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Abstract Likelihood-based small-sample procedures to compute confidence inter-
vals for measures of concordance in a Gaussian bivariate copula are presented, with
special emphasis on Gini’s gamma index.

Abstract Nel presente lavoro proponiamo l’uso di metodi asintotici per piccoli cam-
pioni basati sulla funzione di verosimiglianza per derivare intervalli di confidenza
per l’indice di Gini in una copula bivariata normale.
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1 Introduction

Copula functions are useful tools to construct bivariate distributions as well as multi-
variate ones; see [11]. They are key tools in numerous fields of application as diverse
as Biology, Genetics, and medical research to model dependent random variables.
In these fields small sample sizes are rather common. However, as it is well known,
inference based on the classical first order approximationsmay produce unreliable
results when sample sizes are small. Higher order approximations then provide ap-
preciably better solutions; see [2] and reference therein.Our research will address
the construction of small-sample confidence intervals based on the findings of [4]
for measures of concordance of a bivariate Gaussian copula from both the frequen-
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tist and the Bayesian point of view.

More specifically, the problem we are going to tackle is defined as follows. Let
F(x,y) be a joint cumulative distribution function with marginal cumulative distri-
butionsF1(x) andF2(y). For all real(x,y), the bivariate normal copulaC is defined
as

C(F1(x),F2(y);ρ) = Φ2
(

Φ−1(F1(x)),Φ−1(F2(y));ρ
)

, ρ ∈ (−1,1), (1)

whereΦ2(·, ·;ρ) andΦ(·) are respectively the distribution function of the bivariate
standard normal distribution with correlation parameterρ and the distribution func-
tion of the univariate standard normal distribution. The Gaussian copula reduces to
the bivariate standard normal distribution whenF1(x) = Φ(x) andF2(y) = Φ(y), i.e.
when both margins are standard normal.
Among the most important measures of concordance for the bivariate normal copula
we focus our attention on the construction of small-sample confidence intervals for
Gini’s gamma index [5], whose expression can be found in closed form and depends
on the correlation coefficientρ (see [7]):

γ(ρ) =
4
π

arcsin

(

1
4

(

√

(1+ρ)(3+ρ)−
√

(1−ρ)(3−ρ)
)

)

. (2)

Although here we concentrate on Gini’s index, our proposal directly applies to other
measure of concordance such as Kendall’s tau, Spearman’s rho, and Blomqvist’s
beta. Note that for the bivariate Gaussian copula, Kendall’s tau and Blomqvist’s
beta coincide ([7]). Note also that all these measures are completely determined by
the copula, i.e. they are independent of the margins ([10]).

The paper is organized as follows. Section 2 reviews likelihood-based small-
sample asymptotics. Section 3 investigates the performance of our method through
a simulation study.

2 Background theory

Given a parametric statistical model with density functionf (y;θ), lety=(y1, . . . ,yn)
be a vector ofn independent observations andθ = (ψ,λ ) a k-dimensional parame-
ter, whereψ is the scalar interest parameter andλ is ak−1-dimensional nuisance
parameter. LetL(θ) ∝ f (y;θ) and l(θ) = logL(θ) denote the likelihood and the
log-likelihood functions, respectively. Inference for the parameterψ can be based
on the signed likelihood root

r(ψ) = sign(ψ̂ −ψ)
√

2(lp(ψ̂)− lp(ψ)),

wherelp(ψ) = l(θ̂ψ) denotes the profile log-likelihood and̂θψ = (ψ, λ̂ψ) represents
the constrained maximum likelihood estimate. The signed likelihood root pivot is
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asymptotically normal up to the ordern−1/2. It provides satisfactory approximations
for large sample sizes, but can be rather inaccurate for small ones. Improvements can
be obtained by using the modified signed likelihood root ([1])

r∗(ψ) = r(ψ)+
1

r(ψ)
log

(

q(ψ)

r(ψ)

)

, (3)

which is asymptotically standard normal up to the ordern−3/2. From the Bayesian
point of view, a similar expression, which is asymptotically standard normal up to
the ordern−3/2, is given by

r∗B(ψ) = r(ψ)+
1

r(ψ)
log

(

qB(ψ)

r(ψ)

)

. (4)

For the expressions of the correction termsqB in (4) andq in (3) we refer the reader
to [4], [8], [2] and reference therein.

3 Confidence intervals for Gini’s gamma index

In this section we consider the case where marginals are standard normals. By
using the results found for the correlation coefficientρ in the equi-correlated bi-
variate normal (see [3]) and the results for the bivariate normal (see [13] and
[6]), combined with the invariance property ofr and r∗ under interest-respecting
re-parametrizations, we derive confidence intervals for Gini’s gamma index. The
method also applies to any other measure of concordance for the bivariate Gaussian
normal copula. Confidence limits based on the normal approximations ofr, r∗ and
r∗B are established via pivot profiling; see [2].

3.1 Numerical assesment

In this section we provide a simulation study designed to assess the performance
of nominal 95% confidence intervals based upon the small-sample pivotsr∗ and
r∗B, and to compare these with those obtained from the large-sample counterpartr.
The accuracy of the confidence intervals is evaluated in terms of empirical coverage
(CP), and upper (UE) and lower (LE) error probability.

Simulation 1 We explore the finite-sample performance of the confidence inter-
vals for Gini’s gamma index in the equi-correlated bivariate normal model, while
emphasizing on small sample sizes. We specialize to the caseµ = 0.7, σ = 0.1,
whith ρ ∈ {−0.9,−0.8, . . . ,0.8,0.9}.
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Simulation 2 We investigate the finite-sample performance of confidence inter-
vals for Gini’s gamma index for the complete bivariate normal model, again while
emphasizing small sample sizes. We useµ1 = 1, µ2 = 2, σ1 = 0.9, σ2 = 0.1, while
ρ ∈ {−0.9,−0.8, . . . ,0.8,0.9}.

Figures 1 and 2 plot the empirical coverage of the 95% confidence intervals for
Simulations 1 and 2, respectively.
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Fig. 1 Simulation 1. Empirical coverage of 95% confidence intervals for γ for varying values of
ρ and sample sizesn. From top left to bottom right:n= 5, n= 10, n= 15, n= 20. Legend: –◦–
1st order; –△– 3rd order; –■– Bayes; — nominal.
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Fig. 2 Simulation 2. Empirical coverage of 95% confidence intervals for γ for varying values of
ρ and sample sizesn. From top left to bottom right:n= 5, n= 10, n= 15, n= 20. Legend: –◦–
1st order; –△– 3rd order; –■– Bayes; — nominal.

4 Discussion and conclusions

Figures 1 and 2 both reveal that the small-sample pivotsr∗ andr∗B exhibit more reli-
able coverage than the confidence intervals obtained from their large-sample coun-
terpartr, although the Bayesian solutionr∗B somewhat overestimates the nominal
level. The higher order solutions guarantee symmetry on thetails. The differences
among the pivots vanish as the sample size increases. These findings are in agree-
ment with the results of a simulation study for the case of no-nuisance parameters
which, because of space constraints, is not reported here.
As previously stated, we can use the proposed method for the estimation of any
other measure of concordance for the bivariate Gaussian normal copula. Although
in our simulation study we specialize to the case that both margins are standard
normal, due to the invariance with respect to the two marginal distributions, the cur-
rent method does not depend on the specification of the marginals. Finally, note that
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our proposal can also be generalized to handle any type of copula for which the
measures of concordance can be found in closed form.
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