Small-sample inference on measures of
concordance for the Gaussian bivariate copula
with emphasis on Gini’'s gamma index

I nferenza asintotica per piccoli campioni per I'indice
gamma di Gini nella copula bivariata Gaussiana

Mameli, V. and Brazzale, A. R.

Abstract Likelihood-based small-sample procedures to compute @ende inter-
vals for measures of concordance in a Gaussian bivariatdaape presented, with
special emphasis on Gini's gamma index.

Abstract Nel presente lavoro proponiamo I'uso di metodi asintotii piccoli cam-
pioni basati sulla funzione di verosimiglianza per derizamtervalli di confidenza
per I'indice di Gini in una copula bivariata normale.
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1 Introduction

Copula functions are useful tools to construct bivariasritiutions as well as multi-
variate ones; see [11]. They are key tools in numerous fiéldgication as diverse
as Biology, Genetics, and medical research to model depémndedom variables.
In these fields small sample sizes are rather common. Hoyevéris well known,

inference based on the classical first order approximaticeng produce unreliable
results when sample sizes are small. Higher order appraéxinsathen provide ap-
preciably better solutions; see [2] and reference thef@ur.research will address
the construction of small-sample confidence intervals dasethe findings of [4]

for measures of concordance of a bivariate Gaussian coprtalioth the frequen-
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tist and the Bayesian point of view.

More specifically, the problem we are going to tackle is defias follows. Let
F(x,y) be a joint cumulative distribution function with marginalraulative distri-
butionsF;(x) andF,(y). For all real(x,y), the bivariate normal copul@ is defined
as

C(F1(X), Fa(y);p) = @2 (@ 1 (Fu(¥), @ H(Ra(y))ip), p€(-11), (1)

whered,(-,-;p) and®(-) are respectively the distribution function of the bivagiat
standard normal distribution with correlation paramet@nd the distribution func-
tion of the univariate standard normal distribution. Theu&dan copula reduces to
the bivariate standard normal distribution whaiix) = ®@(x) andF(y) = ®(y), i.e.
when both margins are standard normal.

Among the most important measures of concordance for tlaibte normal copula
we focus our attention on the construction of small-sampldidence intervals for
Gini's gamma index [5], whose expression can be found ineddderm and depends
on the correlation coefficien (see [7]):

y(p) = iarcsin(él1 (\/(1+P)(3+P) - \/(1—0)(3_p)))' @

Although here we concentrate on Gini's index, our proposakdly applies to other
measure of concordance such as Kendall’s tau, Spearman’'sind Blomqgvist's
beta. Note that for the bivariate Gaussian copula, Kersd&dlas and Blomqgvist's
beta coincide ([7]). Note also that all these measures arplately determined by
the copula, i.e. they are independent of the margins ([10]).

The paper is organized as follows. Section 2 reviews likadibased small-
sample asymptotics. Section 3 investigates the perforenahour method through
a simulation study.

2 Background theory

Given a parametric statistical model with density functfdy; 8), lety = (y1,...,Yn)
be a vector of independent observations afd- (,A) ak-dimensional parame-
ter, wherey is the scalar interest parameter anis ak — 1-dimensional nuisance
parameter. Let.(6) O f(y;8) andl(08) = logL(0) denote the likelihood and the
log-likelihood functions, respectively. Inference foetparametery can be based
on the signed likelihood root

r(@) = sign(@ — ) /2(1p(§) —1p(W)),

wherel (@) =1 (éw) denotes the profile log-likelihood aréq, = (w,f\q,) represents
the constrained maximum likelihood estimate. The signkeeliiood root pivot is
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asymptotically normal up to the order?/2. It provides satisfactory approximations
for large sample sizes, but can be rather inaccurate fol smad. Improvements can
be obtained by using the modified signed likelihood root)([1]

() = r<w>+ﬁlog (TE;‘J’))) , 3)

which is asymptotically standard normal up to the ondle¥’2. From the Bayesian
point of view, a similar expression, which is asymptotigatandard normal up to
the ordem~3/2, is given by

B(W) = (W) + = log (‘“E‘("’)). (4)

r(y) r(y)

For the expressions of the correction temgsn (4) andq in (3) we refer the reader
to [4], [8], [2] and reference therein.

3 Confidence intervals for Gini's gamma index

In this section we consider the case where marginals arel@tamormals. By
using the results found for the correlation coefficignin the equi-correlated bi-
variate normal (see [3]) and the results for the bivariatemad (see [13] and
[6]), combined with the invariance property ofandr* under interest-respecting
re-parametrizations, we derive confidence intervals fori'&gamma index. The
method also applies to any other measure of concordanceddriariate Gaussian
normal copula. Confidence limits based on the normal apprations ofr, r* and
rg are established via pivot profiling; see [2].

3.1 Numerical assesment

In this section we provide a simulation study designed tessshe performance
of nominal 95% confidence intervals based upon the smalpkapivotsr* and
rg, and to compare these with those obtained from the larg@lsacounterpart.
The accuracy of the confidence intervals is evaluated ing@frempirical coverage
(CP), and upperWE) and lower LE) error probability.

Simulation 1 We explore the finite-sample performance of the confidentes-in
vals for Gini's gamma index in the equi-correlated bivagiabrmal model, while
emphasizing on small sample sizes. We specialize to the|cas®.7, o = 0.1,
whith p € {-0.9,-0.8,...,0.8,0.9}.
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Simulation 2 We investigate the finite-sample performance of confidentz-i
vals for Gini's gamma index for the complete bivariate ndrmadel, again while
emphasizing small sample sizes. We puse= 1, > = 2, 01 = 0.9, 0> = 0.1, while

p€{-009-038,...,0.8,0.9}.

Figures 1 and 2 plot the empirical coverage of the 95% confielémtervals for
Simulations 1 and 2, respectively.
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Fig. 1 Simulation 1. Empirical coverage of 95% confidence intervats/ffor varying values of
p and sample sizes From top left to bottom rightn =5, n=10,n = 15,n = 20. Legend: e
1st order; 4—3rd order; ®—Bayes; — nominal.
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Fig. 2 Simulation 2. Empirical coverage of 95% confidence intervais/ffor varying values of
p and sample sizes From top left to bottom rightn =5, n=10,n = 15,n = 20. Legend: e
1st order; 4A-3rd order; m—Bayes; — nominal.

4 Discussion and conclusions

Figures 1 and 2 both reveal that the small-sample pivogsidr; exhibit more reli-
able coverage than the confidence intervals obtained fremltérge-sample coun-
terpartr, although the Bayesian solutiog somewhat overestimates the nominal
level. The higher order solutions guarantee symmetry onaie The differences
among the pivots vanish as the sample size increases. Thdse are in agree-
ment with the results of a simulation study for the case ohasance parameters
which, because of space constraints, is not reported here.

As previously stated, we can use the proposed method fordtimation of any
other measure of concordance for the bivariate Gaussianal@opula. Although
in our simulation study we specialize to the case that botlgima are standard
normal, due to the invariance with respect to the two matgiis&ributions, the cur-
rent method does not depend on the specification of the nadsgifinally, note that
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our proposal can also be generalized to handle any type afl@dpr which the
measures of concordance can be found in closed form.
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