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Abstract. Let G be a finite soluble group, and let h(G) be the Fitting length
of G. If ϕ is a fixed-point-free automorphism of G, that is CG(ϕ) = {1}, we
denote by W (ϕ) the composition length of 〈ϕ〉. A long-standing conjecture is
that h(G) ≤ W (ϕ), and it is known that this bound is always true if the order
of G is coprime to the order of ϕ. In this paper we find some bounds to h(G)
in function of W (ϕ) without assuming that (|G|, |ϕ|) = 1. In particular we
prove the validity of the “universal” bound h(G) < 7W (ϕ)2. This improves the
exponential bound known earlier from a special case of a theorem of Dade.
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§1. Introduction

In this paper we apply some results obtained in [2] to the study of finite
soluble groups with a fixed-point-free automorphism. We only deal with finite
soluble groups and so for us group will always mean “finite soluble group”. If
G is a group and ϕ ∈ Aut(G), then ϕ is called fixed-point-free if the centralizer

CG(ϕ) = {g ∈ G | gϕ = g}

is the trivial subgroup of G. We shall denote by h(G) the Fitting length of G,
by π(G) (resp. π(ϕ)) the set of prime divisors of |G| (of |〈ϕ〉|) and by w(G)
(resp. w(ϕ)) the cardinality of π(G) (of π(ϕ)). Also, we shall write W (ϕ) for the
composition length of 〈ϕ〉 (that is the number of prime divisors of |〈ϕ〉| counted
with their multiplicities). Sometimes we will write π, h, w and W instead of
π(G), h(G), w(ϕ) and W (ϕ) respectively, when there is no possible ambiguity.

If the order of ϕ is coprime to |G|, it was then proved, through a long series
of papers (see, in particular, [10], [12] and [13]), that

h(G) ≤W (ϕ).

Moreover if A is a solvable group of automorphisms of G and (|A|, |G|) = 1,
then

h(G) ≤ 2W (A) + h(CG(A)),
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by a result of Turull ([18]). So, if CG(A) = 1 (that is A is fixed-point-free), then
h(G) ≤ 2W (A) and in many cases h(G) ≤W (A) (Turull, [17] and [19]).

Here we turn our attention to the so called noncoprime case, in which the
hypothesis (|G|, |ϕ|) = 1 is omitted. If w(ϕ) = 1, then |ϕ| = pW (ϕ) (p a prime
number) and an easy argument shows that G is a p′-group. Hence we suppose
w(ϕ) ≥ 2 and this hypothesis will be often implicitly assumed. In this case, from
Theorem 8.4 of [4], we can deduce the exponential bound h(G) ≤ 5(2W − 1).
Our main result is.

Theorem 1.1 Let G be a group and let ϕ be a fixed-point-free automorphism
of G. If w(ϕ) ≥ 2, then

h(G) <
(
7w − 9

)
W.

The inequality proved in Theorem 1.1 is particularly satisfactory if w(ϕ) = 2,
as it provides the bound

h(G) < 5W

when the order of ϕ is divisible by only two primes.
Since w(ϕ) ≤W (ϕ), Theorem 1.1 easily implies the following

Corollary 1.2. Let G be a group and let ϕ be a fixed-point-free automor-
phism of G, then h(G) < 7W 2.

Furthermore, in some cases, the previous inequality may be improved, as,
for example, in the following two propositions.

Proposition 1.3. Let G be a group and let ϕ be a fixed-point-free automor-
phism of G. If |ϕ| = pαq with p and q distinct primes, then h(G) ≤ 3W + 1.

Proposition 1.4. Let G be a group and let ϕ be a fixed-point-free automor-
phism of G. If the order of ϕ is square-free and W (ϕ) ≥ 3, then

h(G) <
1

2

(
3W 2 − 7W

)
.

Remark 1.5. If the order of ϕ ∈ Aut(G) is square-free and W (ϕ) ≤ 3, then
the best possible bound

h(G) ≤W
was proven. If W = 1, then ϕ has prime order and it is well known that G is
nilpotent. If W = 2, then |ϕ| = pq (p, q primes, p 6= q) and in this case h(G) ≤ 2
by [3]. If W = 3, then |ϕ| = pqr (p, q, r primes, p 6= q 6= r 6= p) and h(G) ≤ 3
follows from [5].

We want to recall that a result of Ercan and Güloğlu (Theorem A of [6])
asserts that if G has odd order, A is abelian of squarefree exponent coprime to
6 and CG(A) = 1, then h(G) ≤W (A).

Using the above-mentioned result of Turull, we can generalize our Theorem
1.1 to
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Theorem 1.6. Let G be a group and let ϕ be an automorphism of G.
Suppose that (|CG(ϕ)|, |〈ϕ〉|) = 1, w(ϕ) ≥ 2 and h(CG(ϕ)) = h0, then

h(G) <
(
8w − 10

)
W +

3

2

(
w − 1

)
wh0.

We wish to emphasize that we have not wanted to optimize our bounds, but
only indicate a new method to obtain general results.

Remark 1.7. Let G be a group, let A a fixed-point-free nilpotent group of
automorphisms of G and let W = W (A). In his seminal paper [4] (Theorem
8.4), Dade proved that

h(G) ≤ 5
(
2W − 1

)
,

hence there is always a function Γ such that h(G) ≤ Γ(W ). Moreover Dade (in
Conjecture 2.9 of [4]) suggests that Γ can be chosen so that Γ(W ) = O(W ) as
W →∞.

Our Theorem 1.1 (and Corollary 1.2) shows that, in the particular case where
A is cyclic, Γ(W ) is at most quadratic in W (compare this result with the main
theorem of [16]). Furthermore we have the linear bound

sup

 h(G)

W (〈ϕ〉)

∣∣∣∣∣∣
ϕ ∈ Aut(G) is

fixed-point-free and
w(〈ϕ〉) = 2

 ≤ 5

thanks to the observation made after Theorem 1.1 (see Proposition 3.1).

Remark 1.8. We point out that if A is a fixed-point-free group of automor-
phisms of the group G at least one of the two hypotheses (1) A is nilpotent (2)
(|G|, |A|) = 1 is needed to bound h(G) by a function of W (A). Indeed in [1] it
is proved that if A is any finite non nilpotent group and H is any finite group,
then there exists a finite group G on which A acts fixed-point-freely, such that
H is a homomorphic image of G. Further, if H is soluble, so is G.

§2. Notation and preliminary results

In this paper we use the same notations employed in [2]. In particular if G
is a group, with {Gp}p∈π we denote a Sylow system of G, namely a set of Sylow
subgroups of G, one for any p ∈ π, such that GpGq = GqGp for every p, q ∈ π.
If σ is a subset of π, by σ-Hall subgroup of G we mean Gσ =

∏
p∈σ Gp and by

Gp′ we denote a π \ {p}-Hall subgroup of G.
The symbols π, w, W have already been defined. If σ is a set of primes, we

denote by `σ(G) (or by `σ) the σ-length of G and by `p(G) = `{p}(G) (or by
`p) the p-length of G ([14], 9.1.4).

A substantial tool for the proofs in this paper is the following result.
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Theorem 2.1. (Theorem 1.1 of [2]) Let G be a group and let σ, τ , υ be
three subsets of π(G) such that σ ∪ τ = τ ∪ υ = υ ∪ σ = π. Then

h(G) ≤ h(Gσ) + h(Gτ ) + h(Gυ)− 2.

In particular, if p, q ∈ π and p 6= q, then

h(G) ≤ h(Gp′) + h(Gq′) + h(G{p,q})− 2.

Theorem 2.1 is consequence of Theorem 2.3, a more general and technical
result, for which the following definition is needed.

Definition 2.2. Let G be a group and let t ≥ 3 be an integer. The set

R =
{
%1, %2, . . . , %t

∣∣ %i ⊆ π }
is called a t-cover if %i ∪ %j = π for every i, j ∈ {1, 2, . . . , t}, i 6= j. The weight
of a t-cover R is the number

Θ(R) =

t∑
i=1

h(G%i).

Theorem 2.3. (Proposition 3.1 of [2]) Let G be a group and let R be a
t-cover of π(G) of weight Θ, then

h(G) ≤ Θ− 2

t− 2
.

We now turn our attention to the structure of groups that admit particular
types of automorphisms.

Theorem 2.4. Let ϕ be a fixed-point-free automorphism of the group G,
then ϕ leaves invariant a unique p-Sylow subgroup P of G for each p ∈ π(G).
Furthermore, P contains every ϕ-invariant p-subgroup of G.

Proof. See Theorem 10.1.2 of [9]. 2

From Theorem 2.4 we can easily deduce that if G is soluble, then G admits
a (unique) ϕ-invariant Sylow system. We remark that, using the classification
of finite simple groups, Rowley ([15]) proved that any group admitting a fixed-
point-free automorphism is soluble.

Theorem 2.5. Let G be a group with a fixed-point-free automorphism of
order pα, p a prime. Then h(G) ≤ α.

Proof. This result is proved in [12] and [10] in the case where p is odd and
in [13] if p = 2. 2
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Lemma 2.6. Let G be a group and let ϕ be a fixed-point-free automorphism
of G of order pαk, where p is a prime number and k ∈ N with (p, k) = 1. If P
is a ϕ-invariant p-subgroup of G, then CP (ϕp

α

) = 1.

Proof. Suppose, arguing by contradiction, that CP (ϕp
α

) 6= 1. Then ϕ
induces on P0 = CP (ϕp

α

) an automorphism of order dividing pα and we have
CP0

(ϕ) 6= 1. 2

A result proved by Espuelas is essential in order to obtain our results.

Theorem 2.7. (Theorem 2.1 of [8]) Let G be a group admitting an auto-
morphism ϕ of order pα acting fixed-point-freely on every ϕ-invariant p′-section
of G, where p is an odd prime. Then `p(G) ≤ α+ 1 and h(G) ≤ 2α+ 1. These
bounds are best possible.

Theorem 2.7 is a sharp generalization of the following result, proved by
Hartley and Rae, valid also in the case p = 2.

Theorem 2.8. (Theorem 2 of [11]) Let G be a group admitting an automor-
phism ϕ of order pα acting fixed-point-freely on every ϕ-invariant p′-section of
G. Then `p(G) ≤ 2α.

The following fundamental result is due to Turull (see §1).

Theorem 2.9. (Corollary 3.2 of [18]) Let G be a group and let A be a soluble
subgroup of Aut(G) with (|G|, |A|) = 1. Then

h(G) ≤ 2W (A) + h(CG(A)).

We conclude this section with some more technical results.

Lemma 2.10. Let G be a {p, q}-group with p and q distinct primes. Let ϕ
be a fixed-point-free automorphism of G of order pαqβ, then

h(G) < 2W.

Moreover if p and q are odd, then

h(G) ≤W + 1.

Proof. By Theorem 2.4, in G there is a ϕ-invariant Sylow p-subgroup P
and a ϕ-invariant Sylow q-subgroup Q which are ϕ-invariant; we have G = PQ
because π(G) = {p, q}. Since p 6= q we can suppose, without loss of generality,
that q is odd. By Theorem 2.7 we deduce

h(G) ≤ 2β + 1 ≤ 2 ·max{α, β}+ 1 < 2W.

If also p is odd, then h(G) ≤ 2α+ 1, so

h(G) ≤ min{2α+ 1, 2β + 1} ≤ α+ β + 1 = W + 1,
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and the result follows. 2

It is well known that a group with a fixed-point-free automorphism of order
2 is abelian. From this fact we can derive

Lemma 2.11. Let q be an odd prime and let G be a {2, q}-group. If G admits
a fixed-point-free automorphism ϕ of order 2qα, then h(G) ≤ 3.

Proof. By Theorem 2.4, we can choose a ϕ-invariant Sylow q-subgroup Q
of G. By Lemma 2.6, ϕq

α

is a fixed-point-free automorphism of order 2 of Q,
and hence Q is abelian. From 9.3.7 of [14] we deduce `q(G) ≤ 1, and hence we
can conclude that h(G) ≤ 3. 2

The following lemma is needed in the proof of Theorem 1.6.

Lemma 2.12. Let G be a group, ϕ an automorphism of G and suppose that
(|CG(ϕ)|, |〈ϕ〉|) = 1. Then

(a) if N is a normal ϕ-invariant subgroup of G, then (|CG/N (ϕ)|, |〈ϕ〉|) = 1;

(b) for every p ∈ π(G) there is a ϕ-invariant Sylow p-subgroup of G.

Proof. We prove (a) arguing by induction on |G| + |N |. If N = 1, then
(a) is trivially verified, in particular the induction basis is proved and we can
suppose N 6= 1.

Let L 6= 1 be a normal minimal ϕ-invariant subgroup of G contained in
N . If L < N , then, by induction hypothesis (|CG/L(ϕ)|, 〈ϕ〉) = 1. Since
|G/L|+ |N/L| < |G|+ |N |, the induction hypothesis yields the conclusion.

Hence N is a (non trivial) minimal normal ϕ-invariant subgroup of G, in
particular N is an elementary abelian p-group for some p ∈ π(G).

Suppose, arguing by contradiction, that (|CG/N (ϕ)|, |〈ϕ〉|) 6= 1. Hence there
is a prime q ∈ π(〈ϕ〉) and an element y ∈ G such that y 6∈ N , yq ∈ N and
yy−ϕ ∈ N . If N〈y〉 < G then, applying the induction hypothesis to N〈y〉 we
obtain a contradiction, so G = N〈y〉. Furthermore CG(ϕ) is a p-group, since
π(G) = {p, q} and q ∈ π(〈ϕ〉). We now distinguish two cases.

• CN (ϕ) 6= 1. Let x ∈ CG(N), since N is abelian and yy−ϕ ∈ N , we have
yy−ϕ = (yy−ϕ)x = yx(yx)−ϕ and [x, y] = (y−1)xy = (yx)−ϕyϕ = [x, y]ϕ. This
shows that y normalizes CN (ϕ) and, since G = N〈y〉 and N is abelian, we can
conclude that CN (ϕ) E G. From the hypothesis that CN (ϕ) 6= 1 and from
the minimality of N we obtain N = CN (ϕ). Since yy−ϕ ∈ N we can write
yy−ϕ = x−1 for some x ∈ CN (ϕ); if n is the order of ϕ, then, as yϕ = xy,
applying n times ϕ we obtain y = yϕ

n

= xny, that is xn = 1. Since x ∈ CG(ϕ)
and (|CG(ϕ)|, n) = 1 we have x = 1 and y ∈ CG(ϕ). Then G = CG(ϕ) and
q ∈ π(G) ∩ π(〈ϕ〉), a contradiction.

• CN (ϕ) = 1. By Lemma 10.1.1 of [9], N = {x−1xϕ | x ∈ N} and we can
write yy−ϕ = x−1xϕ for some x ∈ N . Since xy ∈ CG(ϕ), xy is a p-element and

(xy)p
k

= 1 for some k ∈ N. If p 6= q then yp
k ∈ N and yq ∈ N implies y ∈ N ,

a contradiction. If p = q, then G is a q-group and q 6∈ π(CG(ϕ)) implies that

6



CG(ϕ) = 1. By Lemma 10.1.3 of [9], CG/N (ϕ) = 1, we have thus obtained the
contradiction yN ∈ CG/N (ϕ) = N and so we have proved (a).

In order to prove (b) we begin by observing that, if ϕ has prime power order
qk (q a prime, k ∈ N), then (|G|, q) = 1. We argue by induction on the order of
G (the basis is trivial). If G is an elementary abelian p-group for some prime
p, and if p = q, then CG(ϕ) 6= 1, against the hypothesis. Let N be a normal
elementary abelian ϕ-invariant p-subgroup of G, then p 6= q. By (a) in G/N we
have (|CG/N (ϕ)|, q) = 1 and, by the induction hypothesis, (|G/N |, q) = 1, so
(|G|, q) = 1.

We now prove (b) arguing by induction on |G| + |π(〈ϕ〉)|. If |π(〈ϕ〉)| = 1,
then the order of G is coprime to |〈ϕ〉| and (b) follows by 6.2.2 of [9], in particular
the induction basis is proved.

Fixed p ∈ π(G), our aim is to prove that there is a Sylow p-subgroup of
G which is ϕ-invariant. If Op(G) 6= 1 then, by (a), we can consider G/Op(G)
and we can easily conclude by induction hypothesis. Let N be a non trivial
minimal ϕ-invariant normal subgroup of G, then N is an elementary abelian
q-group for some q ∈ π(G) and q 6= p. By induction hypothesis in G/N there is
a ϕ-invariant Sylow p-subgroup and hence we can suppose G = NP , with P a
Sylow p-subgroup of G. If CN (ϕ) 6= 1, then q 6∈ π(〈ϕ〉), and hence p ∈ π(〈ϕ〉),
since otherwise (|G|, |〈ϕ〉|) = 1 and the conclusion follows by 6.2.2 of [9]. Write
|〈ϕ〉| = pkm with (p,m) = 1 and let ψ = ϕm. Let Γ = G〈ψ〉 be the semidirect
product of G by 〈ψ〉, then in Γ there is a Sylow p-subgroup Π such that ψ ∈ Π.
The subgroup G ∩ Π is normal in Π and hence CG∩Π(ψ) 6= 1, in particular
CG(ψ) 6= 1. Moreover CG(ψ) 6= G, as otherwise ϕ would have order m, coprime
to p, hence, by induction hypothesis, CG(ψ) contains a non trivial ϕ-invariant
Sylow p-subgroup P0. Let M be a ϕ-invariant p-subgroup of G of maximal
order and let P be a Sylow p-subgroup of G containing M . If M < P , then
NG(M) ≥ NP (M) > M . The two conditions Op(G) = 1 and M 6= 1 imply
NG(M) < G and, by the induction hypothesis, NG(M) contains a ϕ-invariant
subgroup of order greater than |M |. This forces M = P and (b) is proved. 2

Remark 2.13. Lemma 2.12 allows us to state that, if (|CG(ϕ)|, |〈ϕ〉|) = 1,
then G admits a ϕ-invariant Sylow system. In particular for every σ ⊆ π(G),
in G there is a ϕ-invariant Hall σ-subgroup.

Remark 2.14. Without the hypothesis (|CG(ϕ)|, |〈ϕ〉|) = 1, Lemma 5.9 is
no longer true. As a simple counterexample we can consider G ' S3 and ϕ the
inner automorphism of order 3.

§3. Proofs

Proposition 3.1. Let G be a group and let ϕ be a fixed-point-free automor-
phism of G of order pαqβ, with distinct primes p and q. Then

h(G) < 5W − 2;
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moreover if p and q are odd, then

h(G) ≤ 4W − 1.

Proof. Let J = PQ, H and K be respectively ϕ-invariant Hall subgroups of
G with π(J) = {p, q}, π(H) = {p}′ and π(K) = {q}′ (see Theorem 2.4 and the
remark made after it). By Lemma 2.10 we have that h(J) < 2W . If we consider
the action of ϕ on H, we see that ϕ acts as a fixed-point-free automorphism of

order qβ on CH(ϕq
β

) and hence h(CH(ϕq
β

)) ≤ β. Since
(
|H|, |ϕqβ |

)
= 1, by

Theorem 2.9 we deduce

h(H) ≤ 2α+ h(CH(ϕq
β

)) ≤ 2α+ β

and similarly h(K) ≤ α+ 2β. By Theorem 2.1 we obtain

h(G) ≤ h(J) + h(H) + h(K)− 2 < 5W − 2.

If p and q are odd, then, by Lemma 2.10, h(J) ≤W + 1, and hence we conclude
that h(G) ≤ 4W − 1. 2

Proof of Theorem 1.1. We argue by induction on w. Let |ϕ| =
∏w
i=1 p

αi
i

with αi ∈ N and pi distinct prime numbers. If w = 2, then the conclusion
follows from Proposition 3.1.

Suppose w ≥ 3, denote by Gi a ϕ-invariant Hall p′i-subgroup of G and write
〈ϕ〉 = 〈ϕ1〉 × 〈ϕ2〉 × . . .× 〈ϕw〉 with ϕi of order pαii , for i ∈ {1, 2, . . . , w}. Since
(|Gi|, |〈ϕi〉|) = 1, by the Turull’s Theorem 2.9 we have

h(Gi) ≤ 2W (ϕi) + h
(
CGi(ϕi)

)
= 2αi + h

(
CGi(ϕi)

)
.

The automorphism ψi induced on CGi(ϕi) by ϕ has order dividing |ϕ|/pαii , so
we have W (ψi) ≤W (ϕ)− αi and w(ψi) ≤ w(ϕ)− 1. The induction hypothesis
leads us to conclude that

h
(
CGi(ϕi)

)
<
(
7(w − 1)− 9

)(
W − αi

)
and h(Gi) < 2αi +

(
7(w − 1)− 9

)(
W − αi

)
.

An easy computation provides

w∑
i=1

h(Gi) ≤ 2W +
(
7(w − 1)− 9

)
(w − 1)W < (7w − 9)(w − 2)W,

and applying Theorem 2.3 we obtain

h(G) ≤

(∑w
i=1 h(Gi)

)
− 2

w − 2
< (7w − 9)W,

which concludes the proof. 2
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Remark 3.2. If, in Theorem 1.1, we suppose that |ϕ| is odd, then, thanks
to the Proposition 3.1, we can improve the bound for the Fitting length of G to

h(G) ≤ 2
(
3w − 4

)
W.

Proof of Proposition 1.3. By hypothesis |ϕ| = pαq, and hence W =
α + 1. We use the notation of the proof of Proposition 3.1. By Theorem 2.7
(if q is odd) and Lemma 2.11 (if q = 2) we obtain h(J) ≤ 3. Arguing as in the
proof of Proposition 3.1, we deduce h(H) ≤ 2α+ 1 and h(K) ≤ α+ 2. So

h(G) ≤ h(J) + h(H) + h(K)− 2 = 3α+ 4 = 3W + 1,

and the proof is complete. 2

Remark 3.3. In [7] it has been proven that if a group G has a fixed-point-
free automorphism of order pαq with (pq, 6) = 1 and if the Sylow 2-subgroups
of G are abelian, then h(G) ≤W (ϕ).

Proof of Proposition 1.4. We will proceed as in the proof of Theorem
1.1, using the same notation and adding the conditions

α1 = α2 = . . . = αw = 1.

If w = W = 3 then, by [5], we know that h(G) ≤ 3. If we suppose W ≥ 4,
we have

h(Gi) ≤ 2 + h
(
CGi(ϕi)

)
and, by the induction hypothesis,

h(Gi) ≤ 2 +
1

2

(
3(W − 1)2 − 7(W − 1)

)
=

1

2

(
3W − 7

)(
W − 2

)
,

so
∑W
i=1 h(Gi) ≤ 1

2

(
3W − 7

)(
W − 2

)
W . Now, by Theorem 2.3,

h(G) ≤

(∑W
i=1 h(Gi)

)
− 2

W − 2
<

(
3W − 7

)(
W − 2

)
W

2(W − 2)
=

1

2

(
3W 2 − 7W

)
,

and the theorem is proved. 2

The proof of Theorem 1.6 is very similar to that of Theorem 1.1; we report
it here for completeness.

Proof of Theorem 1.6. We use induction on w.
By Lemma 2.12 and Remark 2.13 we know that, for every σ ⊆ π(G), G

admits a ϕ-invariant Hall σ-subgroup.
Suppose w = 2, |ϕ| = pαqβ with p 6= q primes. Let J = PQ, H and K be

respectively ϕ-invariant Hall subgroups of G with π(J) = {p, q}, π(H) = {p}′
and π(K) = {q}′. By Theorem 2.9 we can write

h(J) ≤ min
{

2α+ h(CJ(ϕq
β

), 2β + h(CJ(ϕp
α

)
}
≤ 2α+ 2β + h0 = 2W + h0,
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h(H) ≤ 2α+ h(CH(ϕp
α

) ≤ 2α+ 2β + h0 = 2W + h0

and, as the roles of p and q can be exchanged, h(K) ≤ 2W + h0. By Theorem
2.1 we obtain

h(G) ≤ h(J) + h(H) + h(K)− 2 < 6W + 3h0,

so the induction basis is proved.
Suppose now w ≥ 3 and let |ϕ| =

∏w
i=1 p

αi
i . Denote by Gi a ϕ-invariant Hall

p′i-subgroup of G and write 〈ϕ〉 = 〈ϕ1〉× 〈ϕ2〉× . . .×〈ϕw〉 with ϕi of order pαii ,
for i ∈ {1, 2, . . . , w}. Since (|Gi|, |〈ϕi〉|) = 1, by the Turull’s Theorem 2.9 we
have

h(Gi) ≤ 2W (ϕi) + h
(
CGi(ϕi)

)
= 2αi + h

(
CGi(ϕi)

)
.

By induction hypothesis we can write

h
(
CGi(ϕi)

)
<
(
8w − 18

)(
W − αi

)
+

3

2

(
w − 2

)(
w − 1

)
h0

and an easy computation provides that

w∑
i=1

h
(
CGi(ϕi)

)
<
(
8w − 18

)(
w − 1

)
W +

3

2

(
w − 2

)(
w − 1

)
wh0,

hence, by Theorem 2.3 the following inequality hold

h(G) <
1

w − 2

((
8w − 18

)(
w − 1

)
W + 2W +

3

2

(
w − 2

)(
w − 1

)
wh0

)
.

Since (8w − 18)(w − 1) + 2 = (8w − 10)(w − 2), we have

h(G) < (8w − 10)W +
3(w − 1)w

2
h0

and the conclusion. 2

Acknowledgments. The author is grateful to anonymous referee for point-
ing out an error in a previous version of this paper and for his/her valuable
suggestions.
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[6] Ercan, G.; Güloğlu, İ. Ş. Fixed point free action on groups of odd order. J.
Algebra 320 (2008), no. 1, 426–436.

[7] Ercan, G. On a Fitting length conjecture without the coprimeness condition.
Monatsh. Math. 167 (2012), no. 2, 175–187.

[8] Espuelas, A. A noncoprime Shult type theorem. Math. Z. 196 (1987), no. 3,
323–329.

[9] Gorenstein, D. Finite groups. Second edition. Chelsea Publishing Co., New
York, 1980.

[10] Gross, F. Solvable groups admitting a fixed-point-free automorphism of
prime power order. Proc. Amer. Math. Soc. 17 (1966) 1440–1446.

[11] Hartley, B.; Rae, A. Finite p-groups acting on p-soluble groups. Bull. Lon-
don Math. Soc. 5 (1973), 197–198.

[12] Hoffman, F. Nilpotent height of finite groups admitting fixed-point-free au-
tomorphisms. Math. Z. 85 (1964) 260–267.

[13] Khukhro, E. I. Finite groups that admit 2-automorphism without fixed
points. (Russian) Mat. Zametki 23 (1978), no. 5, 651–657.

[14] Robinson, D. J. S. A course in the theory of groups. Second edition. Grad-
uate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.

[15] Rowley, P. Finite groups admitting a fixed-point-free automorphism group.
J. Algebra 174 (1995), no. 2, 724–727

[16] Shamash, J.; Shult, E. On groups with cyclic Carter subgroups. J. Algebra
11 (1969) 564–597.

[17] Turull, A. Supersolvable automorphism groups of solvable groups. Math. Z.
183 (1983), no. 1, 47–73.

[18] Turull, A. Fitting height of groups and of fixed points. J. Algebra 86 (1984),
no. 2, 555–566.

[19] Turull, A. Fixed point free action with regular orbits. J. Reine Angew. Math.
371 (1986), 67–91.

Enrico Jabara
DFBC – Università di Venezia
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