The Fitting length of finite soluble groups II Fixed-point-free automorphisms

Enrico Jabara

Abstract. Let G be a finite soluble group, and let h(G) be the Fitting length of G. If φ is a fixed-point-free automorphism of G, that is $C_G(\varphi) = \{1\}$, we denote by $W(\varphi)$ the composition length of $\langle \varphi \rangle$. A long-standing conjecture is that $h(G) \leq W(\varphi)$, and it is known that this bound is always true if the order of G is coprime to the order of φ . In this paper we find some bounds to h(G)in function of $W(\varphi)$ without assuming that $(|G|, |\varphi|) = 1$. In particular we prove the validity of the "universal" bound $h(G) < 7W(\varphi)^2$. This improves the exponential bound known earlier from a special case of a theorem of Dade. MSC: 20D20, 20D40, 20F14.

Keywords: Fixed-point-free automorphism; Fitting length; soluble groups.

§1. Introduction

In this paper we apply some results obtained in [2] to the study of finite soluble groups with a fixed-point-free automorphism. We only deal with finite soluble groups and so for us group will always mean "finite soluble group". If G is a group and $\varphi \in \operatorname{Aut}(G)$, then φ is called fixed-point-free if the centralizer

$$C_G(\varphi) = \{g \in G \mid g^\varphi = g\}$$

is the trivial subgroup of G. We shall denote by h(G) the Fitting length of G, by $\pi(G)$ (resp. $\pi(\varphi)$) the set of prime divisors of |G| (of $|\langle \varphi \rangle|$) and by w(G)(resp. $w(\varphi)$) the cardinality of $\pi(G)$ (of $\pi(\varphi)$). Also, we shall write $W(\varphi)$ for the composition length of $\langle \varphi \rangle$ (that is the number of prime divisors of $|\langle \varphi \rangle|$ counted with their multiplicities). Sometimes we will write π , h, w and W instead of $\pi(G)$, h(G), $w(\varphi)$ and $W(\varphi)$ respectively, when there is no possible ambiguity.

If the order of φ is coprime to |G|, it was then proved, through a long series of papers (see, in particular, [10], [12] and [13]), that

$$h(G) \le W(\varphi).$$

Moreover if A is a solvable group of automorphisms of G and (|A|, |G|) = 1, then

$$h(G) \le 2W(A) + h(C_G(A))$$

by a result of Turull ([18]). So, if $C_G(A) = 1$ (that is A is fixed-point-free), then $h(G) \leq 2W(A)$ and in many cases $h(G) \leq W(A)$ (Turull, [17] and [19]).

Here we turn our attention to the so called *noncoprime case*, in which the hypothesis $(|G|, |\varphi|) = 1$ is omitted. If $w(\varphi) = 1$, then $|\varphi| = p^{W(\varphi)}$ (*p* a prime number) and an easy argument shows that *G* is a *p'*-group. Hence we suppose $w(\varphi) \ge 2$ and this hypothesis will be often implicitly assumed. In this case, from Theorem 8.4 of [4], we can deduce the exponential bound $h(G) \le 5(2^W - 1)$. Our main result is.

THEOREM 1.1 Let G be a group and let φ be a fixed-point-free automorphism of G. If $w(\varphi) \geq 2$, then

$$h(G) < (7w - 9)W$$

The inequality proved in Theorem 1.1 is particularly satisfactory if $w(\varphi) = 2$, as it provides the bound

when the order of φ is divisible by only two primes.

Since $w(\varphi) \leq W(\varphi)$, Theorem 1.1 easily implies the following

COROLLARY 1.2. Let G be a group and let φ be a fixed-point-free automorphism of G, then $h(G) < 7W^2$.

Furthermore, in some cases, the previous inequality may be improved, as, for example, in the following two propositions.

PROPOSITION 1.3. Let G be a group and let φ be a fixed-point-free automorphism of G. If $|\varphi| = p^{\alpha}q$ with p and q distinct primes, then $h(G) \leq 3W + 1$.

PROPOSITION 1.4. Let G be a group and let φ be a fixed-point-free automorphism of G. If the order of φ is square-free and $W(\varphi) \geq 3$, then

$$h(G) < \frac{1}{2} (3W^2 - 7W).$$

REMARK 1.5. If the order of $\varphi \in \operatorname{Aut}(G)$ is square-free and $W(\varphi) \leq 3$, then the best possible bound

$$h(G) \le W$$

was proven. If W = 1, then φ has prime order and it is well known that G is nilpotent. If W = 2, then $|\varphi| = pq$ $(p, q \text{ primes}, p \neq q)$ and in this case $h(G) \leq 2$ by [3]. If W = 3, then $|\varphi| = pqr$ $(p, q, r \text{ primes}, p \neq q \neq r \neq p)$ and $h(G) \leq 3$ follows from [5].

We want to recall that a result of Ercan and Güloğlu (Theorem A of [6]) asserts that if G has odd order, A is abelian of squarefree exponent coprime to 6 and $C_G(A) = 1$, then $h(G) \leq W(A)$.

Using the above-mentioned result of Turull, we can generalize our Theorem 1.1 to

THEOREM 1.6. Let G be a group and let φ be an automorphism of G. Suppose that $(|C_G(\varphi)|, |\langle \varphi \rangle|) = 1$, $w(\varphi) \ge 2$ and $h(C_G(\varphi)) = h_0$, then

$$h(G) < (8w - 10)W + \frac{3}{2}(w - 1)wh_0.$$

We wish to emphasize that we have not wanted to optimize our bounds, but only indicate a new method to obtain general results.

REMARK 1.7. Let G be a group, let A a fixed-point-free nilpotent group of automorphisms of G and let W = W(A). In his seminal paper [4] (Theorem 8.4), Dade proved that

$$h(G) \le 5(2^W - 1).$$

hence there is always a function Γ such that $h(G) \leq \Gamma(W)$. Moreover Dade (in Conjecture 2.9 of [4]) suggests that Γ can be chosen so that $\Gamma(W) = O(W)$ as $W \to \infty$.

Our Theorem 1.1 (and Corollary 1.2) shows that, in the particular case where A is cyclic, $\Gamma(W)$ is at most quadratic in W (compare this result with the main theorem of [16]). Furthermore we have the linear bound

$$\sup \left\{ \begin{array}{c|c} h(G) \\ \overline{W(\langle \varphi \rangle)} \end{array} \middle| \begin{array}{c} \varphi \in \operatorname{Aut}(G) \text{ is} \\ \text{fixed-point-free and} \\ w(\langle \varphi \rangle) = 2 \end{array} \right\} \leq 5$$

thanks to the observation made after Theorem 1.1 (see Proposition 3.1).

REMARK 1.8. We point out that if A is a fixed-point-free group of automorphisms of the group G at least one of the two hypotheses (1) A is nilpotent (2) (|G|, |A|) = 1 is needed to bound h(G) by a function of W(A). Indeed in [1] it is proved that if A is any finite non nilpotent group and H is any finite group, then there exists a finite group G on which A acts fixed-point-freely, such that H is a homomorphic image of G. Further, if H is soluble, so is G.

§2. Notation and preliminary results

In this paper we use the same notations employed in [2]. In particular if G is a group, with $\{G_p\}_{p\in\pi}$ we denote a Sylow system of G, namely a set of Sylow subgroups of G, one for any $p \in \pi$, such that $G_pG_q = G_qG_p$ for every $p, q \in \pi$. If σ is a subset of π , by σ -Hall subgroup of G we mean $G_{\sigma} = \prod_{p\in\sigma} G_p$ and by $G_{p'}$ we denote a $\pi \setminus \{p\}$ -Hall subgroup of G.

The symbols π , w, W have already been defined. If σ is a set of primes, we denote by $\ell_{\sigma}(G)$ (or by ℓ_{σ}) the σ -length of G and by $\ell_{p}(G) = \ell_{\{p\}}(G)$ (or by ℓ_{p}) the *p*-length of G ([14], 9.1.4).

A substantial tool for the proofs in this paper is the following result.

THEOREM 2.1. (Theorem 1.1 of [2]) Let G be a group and let σ , τ , v be three subsets of $\pi(G)$ such that $\sigma \cup \tau = \tau \cup v = v \cup \sigma = \pi$. Then

$$h(G) \le h(G_{\sigma}) + h(G_{\tau}) + h(G_{\upsilon}) - 2.$$

In particular, if $p, q \in \pi$ and $p \neq q$, then

$$h(G) \le h(G_{p'}) + h(G_{q'}) + h(G_{\{p,q\}}) - 2.$$

Theorem 2.1 is consequence of Theorem 2.3, a more general and technical result, for which the following definition is needed.

DEFINITION 2.2. Let G be a group and let $t \ge 3$ be an integer. The set

$$\mathcal{R} = \left\{ \left. arrho_1, arrho_2, \dots, arrho_t \; \right| \; arrho_i \subseteq \pi \;
ight\}$$

is called a *t*-cover if $\varrho_i \cup \varrho_j = \pi$ for every $i, j \in \{1, 2, ..., t\}, i \neq j$. The weight of a *t*-cover \mathcal{R} is the number

$$\Theta(\mathcal{R}) = \sum_{i=1}^{t} h(G_{\varrho_i}).$$

THEOREM 2.3. (Proposition 3.1 of [2]) Let G be a group and let \mathcal{R} be a t-cover of $\pi(G)$ of weight Θ , then

$$h(G) \le \frac{\Theta - 2}{t - 2}.$$

We now turn our attention to the structure of groups that admit particular types of automorphisms.

THEOREM 2.4. Let φ be a fixed-point-free automorphism of the group G, then φ leaves invariant a unique p-Sylow subgroup P of G for each $p \in \pi(G)$. Furthermore, P contains every φ -invariant p-subgroup of G.

PROOF. See Theorem 10.1.2 of [9].

From Theorem 2.4 we can easily deduce that if G is soluble, then G admits a (unique) φ -invariant Sylow system. We remark that, using the classification of finite simple groups, Rowley ([15]) proved that any group admitting a fixedpoint-free automorphism is soluble.

THEOREM 2.5. Let G be a group with a fixed-point-free automorphism of order p^{α} , p a prime. Then $h(G) \leq \alpha$.

PROOF. This result is proved in [12] and [10] in the case where p is odd and in [13] if p = 2.

LEMMA 2.6. Let G be a group and let φ be a fixed-point-free automorphism of G of order $p^{\alpha}k$, where p is a prime number and $k \in \mathbb{N}$ with (p,k) = 1. If P is a φ -invariant p-subgroup of G, then $C_P(\varphi^{p^{\alpha}}) = 1$.

PROOF. Suppose, arguing by contradiction, that $C_P(\varphi^{p^{\alpha}}) \neq 1$. Then φ induces on $P_0 = C_P(\varphi^{p^{\alpha}})$ an automorphism of order dividing p^{α} and we have $C_{P_0}(\varphi) \neq 1$.

A result proved by Espuelas is essential in order to obtain our results.

THEOREM 2.7. (Theorem 2.1 of [8]) Let G be a group admitting an automorphism φ of order p^{α} acting fixed-point-freely on every φ -invariant p'-section of G, where p is an odd prime. Then $\ell_p(G) \leq \alpha + 1$ and $h(G) \leq 2\alpha + 1$. These bounds are best possible.

Theorem 2.7 is a sharp generalization of the following result, proved by Hartley and Rae, valid also in the case p = 2.

THEOREM 2.8. (Theorem 2 of [11]) Let G be a group admitting an automorphism φ of order p^{α} acting fixed-point-freely on every φ -invariant p'-section of G. Then $\ell_p(G) \leq 2\alpha$.

The following fundamental result is due to Turull (see §1).

THEOREM 2.9. (Corollary 3.2 of [18]) Let G be a group and let A be a soluble subgroup of Aut(G) with (|G|, |A|) = 1. Then

$$h(G) \le 2W(A) + h(C_G(A)).$$

We conclude this section with some more technical results.

LEMMA 2.10. Let G be a $\{p,q\}$ -group with p and q distinct primes. Let φ be a fixed-point-free automorphism of G of order $p^{\alpha}q^{\beta}$, then

$$h(G) < 2W.$$

Moreover if p and q are odd, then

$$h(G) \le W + 1.$$

PROOF. By Theorem 2.4, in G there is a φ -invariant Sylow p-subgroup P and a φ -invariant Sylow q-subgroup Q which are φ -invariant; we have G = PQbecause $\pi(G) = \{p, q\}$. Since $p \neq q$ we can suppose, without loss of generality, that q is odd. By Theorem 2.7 we deduce

$$h(G) \le 2\beta + 1 \le 2 \cdot \max\{\alpha, \beta\} + 1 < 2W.$$

If also p is odd, then $h(G) \leq 2\alpha + 1$, so

$$h(G) \le \min\{2\alpha + 1, 2\beta + 1\} \le \alpha + \beta + 1 = W + 1,$$

and the result follows.

It is well known that a group with a fixed-point-free automorphism of order 2 is abelian. From this fact we can derive

LEMMA 2.11. Let q be an odd prime and let G be a $\{2,q\}$ -group. If G admits a fixed-point-free automorphism φ of order $2q^{\alpha}$, then $h(G) \leq 3$.

PROOF. By Theorem 2.4, we can choose a φ -invariant Sylow q-subgroup Q of G. By Lemma 2.6, $\varphi^{q^{\alpha}}$ is a fixed-point-free automorphism of order 2 of Q, and hence Q is abelian. From 9.3.7 of [14] we deduce $\ell_q(G) \leq 1$, and hence we can conclude that $h(G) \leq 3$.

The following lemma is needed in the proof of Theorem 1.6.

LEMMA 2.12. Let G be a group, φ an automorphism of G and suppose that $(|C_G(\varphi)|, |\langle \varphi \rangle|) = 1$. Then

(a) if N is a normal φ -invariant subgroup of G, then $(|C_{G/N}(\varphi)|, |\langle \varphi \rangle|) = 1$;

(b) for every $p \in \pi(G)$ there is a φ -invariant Sylow p-subgroup of G.

PROOF. We prove (a) arguing by induction on |G| + |N|. If N = 1, then (a) is trivially verified, in particular the induction basis is proved and we can suppose $N \neq 1$.

Let $L \neq 1$ be a normal minimal φ -invariant subgroup of G contained in N. If L < N, then, by induction hypothesis $(|C_{G/L}(\varphi)|, \langle \varphi \rangle) = 1$. Since |G/L| + |N/L| < |G| + |N|, the induction hypothesis yields the conclusion.

Hence N is a (non trivial) minimal normal φ -invariant subgroup of G, in particular N is an elementary abelian p-group for some $p \in \pi(G)$.

Suppose, arguing by contradiction, that $(|C_{G/N}(\varphi)|, |\langle \varphi \rangle|) \neq 1$. Hence there is a prime $q \in \pi(\langle \varphi \rangle)$ and an element $y \in G$ such that $y \notin N$, $y^q \in N$ and $yy^{-\varphi} \in N$. If $N\langle y \rangle < G$ then, applying the induction hypothesis to $N\langle y \rangle$ we obtain a contradiction, so $G = N\langle y \rangle$. Furthermore $C_G(\varphi)$ is a *p*-group, since $\pi(G) = \{p,q\}$ and $q \in \pi(\langle \varphi \rangle)$. We now distinguish two cases.

• $C_N(\varphi) \neq 1$. Let $x \in C_G(N)$, since N is abelian and $yy^{-\varphi} \in N$, we have $yy^{-\varphi} = (yy^{-\varphi})^x = y^x(y^x)^{-\varphi}$ and $[x, y] = (y^{-1})^x y = (y^x)^{-\varphi} y^{\varphi} = [x, y]^{\varphi}$. This shows that y normalizes $C_N(\varphi)$ and, since $G = N\langle y \rangle$ and N is abelian, we can conclude that $C_N(\varphi) \leq G$. From the hypothesis that $C_N(\varphi) \neq 1$ and from the minimality of N we obtain $N = C_N(\varphi)$. Since $yy^{-\varphi} \in N$ we can write $yy^{-\varphi} = x^{-1}$ for some $x \in C_N(\varphi)$; if n is the order of φ , then, as $y^{\varphi} = xy$, applying n times φ we obtain $y = y^{\varphi^n} = x^n y$, that is $x^n = 1$. Since $x \in C_G(\varphi)$ and $(|C_G(\varphi)|, n) = 1$ we have x = 1 and $y \in C_G(\varphi)$. Then $G = C_G(\varphi)$ and $q \in \pi(G) \cap \pi(\langle \varphi \rangle)$, a contradiction.

• $C_N(\varphi) = 1$. By Lemma 10.1.1 of [9], $N = \{x^{-1}x^{\varphi} \mid x \in N\}$ and we can write $yy^{-\varphi} = x^{-1}x^{\varphi}$ for some $x \in N$. Since $xy \in C_G(\varphi)$, xy is a *p*-element and $(xy)^{p^k} = 1$ for some $k \in \mathbb{N}$. If $p \neq q$ then $y^{p^k} \in N$ and $y^q \in N$ implies $y \in N$, a contradiction. If p = q, then G is a q-group and $q \notin \pi(C_G(\varphi))$ implies that $C_G(\varphi) = 1$. By Lemma 10.1.3 of [9], $C_{G/N}(\varphi) = 1$, we have thus obtained the contradiction $yN \in C_{G/N}(\varphi) = N$ and so we have proved (a).

In order to prove (b) we begin by observing that, if φ has prime power order q^k (q a prime, $k \in \mathbb{N}$), then (|G|, q) = 1. We argue by induction on the order of G (the basis is trivial). If G is an elementary abelian p-group for some prime p, and if p = q, then $C_G(\varphi) \neq 1$, against the hypothesis. Let N be a normal elementary abelian φ -invariant p-subgroup of G, then $p \neq q$. By (a) in G/N we have $(|C_{G/N}(\varphi)|, q) = 1$ and, by the induction hypothesis, (|G/N|, q) = 1, so (|G|, q) = 1.

We now prove (b) arguing by induction on $|G| + |\pi(\langle \varphi \rangle)|$. If $|\pi(\langle \varphi \rangle)| = 1$, then the order of G is coprime to $|\langle \varphi \rangle|$ and (b) follows by 6.2.2 of [9], in particular the induction basis is proved.

Fixed $p \in \pi(G)$, our aim is to prove that there is a Sylow *p*-subgroup of G which is φ -invariant. If $O_p(G) \neq 1$ then, by (a), we can consider $G/O_p(G)$ and we can easily conclude by induction hypothesis. Let N be a non trivial minimal φ -invariant normal subgroup of G, then N is an elementary abelian q-group for some $q \in \pi(G)$ and $q \neq p$. By induction hypothesis in G/N there is a φ -invariant Sylow *p*-subgroup and hence we can suppose G = NP, with P a Sylow p-subgroup of G. If $C_N(\varphi) \neq 1$, then $q \notin \pi(\langle \varphi \rangle)$, and hence $p \in \pi(\langle \varphi \rangle)$, since otherwise $(|G|, |\langle \varphi \rangle|) = 1$ and the conclusion follows by 6.2.2 of [9]. Write $|\langle \varphi \rangle| = p^k m$ with (p,m) = 1 and let $\psi = \varphi^m$. Let $\Gamma = G \langle \psi \rangle$ be the semidirect product of G by $\langle \psi \rangle$, then in Γ there is a Sylow p-subgroup Π such that $\psi \in \Pi$. The subgroup $G \cap \Pi$ is normal in Π and hence $C_{G \cap \Pi}(\psi) \neq 1$, in particular $C_G(\psi) \neq 1$. Moreover $C_G(\psi) \neq G$, as otherwise φ would have order m, coprime to p, hence, by induction hypothesis, $C_G(\psi)$ contains a non trivial φ -invariant Sylow p-subgroup P_0 . Let M be a φ -invariant p-subgroup of G of maximal order and let P be a Sylow p-subgroup of G containing M. If M < P, then $N_G(M) \ge N_P(M) > M$. The two conditions $O_p(G) = 1$ and $M \ne 1$ imply $N_G(M) < G$ and, by the induction hypothesis, $N_G(M)$ contains a φ -invariant subgroup of order greater than |M|. This forces M = P and (b) is proved.

REMARK 2.13. Lemma 2.12 allows us to state that, if $(|C_G(\varphi)|, |\langle \varphi \rangle|) = 1$, then G admits a φ -invariant Sylow system. In particular for every $\sigma \subseteq \pi(G)$, in G there is a φ -invariant Hall σ -subgroup.

REMARK 2.14. Without the hypothesis $(|C_G(\varphi)|, |\langle \varphi \rangle|) = 1$, Lemma 5.9 is no longer true. As a simple counterexample we can consider $G \simeq S_3$ and φ the inner automorphism of order 3.

§3. Proofs

PROPOSITION 3.1. Let G be a group and let φ be a fixed-point-free automorphism of G of order $p^{\alpha}q^{\beta}$, with distinct primes p and q. Then

$$h(G) < 5W - 2;$$

moreover if p and q are odd, then

$$h(G) \le 4W - 1.$$

PROOF. Let J = PQ, H and K be respectively φ -invariant Hall subgroups of G with $\pi(J) = \{p,q\}, \pi(H) = \{p\}'$ and $\pi(K) = \{q\}'$ (see Theorem 2.4 and the remark made after it). By Lemma 2.10 we have that h(J) < 2W. If we consider the action of φ on H, we see that φ acts as a fixed-point-free automorphism of order q^{β} on $C_H(\varphi^{q^{\beta}})$ and hence $h(C_H(\varphi^{q^{\beta}})) \leq \beta$. Since $(|H|, |\varphi^{q^{\beta}}|) = 1$, by Theorem 2.9 we deduce

$$h(H) \le 2\alpha + h(C_H(\varphi^{q^{\beta}})) \le 2\alpha + \beta$$

and similarly $h(K) \leq \alpha + 2\beta$. By Theorem 2.1 we obtain

$$h(G) \le h(J) + h(H) + h(K) - 2 < 5W - 2.$$

If p and q are odd, then, by Lemma 2.10, $h(J) \leq W + 1$, and hence we conclude that $h(G) \leq 4W - 1$.

PROOF OF THEOREM 1.1. We argue by induction on w. Let $|\varphi| = \prod_{i=1}^{w} p_i^{\alpha_i}$ with $\alpha_i \in \mathbb{N}$ and p_i distinct prime numbers. If w = 2, then the conclusion follows from Proposition 3.1.

Suppose $w \ge 3$, denote by G_i a φ -invariant Hall p'_i -subgroup of G and write $\langle \varphi \rangle = \langle \varphi_1 \rangle \times \langle \varphi_2 \rangle \times \ldots \times \langle \varphi_w \rangle$ with φ_i of order $p_i^{\alpha_i}$, for $i \in \{1, 2, \ldots, w\}$. Since $(|G_i|, |\langle \varphi_i \rangle|) = 1$, by the Turull's Theorem 2.9 we have

$$h(G_i) \le 2W(\varphi_i) + h(C_{G_i}(\varphi_i)) = 2\alpha_i + h(C_{G_i}(\varphi_i)).$$

The automorphism ψ_i induced on $C_{G_i}(\varphi_i)$ by φ has order dividing $|\varphi|/p_i^{\alpha_i}$, so we have $W(\psi_i) \leq W(\varphi) - \alpha_i$ and $w(\psi_i) \leq w(\varphi) - 1$. The induction hypothesis leads us to conclude that

$$h(C_{G_i}(\varphi_i)) < (7(w-1)-9)(W-\alpha_i)$$

and $h(G_i) < 2\alpha_i + (7(w-1)-9)(W-\alpha_i)$. An easy computation provides

$$\sum_{k=1}^{w} h(G_i) \le 2W + (7(w-1) - 9)(w-1)W < (7w - 9)(w - 2)W,$$

and applying Theorem 2.3 we obtain

$$h(G) \le \frac{\left(\sum_{i=1}^{w} h(G_i)\right) - 2}{w - 2} < (7w - 9)W,$$

which concludes the proof.

REMARK 3.2. If, in Theorem 1.1, we suppose that $|\varphi|$ is odd, then, thanks to the Proposition 3.1, we can improve the bound for the Fitting length of G to

$$h(G) \le 2(3w - 4)W$$

PROOF OF PROPOSITION 1.3. By hypothesis $|\varphi| = p^{\alpha}q$, and hence $W = \alpha + 1$. We use the notation of the proof of Proposition 3.1. By Theorem 2.7 (if q is odd) and Lemma 2.11 (if q = 2) we obtain $h(J) \leq 3$. Arguing as in the proof of Proposition 3.1, we deduce $h(H) \leq 2\alpha + 1$ and $h(K) \leq \alpha + 2$. So

$$h(G) \le h(J) + h(H) + h(K) - 2 = 3\alpha + 4 = 3W + 1,$$

and the proof is complete.

REMARK 3.3. In [7] it has been proven that if a group G has a fixed-pointfree automorphism of order $p^{\alpha}q$ with (pq, 6) = 1 and if the Sylow 2-subgroups of G are abelian, then $h(G) \leq W(\varphi)$.

PROOF OF PROPOSITION 1.4. We will proceed as in the proof of Theorem 1.1, using the same notation and adding the conditions

$$\alpha_1 = \alpha_2 = \ldots = \alpha_w = 1.$$

If w = W = 3 then, by [5], we know that $h(G) \leq 3$. If we suppose $W \geq 4$, we have

$$h(G_i) \le 2 + h\big(C_{G_i}(\varphi_i)\big)$$

and, by the induction hypothesis,

$$h(G_i) \le 2 + \frac{1}{2} (3(W-1)^2 - 7(W-1)) = \frac{1}{2} (3W-7) (W-2),$$

so $\sum_{i=1}^{W} h(G_i) \leq \frac{1}{2} (3W - 7) (W - 2) W$. Now, by Theorem 2.3,

$$h(G) \le \frac{\left(\sum_{i=1}^{W} h(G_i)\right) - 2}{W - 2} < \frac{\left(3W - 7\right)\left(W - 2\right)W}{2(W - 2)} = \frac{1}{2}\left(3W^2 - 7W\right),$$

and the theorem is proved.

The proof of Theorem 1.6 is very similar to that of Theorem 1.1; we report it here for completeness.

PROOF OF THEOREM 1.6. We use induction on w.

By Lemma 2.12 and Remark 2.13 we know that, for every $\sigma \subseteq \pi(G)$, G admits a φ -invariant Hall σ -subgroup.

Suppose w = 2, $|\varphi| = p^{\alpha}q^{\beta}$ with $p \neq q$ primes. Let J = PQ, H and K be respectively φ -invariant Hall subgroups of G with $\pi(J) = \{p,q\}, \pi(H) = \{p\}'$ and $\pi(K) = \{q\}'$. By Theorem 2.9 we can write

$$h(J) \le \min\{2\alpha + h(C_J(\varphi^{q^{\rho}}), 2\beta + h(C_J(\varphi^{p^{\alpha}}))\} \le 2\alpha + 2\beta + h_0 = 2W + h_0,$$

$$h(H) \le 2\alpha + h(C_H(\varphi^{p^{\alpha}}) \le 2\alpha + 2\beta + h_0 = 2W + h_0$$

and, as the roles of p and q can be exchanged, $h(K) \leq 2W + h_0$. By Theorem 2.1 we obtain

$$h(G) \le h(J) + h(H) + h(K) - 2 < 6W + 3h_0,$$

so the induction basis is proved.

Suppose now $w \ge 3$ and let $|\varphi| = \prod_{i=1}^{w} p_i^{\alpha_i}$. Denote by G_i a φ -invariant Hall p'_i -subgroup of G and write $\langle \varphi \rangle = \langle \varphi_1 \rangle \times \langle \varphi_2 \rangle \times \ldots \times \langle \varphi_w \rangle$ with φ_i of order $p_i^{\alpha_i}$, for $i \in \{1, 2, \ldots, w\}$. Since $(|G_i|, |\langle \varphi_i \rangle|) = 1$, by the Turull's Theorem 2.9 we have

$$h(G_i) \le 2W(\varphi_i) + h(C_{G_i}(\varphi_i)) = 2\alpha_i + h(C_{G_i}(\varphi_i)).$$

By induction hypothesis we can write

$$h(C_{G_i}(\varphi_i)) < (8w - 18)(W - \alpha_i) + \frac{3}{2}(w - 2)(w - 1)h_0$$

and an easy computation provides that

$$\sum_{i=1}^{w} h(C_{G_i}(\varphi_i)) < (8w - 18)(w - 1)W + \frac{3}{2}(w - 2)(w - 1)wh_0,$$

hence, by Theorem 2.3 the following inequality hold

$$h(G) < \frac{1}{w-2} \left((8w-18)(w-1)W + 2W + \frac{3}{2}(w-2)(w-1)wh_0 \right).$$

Since (8w - 18)(w - 1) + 2 = (8w - 10)(w - 2), we have

$$h(G) < (8w - 10)W + \frac{3(w - 1)w}{2}h_0$$

and the conclusion.

Acknowledgments. The author is grateful to anonymous referee for pointing out an error in a previous version of this paper and for his/her valuable suggestions.

References

- Bell, S. D.; Hartley, B. A note on fixed-point-free actions of finite groups. Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 162, 127–130.
- [2] Busetto, G.; Jabara E. On the Fitting length of finite soluble groups I Hall subgroups. Arch. Math. (Basel) 106 (2016), no. 5, 409–416.
- [3] Cheng, K.N. Finite groups admitting automorphisms of order pq (Groups St. Andrews 1985) Proc. Edinburgh Math. Soc. 30 (1987), 51–56.

- [4] Dade, E. C. Carter subgroups and Fitting heights of finite solvable groups. Illinois J. Math. 13 (1969) 449–514.
- [5] Ercan, G.; Güloğlu, İ. Ş. Finite groups admitting fixed-point free automorphisms of order pqr. J. Group Theory 7 (2004), no. 4, 437–446.
- [6] Ercan, G.; Güloğlu, İ. Ş. Fixed point free action on groups of odd order. J. Algebra 320 (2008), no. 1, 426–436.
- [7] Ercan, G. On a Fitting length conjecture without the coprimeness condition. Monatsh. Math. 167 (2012), no. 2, 175–187.
- [8] Espuelas, A. A noncoprime Shult type theorem. Math. Z. 196 (1987), no. 3, 323–329.
- [9] Gorenstein, D. *Finite groups.* Second edition. Chelsea Publishing Co., New York, 1980.
- [10] Gross, F. Solvable groups admitting a fixed-point-free automorphism of prime power order. Proc. Amer. Math. Soc. 17 (1966) 1440–1446.
- [11] Hartley, B.; Rae, A. Finite p-groups acting on p-soluble groups. Bull. London Math. Soc. 5 (1973), 197–198.
- [12] Hoffman, F. Nilpotent height of finite groups admitting fixed-point-free automorphisms. Math. Z. 85 (1964) 260–267.
- [13] Khukhro, E. I. Finite groups that admit 2-automorphism without fixed points. (Russian) Mat. Zametki 23 (1978), no. 5, 651–657.
- [14] Robinson, D. J. S. A course in the theory of groups. Second edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
- [15] Rowley, P. Finite groups admitting a fixed-point-free automorphism group.
 J. Algebra 174 (1995), no. 2, 724–727
- [16] Shamash, J.; Shult, E. On groups with cyclic Carter subgroups. J. Algebra 11 (1969) 564–597.
- [17] Turull, A. Supersolvable automorphism groups of solvable groups. Math. Z. 183 (1983), no. 1, 47–73.
- [18] Turull, A. Fitting height of groups and of fixed points. J. Algebra 86 (1984), no. 2, 555–566.
- [19] Turull, A. Fixed point free action with regular orbits. J. Reine Angew. Math. 371 (1986), 67–91.

ENRICO JABARA DFBC – UNIVERSITÀ DI VENEZIA DORSODURO 3484/D - 30123 VENEZIA - ITALY jabara@unive.it