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Abstract Modern Portfolio Theory dates back from the fifties, and quantitative
approaches to solve optimization problems stemming from this field have been pro-
posed ever since. We propose a metaheuristic approach for the Portfolio Selection
Problem that combines local search and Quadratic Programming, and we compare
our approach with an exact solver. Search space and correlation analysis are per-
formed to analyse the algorithm’s performance, showing that metaheuristics can be
efficiently used to determine optimal portfolio allocation.

1 Introduction

Modern Portfolio Theory dates back to the 1950s and concerns wealth allocation
over assets: the investor has to decide which asset to invest in and by how much.
Many optimization problem have been formulated to express this principle, and the
main example is to minimize a risk measure for a given minimum required target
return. Variance of portfolio’s return was used as risk measure in the seminal work by
Markowitz [25] and is still the most used, even though there exists a wide literature
about risk measures to be implemented.

Portfolio Selection Problem (PSP) can be viewed as an optimisation problem,
defined in terms of three objects: variables, objective, and constraints. Every object
has to be instantiated by a choice in a set of possible choices, the combination ofwhich
induces a specific formulation (model) of the problem, and different optimisation
results. For instance, as observed by di Tollo and Roli [8], two main choices are
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possible for variable domains: continuous [15, 28, 29, 31] and integer [22, 30].
Choosing continuous variables is a very ‘natural’ option and leads to a representation
independent of the actual budget, while integer values (ranging between zero and the
maximum available budget, or equal to the number of ‘rounds’) makes it possible to
add constraints taking into account actual budget, minimum lots and to tackle other
objective functions to capture specific features of the problem at hand. As for the
different results, the integer formulation is more suitable to explain the behaviour
of rational operators such small investors, whose activity is strongly influenced by
integer constraint [23].

In addition, the same representation can bemodelled bymeans of different formu-
lations, e.g., by adding auxiliary variables [21], symmetry breaking [27] or redundant
[32] constraints, which may provide beneficial effects on, or on the contrary harm,
the efficiency of the search algorithms yet preserving the possibility of finding an
optimal solution.

In this work we investigate how the use of different formulations for the very
same problem can lead to different behaviours of the algorithm used.We address this
question by solving the PSP by means of metaheuristic techniques [4, 8], which are
general problem-solving strategies conceived as high level strategies that coordinate
the behaviour of lower level heuristics. Althoughmostmetaheuristics can not return a
proof of optimality of the solution found, they represent a good compromise between
solution quality and computational effort. Through the use of metaheuristic, and
using the paradigm of separation between model and algorithm [17], we show that
different formulations affect algorithm performance and we study the reasons of this
phenomenon.

The paper will start by recalling Portfolio Theory in Sect. 2, before introducing
the concept of metaheuristics in Sect. 3. Then we will introduce a metaheuristic
approach for the Portfolio Selection Problem in Sect. 4. In Sect. 5 will briefly present
the principles of the search space analysis we perform. Search Space Analysis is
applied to instances of PSP and results are discussed in Sect. 6. Finally, we conclude
in Sect. 7.

2 Portfolio Selection Basis

We associate to each asset belonging to a set A of n assets (A = {a1, . . . , an}) a real-
valued expected return ri , and the corresponding return variance σi . We furthermore
associate, to each pair of assets 〈ai , a j 〉, a real-valued return covariance σi j . We are
furthermore given a value re representing the minimum required return.

In this context, a portfolio is defined as the n-sized real vector X = {x1, . . . , xn}
in which xi represents the relative amount invested in asset ai . For each portfolio
we can define its variance as

∑n
i=1

∑n
j=1 σi j xi x j and its return as

∑n
i=1 ri xi . In

the original formulation [25], PSP is formulated as the minimization of portfolio
variance, imposing that the portfolio’s return must be not smaller than re, leading to
the following optimisation problem:
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min
n∑

i=1

n∑

j=1

σi j xi x j , (1)

s.t.
n∑

i=1

ri xi ≥ re, (2)

n∑

i=1

xi = 1, (3)

xi ≥ 0 (i = 1, . . . , n). (4)

The aforecited return constrained is introduced in constraint (2); constraint (3) is
referred to as budget constraint, meaning that all the capital must be invested; con-
straint (4) imposes that variables have to be non-negative (i.e., short sales are not
allowed).

If we define a finite set of values for re and solve the problem for all defined re
values, we obtain theUnconstrained Efficient Frontier (UEF), in which theminimum
risk value is associated to each re.

This formulation may be improved to grasp financial market features, by intro-
ducing a binary variable Z for each asset (zi = 1 if asset i is on the portfolio, 0
otherwise). Additional constraints which can be added to the basic formulation are:

• Cardinality constraint, used either to impose an upper bound k to the cardinality
of assets in the portfolio

n∑

i=1

zi ≤ k, (5)

or to force the resulting portfolio to contain exactly k assets:

n∑

i=1

zi = kmax . (6)

This constraint is important for practitioners in order to reduce the portfolio man-
agement costs.

• Floor and ceiling constraints, used to set, for each asset, the minimum (εi ) and
maximum (δi ) quantity allowed to be held in the portfolio

εi zi ≤ xi ≤ δi zi . (7)

Those constraints are used to ensure diversification and to avoid tiny portions of
assets in the portfolios, which would make their management difficult and lead to
unnecessary transaction costs.
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• Preassignments. This constraint is used to express subjective preferences: we
want certain specific assets to be held in the portfolio, by determining a n-sized
binary vector P (i.e., pi = 1 if ai has to be held in the portfolio) and imposing the
following:

zi ≥ pi (i = 1, . . . , n). (8)

3 Metaheuristics

As stated in the Introduction, in this work we are solving the PSP by using meta-
heuristics [4], which can be defined as high-level strategies that coordinate the action
of low-level algorithms (heuristics) in order to find near-optimal solutions for com-
binatorial optimization problem. They are used when it is impossible to find the
certified optimum solution in a reasonable amount of time, and their features can be
outlined as follows:

• They are used to explore the search space and to determine principles to guide the
action of subordinated heuristics.

• Their level of complexity ranges from a simple escape-mechanism to complex
populations procedures.

• They are stochastic, hence escape and restart procedures have to be devised in the
experimental phase.

• The concepts they are built upon allow an abstract descriptions, that is useful to
design hybrid procedures.

• They are not problem-specific, but additional components may be used to exploit
the structure of the problem or knowledge acquired during the search process.

• They may make use of problem-specific knowledge in the form of heuristics that
are controlled by the upper level strategy.

The main paradigm metaheuristics are build upon is the intensification-
diversification paradigm, meaning that they should incorporate a mechanism to bal-
ance the exploration of promising regions of the search landscape (intensification)
and the identification of new areas in the search landscape (diversification). The way
of implementing this balance is different depending on the specific metaheuristic
used. A completed description is out of the scope of this paper, and we forward the
interested reader to Hoos and Stuetzle [18].

4 Our Approach for Portfolio Choice

We are using the solver introduced by di Tollo et al. [7, 9] to tackle a constrained
PSP, in which the Markowitz’ variance minimisation in a continuous formulation is
enhanced by adding constraints (4), (6) and (7), leading to the following formulation:
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min
n∑

i=1

n∑

j=1

σi j xi x j , (9)

subject to
n∑

i=1

ri xi ≥ re, (10)

n∑

i=1

xi = 1, (11)

xi ≥ 0 i = 1 . . . n, (12)

kmin ≤
n∑

i=1

zi ≤ kmax , (13)

εi zi ≤ xi ≤ δi zi , (14)

xi ≤ zi i = 1 . . . n. (15)

where kmin and kmax are respectively lower and upper bounds on cardinality. This
problem formulation contains two classes of decision variables: integer (i.e., Z ) and
continuous (i.e., X ). Hence, it is possible to devise an hybrid procedure in which each
variable class is tackled by a different component. Starting from this principle, we
have devised a master–slave decomposition, in which a metaheuristic procedure is
used in order to determine, for each search step, assets contained in the portfolio (Z ).
Once the assets contained in the portfolio are decided, the corresponding continuous
X values can be determined with proof of optimality. Hence at each step, after having
selected which assets to be taken into account, we are resorting to a the Goldfarb–
Idnani algorithm for quadratic programming (QP) [16] to determine their optimum
value. The stopping criterion and escape mechanism depend on the metaheuristic
used, which will be detailed in what follows.

As explained in Sect. 6, this master–slave decomposition has a dramatic impact
on the metaheuristic performance due to the different structure determined by this
formulation, in which the basin of attraction are greater than the ones determined by
a monolithic approach based on the same metaheuristic approaches. In what follows
we are outlining the components of our metaheuristic approach.

• Search space Since the master metaheuristic component takes into account the
Z variables only, the search space S is composed of the 2n portfolios that are
feasible w.r.t cardinality and pre-assignment constraints, while other constraints
are directly ensured by the slave QP procedure. If the QP procedure does not
succeed in finding a feasible portfolio, a greedy procedure is used to find the
portfolio with maximum return and minimum constraint violations.
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• Cost function In our approach the cost function corresponds to the objective
function of the problem σ 2, and is computed, at each step of the search process,
by the slave QP procedure.

• Neighborhood relationsAs in di Tollo et al. [9], we are using three neighborhood
relations in which the neighbor portfolio are generated by adding, deleting or
replacing one asset: the neighbor is created by defining the asset pair 〈i, j〉(i �= j),
inserting asset i , and deleting asset j . Addition is implemented by setting j = 0;
deletion is implemented by i = 0.

• Initial solution The initial solution must be generated to create a configuration of
Z . Since the we aim to generate an approximation of the unconstrained efficient
frontier, we are devising three different procedures for generating the starting port-
folio, which are used w.r.t. different re values: MaxReturn (in which the starting
portfolio corresponds to the maximum return portfolio, without constraints on the
risk);RandomCard (inwhich cardinality and assets are randomly generated); and
WarmRestart (in which the starting portfolio corresponds to the optimal solution
found for the previous re value). MaxReturn is used when setting the highest re
value (i.e., first computed value); for all other re values both RandomCard and
WarmRestart have been used.

4.1 Solution Techniques

As specific metaheuristics for the master procedure, we have used Steepest Descent
(SD), First Descent (FD) and Tabu Search (TS). SD and FD are considered as the
most simple metaheuristic strategies, since they accept the candidate solution only
when its cost function is better than the current one, otherwise the search stops. They
differ to each other in the neighborhood exploration, since in SD all neighbors are
generated and the best one is compared to the current solution, while in FD the first
better solution found is selected as current one. TS enhances this schema by selecting,
as the new current solution, the best one amongst the neighborhood, and using an
additional memory (Tabu list) in which forbidden states (i.e., former solutions) are
stored, so that they cannot be generated as neighbors. In our implementation, we
have used a dynamic-sized tabu list, in which solutions are put in the Tabu list for
a randomly generated period of time. The length range of the Tabu list has been
determined by using F-Race [3], and has been set to [3, 10].

The threemetaheuristics components have been coded inC++byLucaDiGaspero
and Andrea Schaerf and are available upon request.

As for the slave Quadratic programming procedure, we have used the Goldfarb
and Idnani dual set method [16] to determine the optimal X values corresponding to
Z values computed by the master metaheuristic component. This method has been
coded in C++ by Luca Di Gaspero: it is available upon request, and has achieved
good performances when matrices at hand are dense.

To sum up, the master metaheuristic component determines the actual configura-
tion of Z variables (i.e., point of the search space), the slaveQP procedure computes
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the cost of the determined configuration, which is accepted (or not) depending on
the mechanism embedded in FD, SD or TS.

4.2 Benchmark Instances

We have used instances from the repository ORlib (http://people.brunel.ac.uk/
~mastjjb/jeb/info.html) and instances used in Crama and Schyns [6], which have
been kindly provided to us by the authors. The UEF for the ORlib instances is pro-
vided in the aforementioned website; the UEF for instances from Crama and Schyns
[6] has been generated by us by using our slave QP procedure. In both cases, the
resulting UEF consists of 100 portfolios corresponding to 100 equally distributed re
values. Benchmarks’ main features are highlighted in Table1.

By measuring the distance of the obtained frontier (CEF) from the UEF we obtain
the average percentage loss, which is an indicator of the solution quality and which
is defined as:

apl = 100

p

p∑

l=1

(V (re) − VU (re))/VU (re) (16)

in which re is the minimum required return, p is the frontier cardinality, V (re) and
VU (re) are the values of the function F returned by the solver and the risk on the
UEF.

4.3 Experimental Analysis

Our experiments have been run on a computer equipped with a Pentium 4 (3.2 GHz),
and in what follows we are showing results obtained on both instance classes. In

Table 1 Our instances

ORlib dataset Crama and Schyns dataset

ID Country Assets AVG(UEF)risk ID Country Assets AVG(UEF)risk

1 Hong Kong
(Hang Seng)

31 1.55936 ×10−3 S1 USA
(DataStream)

20 4.812528

2 Germany
(DAX 100)

85 0.412213 ×10−3 S2 USA
(DataStream)

30 8.892189

3 UK (FTSE
100)

89 0.454259 ×10−3 S3 USA
(DataStream)

151 8.64933

4 USA (S&P
100)

98 0.502038 ×10−3

5 Japan
(NIKKEI)

225 0.458285 ×10−3

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 2 Results over ORlib instances

Inst. FD+QP SD+QP TS+QP TS [29] GA+QP [26]

Min apl Time Min apl Time Min apl Time Min apl Time Min apl Time

1 0.00366 1.5 0.00321 3.1 0.00321 29.1 0.00409 251 0.00321 415.1

2 2.66104 9.6 2.53139 14.1 2.53139 100.9 2.53617 531 2.53180 552.7

3 2.00146 10.1 1.92146 16.1 1.92133 114.4 1.92597 583 1.92150 886.3

4 4.77157 11.2 4.69371 18.8 4.69371 130.5 4.69816 713 4.69507 1163.7

5 0.24176 25.3 0.20219 45.9 0.20210 361.8 0.20258 1603 0.20198 1465.8

Table 3 Results over Crama and Schyns instances

Inst. FD+QP SD+QP TS+QP SA [6]

apl Time apl Time apl Time apl Time

S1 0.72 0.094 0.3 0.35 0.0 1.4 0.35 0.0 4.6 1.13 0.13 3.2

S2 1.79 0.22 0.5 1.48 0.0 3.1 1.48 0.0 8.5 3.46 0.17 5.4

S3 10.50 0.51 10.2 8.87 0.003 53.3 8.87 0.0003 124.3 16.12 0.43 30.1

order to assess the quality of our approach, in the following tables we also report
results obtained by other works tackling the same instances. Table2 reports results
over ORlibinstances, showing that our approach outperforms the metaheuristic
approach by Schaerf [29], and compares favourably with Moral-Escudero et al. [26].

Table3 compares our results with the one by Crama and Schyns [6]: solutions
found by our hybrid approach have better quality than the ones found by SA [6], but
running times are higher, due to ourQPprocedure and to our complete neighbourhood
exploration, which are not implemented by Crama and Schyns.

We have also compared our approach with Mixed Integer Non-linear
Programming (MINLP) solvers, by encoding the problem in AMPL [14] and solving
it using CPLEX 11.0.1 and MOSEK 5. We have run the MINLP solvers over ORLib
instances, and compared their results with SD+QP (10 runs), obtaining the same
solutions in the three approaches, hence showing that our approach is able to find the
optimal solution in a low computational time. Computational times for SD+QP and
for theMINLP solvers are reported in Table4 and in Fig. 1.We can notice that for big-
sized instances exact solvers require higher computation time to generate points in
which cardinality constraints are binding (i.e., left part of the frontier). Our approach
instead scales very well w.r.t. size and provides results which are comparable.

We can conclude this section by observing that SD+QP provides as satisfactory
results as themore complex TS+QP. Since Tabu Search is conceived to better explore
the search space, this can be considered rather surprising. The next sections will
enlighten us about this phenomenon.
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Table 4 Computational times over ORLib instances 1–4, SD+QP and MINLP

Instance Avg(SD+QP) (s) CPLEX 11 (s) MOSEK 5 (s)

1 3.1 2.1 15.8

2 14.7 397.1 5.0

3 18.0 890.7 1,903.3

4 20.9 169,461.0 239,178.4
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Fig. 1 Computational time: comparison between SD+QP and MINLP approaches over ORLib
Instances. a Instance 2. b Instance 3

5 Search Space Analysis

The search process executed by a metaheuristic method can be viewed as a prob-
abilistic walk over a discrete space, which in turn can be modelled as a graph: the
vertices (usually named ‘nodes’ in this case) of the graph correspond to candidate
solutions to the problem, while edges denote the possibility of locally transforming a
solution into the other by means of the application of a local move. Therefore, algo-
rithm behaviour depends heavily on the properties of this search space. A principled
and detailed illustration of the most relevant techniques for search space analysis can
be found in the book by Hoos and Stützle [18].

In this work we focus on a specific and informative feature of the search space,
the basin of attraction (BOA), defined in the following.
Definition Given a deterministic algorithm A , the basin of attraction B(A |s) of
a point s, is defined as the set of states that, taken as initial states, give origin to
trajectories that include point s.

Let S∗ be the set of global optima: for each s ∈ S∗ there exist a basin of attrac-
tion, and their union I ∗ = ⋃

i∈S∗ B(A |i) contains the states that, taken as a starting
solution, would have the search provide a certified global optimum. Hence, if we
use a randomly chosen state as a starting solution, the ratio |I ∗|/|S| would measure
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the probability to find an optimal solution. As a generalization, we are defining a
probabilistic basin of attraction as follows:

Definition Given a stochastic algorithm A , the basin of attraction B(A |s; p∗) of
a point s, is defined as the set of states that, taken as initial states, give origin to
trajectories that include point s with probability p ≥ p∗. Accordingly, the union of
the BOA of global optima is defined as I ∗(p) = ⋃

i∈S∗ B(A |i; p). It is clear that
that B(A |s) is a special case for B(A |s; p∗), hence in what follows we are using
B(s; p∗) instead of B(A |s; p∗), without loss of generalization. When p∗ = 1 we
want to find solutions belonging to trajectories that ends in s. Notice thatB(s; p1) ⊆
B(s; p2) when p1 > p2.

Topology and structure of the search space have a dramatic impact on the effec-
tiveness of a metaheuristic, and since the aim is to reach an optimal solution, the need
of an analysis of BOA features arises.Note that our definition of basins of attraction
enables both a complete/analytical study—when probabilities can be deducted from
the search strategy features—and a statistical/empirical analysis (e.g., by sampling).

In our metaheuristic model, we define BOAs as sets of search graph nodes. For
this definition to be valid for any state of the search graph [2], we are relaxing the
requirement that the goal state is an attractor. Therefore, the BOA also depends on
the particular termination condition of the algorithm. In the following examples, we
will suppose to end the execution as soon as a stagnation condition is detected, i.e.,
when no improvements are found after a maximum number of steps.

6 Search Space Analysis for Portfolio Selection Problem

When solving an optimisation problem, a sound modelling and development phase
should be based on the separation between the model and the algorithm: this stems
from constraint programming, and several tools foster this approach (i.e., Comet
[17]). In this way, it is possible to draw information about the structure of the opti-
misation problem, and this knowledge can be used, for instance, for the choice of the
algorithm to be used. Up to the author’s knowledge, literature about portfolio selec-
tion by metaheuristics has hardly dealt with this aspect, though some attempts have
been made to study the problem structure. For instance, Maringer and Winker [24]
draw some conclusion about the objective function landscape by using a memetic
algorithm which embeds, in turn, Simulated Annealing (SA) [20] and Threshold Ac-
ceptance (TA) [11]. They compare the use of SAandTA inside thememetic algorithm
dealing with different objective functions: Value-at-Risk(Var) and Expected Short-
fall (ES) [8]. Their results indicates that TA is suitable when using VaR, while SA
performs best when using ES. An analysis of the search space is made to understand
this phenomenon.

Other works compare different algorithms on the same instance to understand
which algorithm perform best, and in what portion of the frontier. Amongst them,
Crama and Schyns [6] introduce three different Simulated Annealing strategies,
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showing that there is no clear dominance among them. Armañanzas and Lozano [1]
introduces Ant Colony Optimisation (ACO) [10], refining solutions with a greedy
search, comparing results with Simulated Annealing and Iterative Improvement, and
showing that ACO and SA performances greatly depends on the expected return (see
Sect. 2). A common way of tackling this analysis is to run the different algorithms,
and then to pool the obtained solutions. After this phase, the dominated solutions are
deleted and it is possible to understand which algorithm performs best w.r.t. a given
part of the frontier [5, 13].

The main shortcoming of these approaches is that they identify which algorithm
performs well in a given portion of the frontier, without explaining the motivation
beneath this behaviour. Hence, an additional effort has to be made to understand
the model and how it can affect the algorithm performance. In this section, we are
aimed in comparing different formulations for the PSP and in understanding how the
structure of the problem affects the algorithm’s performances through Search Space
Analysis.

When using a metaheuristic, search space analysis represents an effective tool to
assess the algorithm performances and the instance hardness. In what follows we are
discussing results obtained over real instances and over hard-handmade instances
in order to outline the connections between search space analysis and algorithm
performances.

Analysis for Real Instances

We define five equally distributed re values, referred to as Ri (i = 1 . . . 5) and we
analyse the search space corresponding to each ri over the five ORlib instances in
order to assess the local minima distribution, that is an indicator of the search space
ruggedness. This concept is important since it has been shown that there exists a neg-
ative correlation between ruggedness and metaheuristic performances [18]. We have
implemented and run a deterministic version of SD (referred to as SDdet ) to estimate
the number of minima of an instance of the problem discussed in Sect. 4, which
combines continuous variables x with integer variables z. As for the constraints, we
have set both a minimum (kmin) or a maximum (kmax ) bound on cardinality in order
to understand the differences arising when using a maximum or strict cardinality
constraint. As for determining the initial states, we have resorted either to complete
enumeration (if the instance at hand is small) or to uniform sampling.

Results are shown in Table5, where we report the number of the different local
minima found by 30 runs of SDdet . Dashed entries mean that no feasible solution
exists.

Results indicate that instances at hand show a small number of local minima and
only one global minimum. This clearly indicates a situation in which the search land-
scape is rather smooth, and explains why different strategies such TS and FD/SD lead
to similar optimization results: since local optimum are few and far between, there is
no need of using complex strategies or escape mechanisms, since the probability of
meeting a trajectory leading to one of the optima are quite high. We recall that those
values have been found by using a deterministic version of SD, and their inverse
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Table 5 Instance 4, number of minima found

kmin, kmax R1 = 0.00912 R2 = 0.00738 R3 = 0.00556 R4 = 0.00375 R5 = 0.00193

1,3 1 1 1 1 1

1,6 1 1 1 5 1

1,10 1 1 1 1 3

3,3 1 1 3 5 3

6,6 – 1 1 2 1

10,10 – 1 1 3 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

01
79

0
0.

00
01

79
4

rBOA

ris
k

Fig. 2 Instance 4: BOA analysis. kmin = 1, kmax = 10, R = 0.00375

represents an upper bound on the probability to reach the certified optimum when
using the stochastic SD and TS defined in Sect. 4.1.

We conclude that when using our formulation, global minima have a quite large
BOA. A pictorial view of an example of this is provided in Fig. 2, where segments
length corresponds to rBOA (i.e., ratio between size of BOA(s) and search space size)
and their y-value corresponds to the minimum found: global minima rBOA ranges
from 30 to 60%.

Search space autocorrelation

A further analysis of the search space with respect to the study of BOA is the estima-
tion of the autocorrelation of the search landscape [19]. This measure estimate the
extent to which a local move from a solution leads to a destination state with similar
objective function value. Smooth landscape, where it is easy to move towards better
solutions, are characterized by a high autocorrelation value; conversely, low autocor-
relation values are typical of landscape in which the search if often trapped in local
optima or anyway very loosely guided towards good solution just by exploring the
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Table 6 Autocorrelation of lag k = 1, . . . 10 estimated for the three instances

Lag Instance 2 Instance 3 Instance 4

1 0.99 0.95 0.91

2 0.98 0.90 0.90

3 0.97 0.86 0.87

4 0.97 0.81 0.86

5 0.96 0.76 0.77

6 0.95 0.70 0.75

7 0.94 0.65 0.73

8 0.93 0.61 0.72

9 0.93 0.55 0.69

10 0.92 0.50 0.57

neighbor of incumbent solutions. The autocorrelation of the search space may help
elucidating the differences among algorithm performance across different instances,
providing further bits of information besides the BOA analysis.

The autocorrelation of a series G = (g1, . . . , gm) of objective function values is
computed as

r =
∑m−1

k=1 (gk − g) · (gk+1 − g)
∑m

k=1 (gk − g)2
,

where g is the average value of the series. This definition refers to the autocorrelation
of length one, i.e., that corresponding to series generated by sampling neighbouring
states at distance 1 in the search space. In general, we can consider the autocorrelation
of lag k.

We performed a random walk of 1000 steps over the search space in the case of
the three instances considered in this study and computed the autocorrelation of lag
k = 1, 2, . . . 10. In this way we can estimate with more precision the hardness of
each instance. Results are shown in Table6. As we can observe, the autocorrelation
value for k = 1 is quite high for all the three instances, confirming the fact that in
general the instances are quite easy for this combination of model and algorithm,
as already observed in the case of BOA analysis. However, some differences can be
observed considering the autocorrelation decay when the lag increases: instance 2 is
by far the one with the highest autocorrelation, while we observe that instance 3 has
a faster decrease with respect to the other two instances, making search slightly more
difficult in case that the initial solution is not in the BOA of the optimal solution.

In conclusion, we can confirm that the three instances are considerably easy for
local search. In the next paragraph we will show that the same problem, modeled in
a different way, leads to different basin of attractions.



34 G. di Tollo and A. Roli

Monolithic Search Basin of Attraction

In the previous paragraph we have shown that, when using our problem formulation,
the BOAs of local optima are quite big, making the search landscape smooth and
the problem easy to be tackled by our hybrid solver. BOAs depend on the search
strategy used and on the problem formulation, and this can be shown by running a
different strategy, i.e., amonolithic one, on the same problem instances.We have used
a SD based on a variant of Threshold Accepting [12], in which only a variable class
is considered, i.e., w variables corresponding to actual asset weights. The desired
outcome of this problem is the same as the previously introduced one, but they are
represented in a different way. In the following we explain the main features of this
metaheuristic approach:

• Search Space Themaster–slave decomposition is not used anymore, and a state is
represented by a sequenceW = w1 . . .wn such that wb corresponds to the relative
amount invested in asset b. Furthermore, the portfolio has to be feasible w.r.t.
cardinality, budget, floor and ceiling constraints.

• Neighborhood relations A given amount (step) is transferred from asset a to
another b, no matter if b is already in the portfolio or not. If this leads one asset
value to be smaller than εi , its value is set to εi . If the move consists in decreasing
the value of an asset being set to εi , its value is set to 0.

• Initial solution The initial solution has to be feasible w.r.t. cardinality, budget,
floor and ceiling constraints and is always created from scratch.

• Cost Function As for the cost function we are using a penalty approach, hence it
is given by adding the degree of constraints violations to the portfolio risk.

• Local Search Strategies SD that explores the space of w variables.
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Fig. 3 Two ORlib instances: Monolithic BOA analysis with different constraints. a Instance 4:
kmin = 1, kmax = 10, R = 0.00375. b Instance 4: kmin = 1, kmax = 6, R = 0.00193
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Results about BOAs analysis for this approach are shown in Fig. 3. Even from
visual inspection only, it turns out that the number of local minima is dramatically
higher than the one corresponding to the master–slave approach; furthermore basin
of attraction are tiny, and the certified optimum has not been found.

Analysis for artificial instances

In the previous paragraph we have shown that, for the PSP we are solving, instances
at hand are easy to solve, since our master–slave decomposition leads to search
spaces with a small number of local optima with huge BOAs. Hence, there is no
need for complex approaches and escape mechanisms, and this explains why simple
metaheuristics performances are comparable with more sophisticated one such TS.
Furthermore, preliminary analysis have suggested us that this is a common feature
in financial market related instances: this could be considered as a good point for
practitioners, but makes impossible to test the robustness of our approach, in which
we have developed TS+QP in order to tackle more difficult instances. Hence, we
have designed an artificial hand-made instance featuring a huge number of minima
with tiny BOAs, containing an even number n of assets i , in which ri = 1∀i and
whose covariance matrix is depicted here above.

It is easy to see that for every re the best portfolio contains the first two assets
only, but also that portfolios consisting of assets i (odd) and i + 1 only are local
optima, since all their neighbors feature higher risk.

It can be shown show that it is necessary to visit a portfolio s having z1 = 1 or
z2 = 1 to reach the global optimum s∗. Furthermore, portfolios containing an odd
asset i (i > 1) whose zi = 1 and zi+1 = 1 will never entry in a trajectory in which
this couple would be removed. Hence,B(s∗) contains all portfolios featuring z1 = 1
or z2 = 1, and in which there is no i odd and > 1 such that zi = 1 and zi+1 = 1. In
this case, rBOA(s∗) is inversely proportional to n.
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By running our master–slave approach over this instance (εi = 0.01 and δi = 1
for i = 1 . . . n) we have remarked that TS+QP easily find a solution comparable to
that provided by CPLEX, while SD and FD performances are greatly affected by the
starting solution (and anyhow much poorer than TS+QP).

It has to be noticed that such an instance could be hardly found over real markets,
even its presence is not forbidden by structural properties, but when tackling it the
need of larger neighborhoods arises. Anyhow, no matter the neighborhood size, it is
always possible to devise artificial instances whose minima are composed by subsets
that have to be moved jointly.

From the Search Space Analysis conducted in this section, we may conclude that
different formulations (hybrid vs continuous only) lead to different Basin of Attrac-
tion analysis on the instances at hand. This turns into different algorithm behaviours.
The formulation that leads to a smooth search landscape (hybrid) can be tackled by
algorithms with weak diversification capabilities (i.e., SD in the proposed hybrid
formulation), whilst these algorithms are to be replaced by more sophisticated ones
when the search landscape becomes rugged (see the behaviour of SD in the mono-
lithic version). The artificial instance places itself in the middle of these phenomena,
as it provides room for the use of more complex strategies (i.e., TS) in the hybrid
case, due to the neighbor moves used which make the search to get stuck in the
first local optimum found, but when embedded in the continuous only formulation
doesn’t provide different performances from the real instances.

7 Conclusion

In this work we have used a metaheuristic approach to study the impact of different
formulations on the Portfolio Selection algorithm’s behaviour, and we have devised a
methodology to understand the root of the different behaviours (search space analysis
through BOA analysis). To this aim we have compared an approach based on a
master–slave decomposition with a monolithic approach. Results have shown that
the search space defined by the monolithic approach is quite rugged and need an
algorithm featuring an escape mechanism to be solved efficiently, whilst the hybrid
approach leads to a smoother search landscape to be explored efficiently also by
simpler algorithms such SD.
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