interesting to remark that using this bootstrap approach we incor-
porate the variability caused by (i) the binomial thinning operator, (ii) the
estimation of parameters and (iii) the error terms into forecasts and confi-
dence intervals.

Another option, similar to the conditional bootstrap of Cao et al. (1997),
is to omit step 4 and 5 and use α̂i in step 6. In this way we construct the boot-
strap distribution function without taking in consideration the parameters
variability (see also Clements and Taylor (2001)), thus, this latter approach
is much less time-consuming, but less realistic, than the one we propose.

4 Simulation study

In this section we provide the details of a twofold Monte Carlo experiment
we carried out to asses, on the one hand, the efficiency of the bootstrap esti-
mators and, on the other, the forecasting performance when those methods
are used to make predictions.

The functions we use are written in R language (R Core Team, 2015) and
are available upon request by the authors.

4.1 Estimation

The first part of the experiment is devoted to attest for the efficiency of
the bootstrap methods detailed in the previous section. In particular we
compare the performance of our bootstrap approach (SB-INAR) with that
of the sieve bootstrap of Cardinal et al. (1999) and Kim and Park (2008) (SB)
and that of block bootstrap (BB). In the simulation study, we generated 1000
different realization from the following DGPs: (i) PoINAR(p) with λ = 1, 5
(ii) INAR(p) with binomial error term (BINAR) with m = 6, π = 0.2, 0.5, 0.8,
(iii) INAR(p) with negative binomial error term (NBINAR) with r = 6, π =
0.2, 0.5, 0.8. For p = 1 we consider α = 0.3, 0.6, 0.9, for p = 2 we consider
α1 = 0.5, α2 = 0.3. The number of bootstrap replications is B = 501. The
sample size is n = 250, 500. The thinning parameters are estimated by the
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Yule-Walker (YW) method. The statistics used to evaluate the bootstrap
method are the Monte Carlo bias and mean square error (MSE). Results are
reported in Tables 1-6.

As a general comment, the bias of bootstrap methods is, physiologically,
always greater compared to MC simulations, but the MSE is of the same
magnitude order. Note that in case of INAR(1) models the bias is always
negative, but it reduces with the increase of the sample size. Moreover, bias
increases with the value of α but the MSE decreases. Finally, bias and MSE
do not change with the different DGPs.

As for specific comments, we firstly notice that the SB-INAR we pro-
pose has almost everywhere the best performance. By increasing the sample
size to n = 500 and for INAR models with Binomial and Negative Bino-
mial innovations, the SB-INAR presents the best bias and MSE performance
compared to MC simulations, for all considered cases.

In case of INAR(2) models, bootstrap methods still work well, yet it must
be observed that the bootstrap bias and the MSE of parameter α2 are greater
than that of α1. Moreover, the SB-INAR method always exhibits the best
performance.

Block bootstrap seems to work worse with respect to sieve bootstrap, es-
pecially when the value of thinning parameter increases. This can be because
the performance of this method crucially depends on the choice of the block
size and on the dependent structure of the process. This is the well known
disadvantage of this method, and it is the reason why we do not adopt it to
forecast.

4.2 Forecasting

In the second part of the experiment, we compare the performance of the
proposed bootstrap method with that of the sieve bootstrap used by Cardinal
et al. (1999) and Kim and Park (2008). Moving from the results of the
previous subsection, we do not consider the block bootstrap approach.

For the purpose of this second part of the experiment, we generate data
from the following DGPs:

1. INAR(2) with Poisson errors and λ = 4.

2. INAR(2) with Binomial errors with m = 15 and p = 0.8.

3. INAR(2) with Negative Binomial errors with m = 6 and p = 0.4.
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4. INAR(2) with Conway-Maxwell-Poisson errors with λ = 30 and ν = 3.

5. INAR(3) with Conway-Maxwell-Poisson errors with λ = 30 and ν = 3.

Since the stationary condition is that α1 + α2 < 1, to generate station-
ary replications we have considered the following combinations of thinning
parameters: (α1, α2) = (0.3, 0.2), (0.4, 0.3), (0.6, 0.3) for models 1 − 4, and
(α1, α2, α3) = (0.3, 0.2, 0.1) and (0.4, 0.3, 0.2) for model 5.

The sample sizes we consider are N = (105, 255, 505) retaining the last
5 observations for assessing out-of-sample forecasting performance. For each
model we generate s = 1000 independent realizations and for each realization
B = 501 bootstrap replications. Results, for N = 100 and 250 are reported
in Tables 7-11 (results for N = 500 are available in the Appendix, Tables
12-16).

In practice, to make comparisons, we calculate the forecasts following
the bootstrap approach depicted in the previous section. The forecasting
performance of the estimated INAR models is expressed through the Forecast
Mean Square Error (FMSE) and Forecast Mean Absolute Error (FMAE)
statistics of k−step-ahead forecasts, where k = 1, 2, . . . , 5. In addition, to
compare the different prediction intervals, we use their mean coverage that
is:

1. For i = 1, . . . S, simulate a series of length N + k from one of the
considered DGPs.

2. Using the first N observations, for each bootstrap procedure, and the
empirical distribution F b

xn+h
, obtain the (1− α)% prediction interval:

[PF b(α/2), PF b(1− α/2)]

based on B bootstrap resamples, where PF b(α) is the α% percentile of
the F b distribution.

3. Calculate the coverage of the interval as:

Ci =
#PF b(α/2) ≤ xN+h ≤ PF b(1− α/2)

B

where xN+h for h = 1, . . . , k is the future value generated in the first
step, and
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4. Repeat for S times steps 1− 4 to get the mean interval coverage:

C̄ =

∑S
i=1Ci
S

.

As expected the forecasting performance reached by the SB-INAR is com-
parable with the performance of the SB. Actually, for a couple of models
(NBINAR and CMPINAR) the SB-INAR is able to slightly outperform SB,
but in the majority of the analized cases the two methods exhibit equivalent
forecasting capability. These results paired with the previous ones obteined
in the estimation part of the Monte Carlo lead us to the conclusion that
SB-INAR is effectively a reliable approach to resample count time series by
bootstrap.

5 Conclusion

In this work, we propose a new bootstrap approach, to take into account
the integer nature of count time series, in particular INAR(p) time series.
Our proposal is based on a modification of the well known sieve bootstrap
and an extensive Monte Carlo experiment states its superiority on exist-
ing approaches for a variety of DGPs. In particular, when estimating the
thinning parameter our SB-INAR visibly outperforms the considered com-
petitors. Moreover in terms of forecasting the SB-INAR either reaches the
same results as SB or it shows an even better performance. This means that
the bootstrap technique we propose allows us to obtain estimates with good
statistical properties and coherent predictions for INAR(p) models once esti-
mated the thinning parameters. This is particularly interesting if we consider
that, to our knowledge, there is no other finite sample experiment able to
provide useful indications for pratictioners.
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PoINAR(1), λ = 1 n=250 n=500
Method α = 0.3 α = 0.6 α = 0.9 α = 0.3 α = 0.6 α = 0.9
Monte Carlo Bias -0.0081 -0.0132 -0.0162 -0.0068 -0.0062 -0.0082

MSE 0.0040 0.0031 0.0011 0.0021 0.0016 0.0005
SB-INAR Bias -0.0173 -0.0273 -0.0328 -0.0114 -0.0133 -0.0170

MSE 0.0041 0.0035 0.0019 0.0021 0.0016 0.0007
SB Bias -0.0210 -0.0274 -0.0333 -0.0114 -0.0136 -0.0171

MSE 0.0044 0.0036 0.0020 0.0021 0.0017 0.0007
BB Bias -0.0332 -0.0597 -0.0814 -0.0230 -0.0380 -0.0537

MSE 0.0045 0.0061 0.0075 0.0024 0.0028 0.0033
PoINAR(1), λ = 5 n=250 n=500
Monte Carlo Bias -0.0076 -0.0149 -0.0101 -0.0053 -0.0063 -0.0071

MSE 0.0040 0.0029 0.0006 0.0018 0.0014 0.0003
SB-INAR Bias -0.0165 -0.0284 -0.0218 -0.0096 -0.0130 -0.0140

MSE 0.0041 0.0034 0.0009 0.0018 0.0016 0.0005
SB Bias -0.0163 -0.0284 -0.0231 0.0097 -0.0131 -0.0141

MSE 0.0041 0.0034 0.0010 0.0018 0.0016 0.0005
BB Bias -0.0324 -0.0539 -0.0729 -0.0221 -0.0378 -0.0518

MSE 0.0046 0.0062 0.0061 0.0022 0.0027 0.0030

Table 1: Bias and MSE for α̂. DGP: PoINAR(1). In bold the best perfor-
mance with respect to MC.

12



BINAR(1), m = 6, π = 0.2 n=250 n=500
Method α = 0.3 α = 0.6 α = 0.9 α = 0.3 α = 0.6 α = 0.9
Monte Carlo Bias -0.0095 -0.0163 -0.0177 -0.0041 -0.0076 -0.0095

MSE 0.0040 0.0031 0.0013 0.0021 0.0014 0.0005
SB-INAR Bias -0.0187 -0.0302 -0.0337 -0.0088 -0.0146 -0.0181

MSE 0.0042 0.0036 0.0021 0.0021 0.0015 0.0008
SB Bias -0.0188 -0.0304 -0.0343 -0.0089 -0.0147 -0.0182

MSE 0.0042 0.0037 0.0021 0.0021 0.0016 0.0008
BB Bias -0.0346 -0.0617 -0.0823 -0.0212 -0.0396 -0.0551

MSE 0.0047 0.0064 0.0076 0.0023 0.0028 0.0035
BINAR(1), m = 6, π = 0.5 n=250 n=500
Monte Carlo Bias -0.0082 -0.0125 -0.0188 -0.0018 -0.0060 -0.0093

MSE 0.0037 0.0027 0.0013 0.0018 0.0014 0.0005
SB-INAR Bias -0.0171 -0.0259 -0.0285 -0.0063 -0.0127 -0.0147

MSE 0.0038 0.0031 0.0018 0.0019 0.0015 0.0007
SB Bias -0.0173 -0.0264 -0.0298 -0.0062 -0.0129 -0.0153

MSE 0.0038 0.0031 0.0019 0.0018 0.0015 0.0007
BB Bias -0.0332 -0.0581 -0.0838 -0.0189 -0.0377 -0.0548

MSE 0.0045 0.0057 0.0079 0.0020 0.0026 0.0034
BINAR(1), m = 6, π = 0.8 n=250 n=500
Monte Carlo Bias -0.0071 -0.0106 -0.0211 -0.0046 -0.0073 -0.0104

MSE 0.0038 0.0028 0.0015 0.0020 0.0015 0.0006
SB-INAR Bias -0.0159 -0.0241 -0.0328 -0.0090 -0.0141 -0.0172

MSE 0.0039 0.0032 0.0021 0.0020 0.0016 0.0008
SB Bias -0.0160 -0.0242 -0.0330 -0.0090 -0.0142 -0.0175

MSE 0.0040 0.0032 0.0021 0.0020 0.0016 0.0008
BB Bias -0.0318 -0.0566 -0.0857 -0.0212 -0.0390 -0.0558

MSE 0.0044 0.0055 0.0083 0.0023 0.0028 0.0036

Table 2: Bias and MSE for α̂. DGP: BINAR(1). In bold the best performance
with respect to MC.
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NBINAR(1), r = 6, π = 0.2 n=250 n=500
Method α = 0.3 α = 0.6 α = 0.9 α = 0.3 α = 0.6 α = 0.9
Monte Carlo Bias -0.0086 -0.0132 -0.0180 -0.0031 -0.0071 -0.0093

MSE 0.0037 0.0028 0.0014 0.0018 0.0014 0.0005
SB-INAR Bias -0.0172 -0.0261 -0.0220 -0.0075 -0.0136 -0.0117

MSE 0.0038 0.0032 0.0015 0.0018 0.0015 0.0006
SB Bias -0.0173 -0.0279 -0.0240 -0.0075 -0.0136 -0.0128

MSE 0.0038 0.0033 0.0016 0.0018 0.0015 0.0006
BB Bias -0.0328 -0.0599 -0.0828 -0.0195 -0.0383 -0.0548

MSE 0.0043 0.0059 0.0078 0.0020 0.0027 0.0034
NBINAR(1), r = 6, π = 0.5 n=250 n=500
Monte Carlo Bias -0.0096 -0.0144 -0.0190 -0.0038 -0.0070 -0.0092

MSE 0.0039 0.0028 0.0014 0.0018 0.0014 0.0005
SB-INAR Bias -0.0183 -0.0276 -0.0267 -0.0082 -0.0138 -0.0136

MSE 0.0040 0.0033 0.0018 0.0018 0.0015 0.0006
SB Bias -0.0184 -0.0279 -0.0289 -0.0082 -0.0137 -0.0147

MSE 0.0041 0.0033 0.0019 0.0018 0.0015 0.0007
BB Bias -0.0349 -0.0599 -0.0839 -0.0205 -0.0383 -0.0547

MSE 0.0047 0.0059 0.0079 0.0021 0.0027 0.0034
NBINAR(1), r = 6, π = 0.8 n=250 n=500
Monte Carlo Bias -0.0069 -0.0148 -0.0174 -0.0028 -0.0066 -0.0091

MSE 0.0039 0.0028 0.0013 0.0017 0.0015 0.0005
SB-INAR Bias -0.0159 -0.0283 -0.0301 -0.0072 -0.0132 -0.0160

MSE 0.0040 0.0033 0.0019 0.0018 0.0016 0.0007
SB Bias -0.0158 -0.0286 -0.0316 -0.0072 -0.0133 -0.0166

MSE 0.0039 0.0033 0.0020 0.0018 0.0016 0.0007
BB Bias -0.0321 -0.0604 -0.0824 -0.0280 -0.0380 -0.0547

MSE 0.0045 0.0059 0.0078 0.0020 0.0028 0.0034

Table 3: Bias and MSE for α̂. DGP: NBINAR(1). In bold the best perfor-
mance with respect to MC.
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PoINAR(2), λ = 1 n=250 n=500
Method α1 = 0.5 α2 = 0.3 α1 = 0.5 α2 = 0.3
Monte Carlo Bias 0.0958 -0.1209 0.0972 -0.1091

MSE 0.0236 0.0285 0.0217 0.0231
SB-INAR Bias 0.0957 -0.1429 0.0959 -0.1207

MSE 0.0236 0.0339 0.0217 0.0256
SB Bias 0.1019 -0.1460 0.0993 -0.1226

MSE 0.0247 0.0346 0.0223 0.0261
BB Bias 0.0997 -0.1932 0.1019 -0.1630

MSE 0.0243 0.0497 0.0228 0.0372
PoINAR(2), λ = 5 n=250 n=500
Method α1 = 0.5 α2 = 0.3 α1 = 0.5 α2 = 0.3
Monte Carlo Bias 0.0917 -0.1197 0.0958 -0.1073

MSE 0.0220 0.0280 0.0208 0.0236
SB-INAR Bias 0.1040 -0.1481 0.1032 -0.1230

MSE 0.0245 0.0351 0.0223 0.0270
SB Bias 0.1418 -0.1711 0.1263 -0.1382

MSE 0.0335 0.0416 0.0274 0.0306
BB Bias 0.0947 -0.1910 0.1035 -0.1617

MSE 0.0227 0.0489 0.0223 0.0377

Table 4: Bias and MSE for α̂1 α̂2. DGP: PoINAR(2). In bold the best
performance with respect to MC.
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BINAR(2), m = 6, π = 0.2
Monte Carlo Bias 0.0923 -0.1178 0.0981 -0.1129

MSE 0.0227 0.0276 0.0213 0.0255
SB-INAR Bias 0.0933 -0.1403 0.0987 -0.1246

MSE 0.0229 0.0329 0.0214 0.0282
SB Bias 0.1015 -0.1447 0.1031 -0.1272

MSE 0.0243 0.0339 0.0223 0.0287
BB Bias 0.0964 -0.1904 0.1045 -0.1667

MSE 0.0235 0.0485 0.0226 0.0399
BINAR(2), m = 6, π = 0.5
Monte Carlo Bias 0.0963 -0.1216 0.0972 -0.1104

MSE 0.0234 0.0283 0.0213 0.0242
SB-INAR Bias 0.1036 -0.1470 0.1017 -0.1242

MSE 0.0248 0.0347 0.0222 0.0273
SB Bias 0.1276 -0.1611 0.1158 -0.1331

MSE 0.0299 0.0384 0.0251 0.0294
BB Bias 0.0994 -0.1928 0.1044 -0.1642

MSE 0.0238 0.0495 0.0227 0.0385
BINAR(2), m = 6, π = 0.8
Monte Carlo Bias 0.0924 -0.1195 0.0978 -0.1100

MSE 0.0228 0.0271 0.0229 0.0238
SB-INAR Bias 0.1053 -0.1480 0.1053 -0.1258

MSE 0.0253 0.0343 0.0229 0.0274
SB Bias 0.1453 -0.1727 0.1298 -0.1420

MSE 0.0348 0.0414 0.0285 0.0314
BB Bias 0.0961 -0.1912 0.1045 -0.1635

MSE 0.0234 0.0484 0.0229 0.0379

Table 5: Bias and MSE for α̂1 α̂2. DGP: BINAR(2). In bold the best perfor-
mance with respect to MC.
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NBINAR(2), r = 6, π = 0.2
Monte Carlo Bias 0.0941 -0.1170 0.0953 -0.1088

MSE 0.0227 0.0278 0.0213 0.0233
SB-INAR Bias 0.1282 -0.1587 0.1144 -0.1320

MSE 0.0302 0.0383 0.0253 0.0286
SB Bias 0.2179 -0.2215 0.1789 -0.1782

MSE 0.0613 0.0603 0.0442 0.0423
BB Bias 0.0993 -0.1899 0.1023 -0.1625

MSE 0.0238 0.0488 0.0226 0.0380
NBINAR(2), r = 6, π = 0.5
Monte Carlo Bias 0.0948 -0.1176 0.0971 -0.1094

MSE 0.0228 0.0275 0.0214 0.0239
SB-INAR Bias 0.1085 -0.1468 0.1047 -0.1252

MSE 0.0256 0.0347 0.0229 0.0274
SB Bias 0.1490 -0.1722 0.1291 -0.1413

MSE 0.0356 0.0418 0.0286 0.0313
BB Bias 0.0994 -0.1906 0.1043 -0.1633

MSE 0.0238 0.0487 0.0230 0.0380
NBINAR(2), r = 6, π = 0.8
Monte Carlo Bias 0.0917 -0.1172 0.0967 -0.1093

MSE 0.0228 0.0275 0.0212 0.0239
SB-INAR Bias 0.9374 -0.1402 0.0981 -0.1214

MSE 0.0231 0.0329 0.0214 0.0265
SB Bias 0.1036 -0.1454 0.1034 -0.1246

MSE 0.0248 0.0341 0.0224 0.0272
BB Bias 0.0951 -0.1896 0.1042 -0.1636

MSE 0.0232 0.0483 0.0226 0.0382

Table 6: Bias and MSE for α̂1 α̂2. DGP: NBINAR(2). In bold the best
performance with respect to MC.
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Predictions h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5
N = 100 N = 250

α = (0.3, 0.2)
SB-INAR MSE 2.701 2.889 2.934 3.135 2.960 2.641 2.875 2.838 2.810 2.910

MAE 2.135 2.273 2.279 2.441 2.322 2.070 2.261 2.253 2.177 2.300
Coverage 0.969 0.967 0.970 0.966 0.971 0.977 0.968 0.982 0.981 0.979

SB MSE 2.702 2.933 2.966 3.170 3.008 2.659 2.887 2.844 2.850 2.891
MAE 2.155 2.313 2.314 2.451 2.357 2.069 2.271 2.235 2.182 2.267
Coverage 0.960 0.965 0.964 0.960 0.970 0.966 0.959 0.974 0.975 0.972

α = (0.4, 0.3)
SB-INAR MSE 3.409 3.722 3.994 3.962 4.183 3.256 3.500 3.747 3.845 3.869

MAE 2.694 2.906 3.086 3.096 3.251 2.594 2.796 2.939 3.035 3.058
Coverage 0.980 0.978 0.981 0.982 0.984 0.971 0.979 0.986 0.984 0.988

SB MSE 3.421 3.800 4.116 4.080 4.400 3.258 3.495 3.774 3.843 3.887
MAE 2.700 2.954 3.180 3.196 3.363 2.591 2.752 2.964 3.003 3.044
Coverage 0.967 0.968 0.969 0.976 0.967 0.967 0.973 0.981 0.976 0.978

α = (0.6, 0.3)
SB-INAR MSE 5.047 6.038 6.700 7.750 8.365 4.834 5.712 6.482 7.003 7.409

MAE 3.923 4.691 5.535 6.146 6.558 3.776 4.401 5.030 5.571 5.859
Coverage 0.976 0.986 0.993 0.989 0.991 0.970 0.974 0.981 0.988 0.990

SB MSE 5.128 6.315 7.283 8.060 8.710 4.827 5.764 6.715 7.419 7.959
MAE 3.953 4.925 5.679 6.385 6.778 3.767 4.485 5.287 5.985 6.409
Coverage 0.965 0.983 0.987 0.983 0.979 0.969 0.978 0.978 0.986 0.986

Table 7: Forecasting results for POINAR(2) models, N = 100 and 250.
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Predictions h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5
N = 100 N = 250

α = (0.3, 0.2)
SB-INAR MSE 3.427 3.773 3.891 3.962 4.140 3.442 3.577 3.806 3.701 3.658

MAE 2.732 2.995 3.104 3.167 3.270 2.698 2.827 3.013 2.938 2.863
Coverage 0.996 0.998 0.998 1.000 0.998 0.996 0.997 0.996 0.998 0.998

SB MSE 3.408 3.741 3.862 3.886 4.067 3.451 3.575 3.784 3.695 3.660
MAE 2.726 2.958 3.065 3.100 3.176 2.696 2.807 2.995 2.945 2.882
Coverage 0.991 0.995 0.997 0.996 0.995 0.984 0.991 0.990 0.994 0.991

α = (0.4, 0.3)
SB-INAR MSE 4.944 5.282 5.775 6.267 6.362 4.629 4.843 5.417 5.350 5.756

MAE 3.894 4.166 4.511 4.885 5.018 3.707 3.801 4.254 4.291 4.561
Coverage 0.995 1.000 1.000 0.999 1.000 0.998 0.998 0.999 1.000 0.999

SB MSE 4.890 5.189 5.600 6.069 6.170 4.629 4.813 5.334 5.317 5.758
MAE 3.854 4.111 4.381 4.740 4.863 3.703 3.792 4.192 4.267 4.579
Coverage 0.988 0.998 0.998 0.999 1.000 0.992 0.992 0.992 1.000 0.993

α = (0.6, 0.3)
SB-INAR MSE 7.923 9.592 10.848 12.360 13.307 8.022 9.012 10.554 11.800 12.419

MAE 6.309 7.656 8.685 9.660 10.484 6.339 7.226 8.407 9.404 10.065
Coverage 0.995 1.000 1.000 1.000 1.000 0.992 0.996 0.999 0.997 0.999

SB MSE 7.902 9.526 10.707 12.144 13.131 7.979 8.953 10.466 11.796 12.179
MAE 6.331 7.576 8.586 9.591 10.390 6.309 7.165 8.349 9.406 9.846
Coverage 0.985 0.997 0.997 0.997 0.999 0.987 0.991 0.996 0.994 0.995

Table 8: Forecasting results for BINAR(2) models, N = 100 and 250.
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Predictions h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5
N = 100 N = 250

α = (0.3, 0.2)
SB-INAR MSE 5.449 5.857 6.141 6.295 6.178 5.943 5.592 6.257 5.917 6.108

MAE 4.247 4.587 4.640 4.899 4.719 4.632 4.416 4.825 4.683 4.771
Coverage 0.974 0.978 0.970 0.975 0.973 0.966 0.975 0.971 0.970 0.971

SB MSE 5.494 5.885 6.161 6.281 6.201 5.971 5.604 6.260 5.925 6.143
MAE 4.281 4.596 4.685 4.890 4.726 4.639 4.420 4.793 4.697 4.764
Coverage 0.967 0.968 0.962 0.963 0.971 0.948 0.973 0.961 0.969 0.957

α = (0.4, 0.3)
SB-INAR MSE 6.324 6.563 6.976 7.154 7.434 6.070 6.595 7.106 7.098 7.441

MAE 4.826 5.076 5.436 5.330 5.635 4.744 5.240 5.580 5.648 5.947
Coverage 0.916 0.919 0.935 0.930 0.930 0.976 0.978 0.986 0.988 0.983

SB MSE 6.358 6.655 7.019 7.282 7.608 6.100 6.631 7.203 7.110 7.498
MAE 4.846 5.081 5.438 5.381 5.746 4.764 5.244 5.650 5.662 5.924
Coverage 0.911 0.914 0.927 0.921 0.920 0.969 0.976 0.974 0.988 0.980

α = (0.6, 0.3)
SB-INAR MSE 8.742 9.793 11.165 12.541 13.626 7.819 8.985 10.733 11.499 12.098

MAE 6.920 7.694 8.835 9.665 10.729 6.239 7.095 8.536 9.043 9.799
Coverage 0.977 0.991 0.996 0.997 0.995 0.995 0.997 0.997 0.998 0.999

SB MSE 8.730 9.957 11.280 12.651 13.757 7.772 8.882 10.592 11.341 11.826
MAE 6.928 7.864 8.891 9.713 10.746 6.158 7.030 8.456 8.992 9.463
Coverage 0.971 0.990 0.995 0.989 0.992 0.985 0.992 0.994 0.996 0.998

Table 9: Forecasting results for NBINAR(2) models, N = 100 and 250.
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Predictions h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5
N = 100 N = 250

α = (0.3, 0.2)
SB-INAR MSE 1.807 1.824 2.081 2.080 2.051 1.785 1.880 1.904 2.051 1.982

MAE 1.402 1.403 1.568 1.602 1.601 1.387 1.425 1.459 1.607 1.527
Coverage 0.977 0.983 0.974 0.980 0.981 0.980 0.976 0.989 0.984 0.982

SB MSE 1.825 1.838 2.074 2.084 2.061 1.782 1.902 1.929 2.063 2.010
MAE 1.406 1.420 1.540 1.603 1.602 1.395 1.437 1.456 1.617 1.533
Coverage 0.966 0.975 0.964 0.971 0.976 0.968 0.961 0.977 0.966 0.971

α = (0.4, 0.3)
SB-INAR MSE 2.460 2.581 2.856 2.826 2.872 2.262 2.546 2.700 2.783 2.790

MAE 1.924 2.026 2.226 2.214 2.257 1.765 1.998 2.151 2.222 2.227
Coverage 0.976 0.985 0.979 0.994 0.989 0.988 0.985 0.986 0.992 0.988

SB MSE 2.467 2.619 2.919 2.907 2.983 2.256 2.552 2.637 2.733 2.715
MAE 1.929 2.048 2.234 2.255 2.296 1.752 2.000 2.072 2.151 2.111
Coverage 0.973 0.981 0.975 0.987 0.984 0.981 0.978 0.979 0.985 0.981

α = (0.6, 0.3)
SB-INAR MSE 3.900 4.639 5.472 5.841 6.311 3.808 4.456 5.169 5.604 6.175

MAE 3.001 3.556 4.243 4.589 5.014 3.013 3.515 4.066 4.409 4.829
Coverage 0.985 0.986 0.989 0.994 0.991 0.976 0.981 0.982 0.983 0.980

SB MSE 3.986 4.833 5.729 6.065 6.681 3.839 4.552 5.265 5.917 6.517
MAE 3.069 3.720 4.424 4.744 5.263 3.031 3.589 4.124 4.738 5.192
Coverage 0.974 0.979 0.981 0.982 0.990 0.979 0.983 0.979 0.976 0.978

Table 10: Forecasting results for CMPINAR(2) models, N = 100 and 250.

Predictions h = 1 h = 2 h = 3 h = 4 h = 5 h = 1 h = 2 h = 3 h = 4 h = 5
N = 100 N = 250

α = (0.3, 0.2, 0.1)
SB-INAR MSE 2.161 2.147 2.341 2.437 2.442 2.078 2.185 2.263 2.327 2.351

MAE 1.721 1.652 1.870 1.932 1.944 1.615 1.741 1.790 1.831 1.871
Coverage 0.977 0.982 0.992 0.989 0.988 0.983 0.984 0.985 0.983 0.987

SB MSE 2.174 2.130 2.336 2.373 2.408 2.076 2.221 2.230 2.291 2.345
MAE 1.716 1.643 1.845 1.862 1.870 1.609 1.762 1.734 1.793 1.857
Coverage 0.971 0.982 0.985 0.983 0.978 0.969 0.981 0.980 0.978 0.982

α = (0.4, 0.3, 0.2)
SB-INAR MSE 4.759 5.225 5.791 6.539 7.178 4.599 5.037 5.627 6.504 7.006

MAE 3.775 4.156 4.549 5.139 5.681 3.608 3.986 4.565 5.308 5.702
Coverage 0.966 0.982 0.986 0.985 0.984 0.964 0.973 0.982 0.975 0.972

SB MSE 4.656 5.177 5.548 6.070 6.494 4.470 4.777 5.017 5.569 5.928
MAE 3.671 4.093 4.355 4.744 5.087 3.476 3.798 4.006 4.470 4.640
Coverage 0.968 0.982 0.983 0.989 0.992 0.964 0.981 0.989 0.983 0.981

Table 11: Forecasting results for CMPINAR(3) models, N = 100 and 250.
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Appendix

Predictions h = 1 h = 2 h = 3 h = 4 h = 5
N = 500

α = (0.3, 0.2)
SB-INAR MSE 2.771 2.721 2.890 2.942 3.055

MAE 2.205 2.137 2.260 2.322 2.403
Coverage 0.962 0.972 0.973 0.971 0.968

SB MSE 2.746 2.725 2.886 2.941 3.083
MAE 2.185 2.137 2.241 2.305 2.407
Coverage 0.952 0.961 0.968 0.962 0.954

α = (0.4, 0.3)
SB-INAR MSE 3.340 3.453 3.810 3.966 4.181

MAE 2.704 2.756 3.052 3.177 3.327
Coverage 0.970 0.977 0.986 0.971 0.970

SB MSE 3.317 3.451 3.756 3.872 4.108
MAE 2.666 2.726 2.997 3.083 3.200
Coverage 0.971 0.969 0.981 0.976 0.968

α = (0.6, 0.3)
SB-INAR MSE 4.749 5.679 6.535 7.126 7.407

MAE 3.799 4.473 5.237 5.601 5.874
Coverage 0.978 0.977 0.980 0.982 0.978

SB MSE 4.816 5.794 6.825 7.618 8.252
MAE 3.866 4.569 5.480 6.099 6.749
Coverage 0.982 0.978 0.980 0.975 0.975

Table 12: Forecasting results for POINAR(2) models, N = 500

24



Predictions h = 1 h = 2 h = 3 h = 4 h = 5
N = 500

α = (0.3, 0.2)
SB-INAR MSE 3.353 3.547 3.833 3.813 3.781

MAE 2.717 2.825 3.046 3.029 3.013
Coverage 0.999 0.997 0.996 0.996 1.000

SB MSE 3.314 3.561 3.807 3.817 3.760
MAE 2.681 2.833 3.039 3.025 3.005
Coverage 0.993 0.993 0.990 0.987 0.995

α = (0.4, 0.3)
SB-INAR MSE 4.405 4.909 5.264 5.623 5.835

MAE 3.510 3.949 4.187 4.452 4.659
Coverage 0.999 0.997 1.000 0.998 0.998

SB MSE 4.395 4.858 5.274 5.592 5.861
MAE 3.516 3.916 4.176 4.409 4.665
Coverage 0.996 0.995 0.995 0.995 0.995

α = (0.6, 0.3)
SB-INAR MSE 8.067 9.350 10.564 11.652 12.397

MAE 6.395 7.460 8.501 9.279 9.795
Coverage 0.993 0.995 0.998 0.995 0.997

SB MSE 7.950 9.171 10.327 11.348 11.970
MAE 6.300 7.324 8.263 8.941 9.404
Coverage 0.988 0.993 0.997 0.993 0.996

Table 13: Forecasting results for BINAR(2) models, N = 500
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Predictions h = 1 h = 2 h = 3 h = 4 h = 5
N = 500

α = (0.3, 0.2)
SB-INAR MSE 5.176 5.686 5.871 5.749 5.931

MAE 4.115 4.555 4.687 4.528 4.671
Coverage 0.971 0.966 0.973 0.974 0.969

SB MSE 5.195 5.701 5.850 5.770 5.932
MAE 4.129 4.564 4.664 4.529 4.641
Coverage 0.971 0.959 0.969 0.964 0.965

α = (0.4, 0.3)
SB-INAR MSE 6.147 6.528 6.885 7.353 7.422

MAE 4.678 5.094 5.399 5.665 5.831
Coverage 0.968 0.970 0.978 0.973 0.977

SB MSE 6.172 6.573 6.962 7.409 7.494
MAE 4.695 5.116 5.457 5.672 5.845
Coverage 0.963 0.964 0.975 0.969 0.975

α = (0.6, 0.3)
SB-INAR MSE 8.493 9.906 11.495 12.564 13.218

MAE 6.663 7.880 9.120 9.952 10.540
Coverage 0.973 0.970 0.980 0.974 0.983

SB MSE 8.464 9.692 11.123 12.065 12.572
MAE 6.640 7.629 8.768 9.482 9.918
Coverage 0.962 0.979 0.980 0.976 0.984

Table 14: Forecasting results for NBINAR(2) models, N = 500
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Predictions h = 1 h = 2 h = 3 h = 4 h = 5
N = 500

α = (0.3, 0.2)
SB-INAR MSE 1.770 1.883 1.921 2.045 1.963

MAE 1.359 1.453 1.463 1.562 1.546
Coverage 0.984 0.978 0.987 0.979 0.980

SB MSE 1.758 1.880 1.950 2.067 1.969
MAE 1.356 1.432 1.484 1.554 1.525
Coverage 0.971 0.969 0.980 0.969 0.971

α = (0.4, 0.3)
SB-INAR MSE 2.344 2.483 2.761 2.879 2.922

MAE 1.832 1.948 2.208 2.271 2.341
Coverage 0.978 0.982 0.980 0.975 0.986

SB MSE 2.359 2.497 2.674 2.785 2.852
MAE 1.842 1.957 2.112 2.190 2.233
Coverage 0.975 0.980 0.975 0.977 0.984

α = (0.6, 0.3)
SB-INAR MSE 3.699 4.668 5.670 6.156 6.799

MAE 2.956 3.779 4.554 4.976 5.494
Coverage 0.977 0.980 0.959 0.974 0.968

SB MSE 3.646 4.446 5.333 5.627 5.974
MAE 2.910 3.528 4.237 4.473 4.731
Coverage 0.980 0.985 0.973 0.982 0.978

Table 15: Forecasting results for CMPINAR(2) models, N = 500

Predictions h = 1 h = 2 h = 3 h = 4 h = 5
N = 500

α = (0.3, 0.2, 0.1)
SB-INAR MSE 2.140 2.140 2.331 2.297 2.407

MAE 1.686 1.698 1.827 1.819 1.922
Coverage 0.973 0.985 0.985 0.988 0.987

SB MSE 2.121 2.157 2.322 2.297 2.402
MAE 1.658 1.704 1.802 1.795 1.893
Coverage 0.970 0.984 0.972 0.980 0.976

α = (0.4, 0.3, 0.2)
SB-INAR MSE 4.471 5.075 5.605 6.546 7.041

MAE 3.520 4.034 4.548 5.356 5.796
Coverage 0.961 0.969 0.978 0.958 0.963

SB MSE 4.366 4.710 4.987 5.627 5.694
MAE 3.424 3.687 3.950 4.484 4.560
Coverage 0.968 0.978 0.989 0.984 0.982

Table 16: Forecasting results for CMPINAR(3) models, N = 500

27


