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1 Introduction 
 
Any practitioner has experienced how hard and 
frustrating may be trying to forecast the stock price 
variations on a daily basis, as well as on longer 
periods. If one assumes that the Efficient Market 
Hypothesis (Fama, 1970) holds, then the prediction is 
quite impossible unless possessing some private 
information. Hence, sometimes a trader misses a profit 
opportunity from a certain transaction because she did 
not expect such a sudden swing. Some other times, she 
tries to guess ex-ante what is going to be tomorrow 
(and maybe she guesses right), but she is not able to 
act promptly or to close the position as she would. 

Trading nowadays is becoming a mix of art and 
science, a bundle of technological skills, financial 
ability and intuition. With so many agents 
participating in the market, it is really unlikely to 
make substantial profits each day and on each 
transaction. The first inner principle on which the 
market is built is indeed a law of nature, i.e., “the 
survival of the fittest”. Only the ones who are able to 
perform better over a long period will remain in the 
market. And, no matter of what kind of trader you are 
or what stock you trade, one of the factor that many 
times determines who stays in and who has to leave is 
the ability to forecast the unexpected. Hence, among 
the most important aspects that every practitioner 
should take care of are when, why and how the asset 
he is trading is going to have an unexpected large 
increase (or decrease). As a matter of fact, while some 
traders are able to make money on average, the really 
huge gain opportunities come from the ability to 
invest quickly on something is drastically going to 

change his price, before others do the same. In other 
words, you make money when you are able to forecast 
whether and when your stock will “jump”. This is one 
of the reasons why jumps are so important in practice. 
However, it is also important to analyze them from a 
theoretical point of view because there are different 
definitions and ideas of what a jump is. Hence, our 
aim is to provide a common definition of what a jump 
is and how to deal with them from several sides. We 
neither aim to fully cover all the aspects related to 
jumps models, nor to deal with every mathematical 
detail. Our goal is rather to review some technical 
concepts under a tenuous light, and to approach the 
issue from different perspectives. Indeed, a vast 
literature exists on this subject. The first work that 
discusses about discontinuous trajectory for the stock 
price path (Merton, 1976) embeds a Poisson process 
into a classical Black and Scholes option-pricing 
model. The novelty of Merton’s work lies in the idea 
of assuming that the extra randomness coming from 
the jumps may be diversified, so that even if we would 
be in an incomplete market with several states (more 
than the assets), we would anyway be able to set a 
unique price for the options (Carr, 2005). Chang and 
Chiarella (2011) modify the Merton's model, changing 
the market measure to a martingale one, thus being 
able to price the jump-risk and provide an innovative 
hedging technique. Cont and Tankov (2004a) arrange 
an extensive list of more than 400 scientific papers on 
the topic, while Tankov and Voltchkova (2009) 
propose an merely technical review of tools to deal 
with jump-diffusion models. According to them, this 
class of models is indeed practically important for 
basically two reasons. First, the options out of the 
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money are more expensive in practice than what 
predicted in theory, and only allowing for the price to 
jump and to suddenly move an option in the money it 
is possible to fix this puzzle. Second, in the real 
incomplete (and discontinuous) market a perfect 
hedging is indeed impossible, and this is why the 
option finds room for hedging purposes. If it was not 
so, we would be able to hedge everything using only 
the underlying. Moreover, Maheu and McCurdy 
(2004) study GARCH-jump diffusion models. More in 
general, in the last twenty years scholars created a new 
branch in the field, analyzing non-constant volatility 
models, such as stochastic volatility jump-diffusion 
models (Bates, 1996a), or time-varying jumps 
(Andersen et al., 2002), both in returns and volatility 
(Eraker et al., 2003; Eraker, 2004), but also jump-
diffusion models with uniform-jump amplitude 
(Hanson and Westman, 2002). Jorion (1988) instead 
focuses on the sudden movements observed in the 
foreign exchange market, that he claims to be more 
relevant and obvious with respect to the stock market 
ones.  

 
2 Jumps: alternative definitions 
 
The multiple definitions and interpretations of what a 
stock jump is mainly depend on how investors use 
information. Thus, in the following section we discuss 
jumps in financial markets from distinct perspectives. 
 
2.1 The mathematician's perspective 
 
The mathematician's view mostly concerns the formal 
and rigorous definition of a jump, and how to find a 
common language that every actor may use when she 
builds a pricing or hedging model. In any basic course 
on quantitative finance, the first typical model used to 
price fluctuations is the Brownian motion (Bachelier, 
1900), afterwards adapted by Black and Scholes 
(1973) and named Geometric Brownian motion: 

𝒅𝑺𝒕
𝑺𝒕

= 𝝈𝒅𝑾𝒕 + (𝝁 + 𝝈𝟐

𝟐 ) 𝒅𝒕 ………..... (1) 

where St is the stock price, V and P respectively 
the volatility and the drift, while the Wt independent 
process with stationary increments is the standard 
Brownian motion, which follows a Gaussian 
distribution. This model has been widely used for 
decades because it owns several nice properties, such 
as continuity, scale invariance (the properties do not 
depend on the time scale), positivity (since it models 
the log prices), and tractability. From it, an extensive 
class of models arose, as for instance the local 
volatility models (Dupire, 1994; Derman, 1994). 
However, although the model was implemented and 
exploited for years, in practice the stock returns are 
not perfectly normally distributed. In fact, the 
distribution presents a higher concentration of events 
with an extremely high or low magnitude (fat tails). 
To give a numerical explanation of this idea, we are 

going to use a classic example (Cont and Tankov, 
2004a): if we assume the distribution to be normal, 
statistical theory would suggest that an event with a 
magnitude of six times the standard deviation of the 
price is going to occur with a very low probability 
(around 10-18), that in practice would mean only once 
each million of years. This conclusion is quite 
counterintuitive for who works in financial markets, 
because events like that happen much more often than 
what are predicted. However, even if it may appear 
trivial to be specified, the market underestimated this 
probability of extremely (unlikely) events until the 
1987 crash, when it actually became aware of the 
volatility smile caused by fat tails distribution (the 
Black and Scholes model assigns a higher implied 
volatility to the options out/in the money). From that 
time on, market participants started considering these 
“black swan” events as not so impossible to occur, but 
rather as something that their models have to 
necessarily deal with. These are some of the reasons 
why the mathematicians ended up with three distinct 
basic models for financial applications, which would 
allow them to take into account discontinuous 
trajectories and to address the fat tails puzzle: 

x Poisson process: most basic model that 
involves discontinuous trajectories, commonly known 
as counting process, since it counts the number of 
events (jumps) in a given time interval. More 
formally, given a sequence of independent exponential 
random variables with parameter O, the process 

𝑵𝒕 = ∑ 𝟏𝒕≥𝑻𝒏𝒏≥𝟏  …………………...….... (2) 

is a Poisson process with intensity O. This simple 
process has many useful characteristics that make it an 
essential building block for the jump modeling: it is 
indeed “memoryless”, i.e., the probability of the event 
to occur is not affected by the time elapsed. The 
process follows a Poisson distribution:  

𝑷(𝑵𝒕 = 𝒏) = 𝒆−𝝀𝒕 (𝝀𝒕)𝒏

𝒏!  .    …………... (3) 

i.e., the jumps arrive randomly both in size and 
time in an independent way. 

x Lévy process: A stochastic process (a 
generalization of the Poisson) with stationary 
independent increments and infinite divisibility, i.e., it 
may be represented by the sum of an arbitrary number 
of independent identical distributed random variables. 
This class of process is not able to perfectly capture 
every jump, because of a series of pitfalls, i.e., the 
skew vanishes fast, the mean reversion effect, and the 
lack of time clustering (Dupire, 2014). 

x Jump-diffusion models: a particular case 
of exponential Lévy processes, used as building 
blocks for a wider class of models such as the 
stochastic volatility ones (Bates, 1996a; 1996b): 

𝒅𝑺𝒕 = 𝝁𝑺𝒕−𝒅𝒕 + 𝝈𝑺𝒕−𝒅𝒁𝒕 + 𝑺𝒕−𝒅𝑱𝒕 ..(4) 
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where Zt is a Brownian motion, and Jt a 
compound Poisson process, i.e., the waiting times 
between the jumps are exponentials although their 
sizes may be arbitrarily distributed (Cont and Tankov, 
2004b; Cont and Voltchkova, 2003; 2005; Kou, 2002; 
Kou et al., 2003; Kou and Wang, 2004). 

In conclusion, no matter the method or the 
formal definition the mathematicians choose to use, 
what they focus on is looking at the stock path and at 
the jumps from a frequentist perspective: how many 
times the stocks jump over a certain period? With 
which intensity do they jump? This is a strong 
simplification, of course, but it seems to give a rough 
idea concerning the technical approach to this 
problem. 
 
2.2 The risk manager's perspective 
 
From a risk manager’s point of view, jumps are seen 
as nothing more than a component of the risk you bear 
when buying a stock. In particular, they measure how 
likely your stock price unusual and intensive 
variations are going to occur in a short time interval 
and what would be their impact on your portfolio. The 
problem that a risk manager (or, more generally, a 
hedger) has to consider is then how to replicate his 
portfolio in order to be immune - even if sometime not 
completely - from the risk coming from a certain 
activity and/or asset. The Black and Scholes model 
suggests a strategy that would eliminate any risk 
arising from any option position, i.e., the “delta-
hedging strategy”. Indeed, buying a portion of 
underlying assets exactly equal to the option price 
sensitivity makes the portfolio immune to any 
variation. Despite any anomaly that may characterize 
financial data (skewness, excess kurtosis, volatility 
clustering, etc.), delta hedging is still commonly used 
because of his simplicity and tractability. 
Unfortunately, this strategy is not consistent with the 
real market when we normally observe jumps in the 
stock price, because we do not know in advance the 
jump size, and thus we will not be able to perfectly 
hedge our portfolio, but rather we try to minimize the 
effect of such events on our positions. Hence, what a 
risk manager is interested to look at is when and 
whether his portfolio may be compromised by an 
unexpected stock price variation. In other words, there 
will be an event I would not be able - or it would be 
too difficult - to hedge? The jump seems then to be 
defined as that threshold value which could undermine 
the portfolio integrity. In the last years, scholars 
coined a new term for this threshold value, i.e., Value-
at-Risk (VaR). The VaR is a technique that measures 
the risk of losses on a specific portfolio within a 
certain confidence interval, and for any probability p, 
it is defined as a value such that the probability that 
the losses exceed that value is exactly p. So, for a 

weekly 5% VaR of $10 million, the probability that in 
one week the value of the asset will fall over $10 
million is exactly 5%. On the other hand, to 
understand the magnitude of any jump and to identify 
them, risk managers developed a very useful tool 
called “stress test”, which assesses and simulates the 
effect of large variations on their own portfolios. 
 
2.3 The trader's perspective 
 
What in practice a trader struggles with is how to 
distinguish a jump from normal volatility. 
Understanding whether the price is going to be 
unexpectedly higher or lower is a source of 
competitive advantage for a trader. Hence, she would 
basically focus on two aspects: trying to forecast when 
a jump may occur, and identifying a jump – 
distinguishing it from normal volatility – when it 
indeed occurred in the past. Of course, the first aspect 
is extremely difficult to deal with, because of the 
intrinsic nature and definition of jumps: they could 
arrive at any random time, without forewarning. 
Although this is true in general, there are 
circumstances in which jumps are so to say 
“predictable”. One particular case is due to the arrival 
of new information (usually private and not release to 
the market yet), or to some analysis related to market 
inner structure (e.g., in the energy market: if you 
would be able to perfectly forecast that in two hours is 
going to be extremely warm, you may infer that the 
demand for electricity will have a sudden spike). On 
the other side, it is also true that trading floors are fast-
pace environments, so traders should be rapid to 
identify when something weird is happening.  

A quick way to see whether the last variation 
was indeed a jump or a normal swing is to set a 
“volatility range” in “normal” situations. Assuming 
that a jump should rarely occur by definition 
(otherwise it would only be a high stock variation), in 
this way the trader would easily see using for instance 
a three-sigma rule of thumb that only the rough 0.3% 
of variations are real jumps. In the same fashion, he 
could build a basic Bollinger's bands tool, creating a 
normality range for the volatility around a simple 
weekly or monthly moving average  

𝑴𝑨𝒕 = 𝟏
𝒕 ∑ 𝑷𝒕−𝒊

𝒕−𝟏
𝒊=𝟎  ……………………  (5) 

As we can see in Figures 1 to 3, the three-sigma 
moving average Bollinger's bands, with respect to the 
percentage changes in prices, is indeed a good 
instrument for assessing at a glance whether there was 
an anomaly in the prices oscillations. The data for the 
FTSE 100, the Nasdaq 100 and the S&P 500, have 
been extracted from Yahoo!Finance, and are updated 
to May, 26, 2015. 
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Figure 1. Price percentage changes (i.e., returns) for the FTSE 100 Index 

 

 
 
The black lines represent instead the three-sigma Bollinger bands, computed with respect to the five-days 

price changes moving average 

Figure 2. Price percentage changes (i.e., returns) for the Nasdaq 100 Index 

 

 
The black lines represent instead the three-sigma Bollinger bands, computed with respect to the five-days 

price changes moving average 
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Figure 3. Price percentage changes (i.e., returns) for the Nasdaq 100 Index 

 

 
The black lines represent instead the three-sigma Bollinger bands, computed with respect to the five-days 

price changes moving average. 

 
2.4 The investor's perspective 
 
From an investor's side, jumps may or may not be a 
real concern depending on the individuals’ investment 
horizons. Indeed, as we will see in the next section, 
jumps usually are temporary and last for a very short 
time interval - they tend to mean-revert. 

Often jumps are caused by high-frequency 
trading that indeed boosts the volatility and makes one 
of side of the market really inelastic, increasing the 
likelihood for the price to suddenly react and jump. 
Because jumps happen at a milliseconds time frame – 
and then they mean-revert – individual investors might 
not be able to profit from them, while they are big 
profitable opportunities for professional traders. 
However, because they usually come back to a normal 
and steady level, they are not the main issue neither 
for a long term non-professional investor (who only 
cares about a long period) nor for a short term one 
(who cannot trade by himself in any case at the same 
speed of institutional traders). Thus, should the 
investors completely disregard jumps? Not really. 
Indeed, sometime a stock jumps for a precise reason. 
Maybe it reflects some fundamental or permanent 
change in demand or supply, or maybe it is just a final 
assessment to a new price level. In this case, if the 
investor had the wrong position before the change 
occurred, she may find herself in serious troubles. 
Hence, from an investor point of view, what it is 
alarming is the case in which jumps are permanent and 
do not come back to a normal level shortly afterwards. 
We would like to call this class of jumps orbital-

jumps, in comparison with the spring-jumps, that are 
the "normal" jumps with a short duration and that 
come back to a normality range level. Figuratively 
speaking, the idea is pretty similar to what happens in 
physics at a molecular level: the electrons can jump 
between different orbits (orbital-jump) if a certain 
energy will push them toward a new permanent level, 
although they somehow oscillate on the same orbital 
level. So a further question arises, that is whether there 
exists a threshold that would determine whether a 
jump is permanent or temporary, or if there is a fix set 
of conditions which blocks the price at the new level. 
So far we do not have any evidence to test this 
hypothesis and conclude in any way, but we do 
believe that there are some reasons that more than 
others may cause the price to definitively jump at a 
new level. 

 
3 Some stylized facts 
 
So far, we presented some perspectives about jumps, 
but we did not underlined why they are so important 
and what kind of characteristics a jump is supposed to 
have. In literature, it seems to be widely accepted that 
jumps have the following characteristics: 

x they are usually downward, i.e., there are 
more negative jumps than positive. This seems to 
be verified for the stock market, but a higher 
symmetry could instead be found in the exchange 
market (Cont, 2001); 
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x after a jump, the price comes back to 
normality (or close to it); 
x jumps are time-clustered, i.e., a jump 

increases the probability that another jump is going 
to occur. 

However, these “stylized facts” in practice do not 
always hold, at least for the major indices we have 
considered, i.e., the FTSE 100, Nasdaq-100 and S&P 
500, as we can observe from Table 1.  

 
 

Table 1. Number and magnitude of jumps for three major indices: FTSE 100, Nasdaq 100, and S&P 500. 
In parenthesis there is the average magnitude for the positive or negative jumps. 

 

 Number of 
jumps 

Number of 
jumps (+) 

Number of 
jumps (-) 

Highest 5 
jumps Lowest 5 jumps 

FTSE 100 83 47 
(0.044) 

36 
(-0.048) 0.079 -0.072 

Nasdaq 100 84 53 
(0.072) 

31 
(-0.069) 0.108 -0.097 

S&P 500 150 91 
(0.041) 

59 
(-0.049) 0.069 -0.083 

 
We anyway believe that those empirical 

evidences may apply stronger for single stocks, which 
in general have a greater volatility with respect to the 
indices. Indeed, if we count as jumps every oscillation 
greater than the five-days moving-average plus the 
three-times standard deviation (positive jump), or 
lower than the five-days moving-average minus the 
three-times standard deviation (negative jump), we 
observe that there have been quite a lot anomalous 
oscillations since the creation of the indices. A result 
that seems to contradict the literature is that there 
occurred more positive jumps than negative, 
regardless of the market we take into account. Hence, 
the first characteristic does not hold so strongly as 
claimed in literature, even if the negative jumps have 
on average a slightly higher magnitude (except for the 
Nasdaq-100) - the data are shown in parenthesis in the 
Table 1. Nevertheless, if we tighten our analysis and 
we look only at the highest and lowest five jumps, we 
observe the opposite behavior: the positive jumps are 
much larger than the negative - this is not straightly 
verified for the S&P 500, but if we further constrain 
our analysis to the three highest/lowest jumps, we do 

reach the same conclusions. Furthermore, from the 
Figures 1 to 3 we infer that the process is quite 
stationary, so the mean-reversion already found in 
literature still holds and it is confirmed also by our 
data. On the other hand though, jumps seem to not be 
time-clustered: their behavior is quite irregular, since 
sometime we observe just a single spike, while other 
times they come banded together. For this 
phenomenon, there is however an alternative 
explanation: they indeed cluster only in crisis period 
(i.e., 2000-2001 period, and 2008-2009). This 
behavior pushes us therefore to look for a different 
inner cause for these larger oscillations, i.e., the 
market sentiment and the behavioral reactions of the 
investors, as we will explain in the next section. 

In order to check for both time clustering and 
other hidden effects, we also run additional 
quantitative analysis on the three indices. We indeed 
implement the two following regressions, respectively 
a linear probability model (LPM) and an ordinary least 
square (OLS) regression: 

 

 
𝐉𝐮𝐦𝐩𝐬𝐭 = 𝛃𝟎 + 𝛃𝟏 𝐉𝐮𝐦𝐩𝐬𝐭−𝟏 + 𝛃𝟐 𝐕𝐨𝐥𝐮𝐦𝐞𝐭−𝟏 +  𝒆𝒕 (6) 

𝐌𝐚𝐠𝐧𝐢𝐭𝐮𝐝𝐞𝐭 = 𝛃𝟏𝐌𝐚𝐠𝐧𝐢𝐭𝐮𝐝𝐞𝐭−𝟏 + 𝛃𝟐𝐕𝐨𝐥𝐮𝐦𝐞𝐭−𝟏 + 𝒆𝒕  (7) 

where respectively Jumps is a dummy variable 
with value 1 whether the returns jumped over the 
threshold (assessed with the three-sigma rule), and 0 
otherwise; Volume represents the volume of the 
transaction happened, while Magnitude is an 
interaction variable built as the amplitude of the jump 
if a jump actually takes place. 

Thus, the first regression tells us which is the 
probability that a stock will jump tomorrow since it 
jumped today, and also verifies for the number of 

transactions occurred today. The second analysis 
instead reveals how much the stock will jump (if it 
jumps), given how much it jumped today and given 
the transaction volume. It is a straightforward analysis, 
but it gives us some insights. As we can see from the 
Table 2, the relations are always statistically 
significant, even if the total portion of model 
explained by our variables is quite low (i.e., the R2 is 
low, meaning that additional variables and analysis are 
needed). 
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Table 2. Results of the LPM and OLS regressions for both the jumps occurrence and their magnitude, for 
each of the indices considered t-statistics in parentheses 

 

 FTSE  NASDAQ  S&P500  

 Jumps Magnitude Jumps Magnitude Jumps Magnitude 

Jumps (t-1) 0.129*** 

(11.19)  0.0985*** 

(8.10)  0.141*** 

(17.52)  

Volume 
(t-1) 

1.03e-11*** 

(5.97) 
1.37e-13* 

(2.22) 
8.92e-12*** 

(5.50) 
3.14e-13*** 

(4.78) 
7.49e-12*** 

(13.54) 
3.58e-12** 

(2.79) 
Magnitude (t-

1)  0.0430*** 

(3.91)  -0.0883*** 

(-7.79)  -0.138*** 

(-13.25) 

Constant 0.00183 
(1.18)  -0.00149 

(-0.64)  0.00113 
(1.26)  

Significance level: * p < 0.05, ** p < 0.01, *** p < 0.001. 
 
Hence, what the Table 2 shows us is that some 

degree of clustering exists, because all the coefficients 
for Jumps are positive (i.e., a jump yesterday increases 
the probability of a jump today), but the effect is 
extremely low – it may be persistent only in some 
scenarios, as we claimed before. The volume has an 
effect as well, and this supports our idea that for 
instance in high-frequency markets the jumps are 
more likely to happen. The effect is anyway extremely 
low, almost irrelevant, and this confirms previous 
evidences (Joulin et al., 2008). The interaction 
variable Magnitude instead shows an interesting 

behavior: excluding the FTSE, for the other indices it 
seems that if a jump of a certain intensity occurred 
yesterday, the jump that may occur today will have a 
lower amplitude. This support the idea of a mean-
reverting process, and it allows the market to stabilize 
instead of bursting for a sequence of following higher 
jumps. 

Finally, Figures 4 to 6 display that all the 
distributions show a negative skewness, while the tails 
seem to not be extremely fat as expected. 

 

Figure 4. Jumps distribution for the FTSE 100 index  

 

 
The dash line represents the approximated distribution, which it is showed with the only purpose of making 

the figure easier to read. The real distribution is instead draw with a lighter color.  
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Figure 5. Jumps distribution for the Nasdaq 100 index 

 

 
The dash line represents the approximated distribution, which it is showed with the only purpose of making 

the figure easier to read. The real distribution is instead draw with a lighter color. 

Figure 6. Jumps distribution for the Nasdaq 100 index 

 

 
The dash line represents the approximated distribution, which it is showed with the only purpose of making 

the figure easier to read. The real distribution is instead draw with a lighter color. 

 
4 A behavioral perspective  
 
If markets are efficient, then they are supposed to 
discount all available information into prices. The 
jumps clearly prove that the theory does not hold so 
strongly, but what has often been neglected is the 
behavioral side of the jumps. With this term, we mean 

two distinct issues: first, the motivation or explanation 
of why jumps exist, and second how to manage them. 
Indeed, if it is true that a jump may arise from a huge 
variety of situations such as a change in fundamentals 
or in the demand of a stock, but it is also true that it 
could be caused by some human being actions. And, 
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on the other hand, they are causes as well of some 
phenomena difficult to be explained otherwise. 

In fact, if we investigate the jumps existence 
looking at the human behaviors that may generate 
them, the first thing we could notice is that people 
tend to overreact (DeBondt and Thaler, 1985) in the 
markets. The stock price could increase (decrease) 
suddenly, maybe due to news or to some particular 
performance we did not expect to have (Lee, 2011), 
and we thus run to fix our previous misjudgment, as 
any other person will do. If we instead suffer from 
herding behavior (or from a bandwagon bias (Henshel 
and Johnston, 1987), it is quite likely that we will 
follow some big player regardless of any 
fundamentals. In general, this should not be a problem 
since the realization period considered in herding 
environment is quite large (the time between the 
action and the effect on the prices), but sometime the 
market is really inelastic, so it accumulates a kind of 
"repressed energy". People would like to buy for 
instance a certain asset because big funds are doing 
that, but maybe they cannot due to any kind of 
constraint (e.g., the minimum amount purchasable is 
one million dollars), and this creates a repressed 
potential demand. When that constraint falls down 
(e.g., the minimum amount purchasable is lowered to 
$10,000), the demand explodes and so does the price. 

On the other side, if some behavioral motif may 
be identified as causing the spikes, it may be also 
realistic to think that biases such as the anchoring 
effect (Cen et al., 2010) could help us in 
understanding why the stock price comes back to be 
normal so quickly. We strongly rely on the 
information we had on the price, and so on the 
standard price range we have observed so far. Hence, 
if there is not any fundamental reason to assume 
otherwise, we look at any price distortion as 
temporary by default, and this would explain why 
jumps are so short-lived. Clearly, this mechanism jams 
when we are in hysteria or crash-phobia crowd 
phenomena, because in those cases the collective 
behavior fully emphasizes the jump magnitude. 
However, our general tendency to prefer the status 
quo (Kahneman et al., 1991) pushes us to try to restore 
anything occurred in the market very quickly. 

From the other hand instead, the jump could in 
turn be the reason why crashes and crisis start. Indeed, 
people in financial markets are usually overconfident 
(overestimate the returns, Montier, 2013; Odean, 
1998) and optimists (underestimate the risks, Barberis 
and Thaler, 2003), and they suffer of what is called 
planning fallacy (Barberis and Thaler, 2003), that 
means exaggerating personal skills and ability to 
shape the future and perform a certain task ("This 
happens to stocks picked by other people, not to 
mine"). So, if you think you would be able to 
promptly react to anything is going to happen in the 
market, or you think to be an above-average forecaster 
and you are wrong, you will probably panic and tend 
to overreact immediately to fix your misjudgments. 

Furthermore, jumps clusters may trigger a downturn if 
you have the tendency to overestimate your ability to 
control future events (illusion of control, Dierkes et 
al., 2003), because they are quite random and by 
definition they are usually unpredictable. 

Besides the two aspects dealt so far from a 
behavioral perspective, we claim that other behavioral 
biases are involved in the world of large stock 
oscillations. First of all, we would like to provide also 
a prospect theory perspective that stems from the data 
on jumps (Kahneman and Tversky, 1979). Indeed, as 
we showed in the previous section, there are definitely 
more upwards jumps than downwards, but it is also 
true that the negative jumps have on average a higher 
magnitude, except for the extremes of the distribution. 
In fact, the market seems to implicitly compensate to 
some extent the general loss aversion with a higher 
number of positive jumps and larger extreme events. 
The slope of the value function would therefore be 
different, and the shape would be quite symmetrical 
with respect to the origin as it is supposed to be. A 
second interesting anomaly could in case try to 
explain the time clustering we observe in the jumps 
distribution, i.e., the recency bias (Lim, 2001). We are 
used to extrapolate recent events into the future 
indefinitely, so when we see a jump we are led to 
believe a second one will follow.  

Behaviorally speaking, it is also extremely 
counterintuitive how people seem to not suffer at all of 
clustering illusion bias (Theobald, 2003). Sometimes, 
human beings tend to see patterns even when there are 
not, and to overestimate the importance of small 
clusters when the availability of data is huge, but this 
does not happen in this context. To some extent, this 
bias would somehow help the market to be prepared 
for at least some important and relevant swings, 
because on average there will be people who would 
expect them, and the usual informational channels 
would spread this concern to the investors and the 
market in general.  

With respect to big shocks, what we instead 
observe is a phenomenon called hindsight bias (Gilson 
and Kraakman, 2003), i.e., seeing past events as 
predictable where they definitely were not. 
Furthermore, a regressive bias (Edwards, 1968) would 
justify why people intuitively think that events with an 
associated low likelihood to take place are usually 
neglected. More in general, this would also explain 
why people do not consider a non-insignificant 
probability that extreme events occur (the so-called 
black swan). Finally, people tend to not plan or react 
to something they did not think it might happen just 
because it never happened before (akinesia effect). 

There also should be take into account the idea 
of the availability heuristic (Kligera and 
Kudryavtseva, 2010) set into a negativity bias 
framework (Akhtar et al., 2011): in fact, we often tend 
to overestimate the likelihood of events that we 
remember clearer than others, and we usually recall 
better negative events with respect to positive ones – 
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this may explain why the average for the negative 
jumps is slightly higher. Hence, many scared investors 
in 2009-2010 at the first hint of any market downturn, 
they recollect the experience of the previous financial 
crisis, and this of course strengthened any unexpected 
market movement. Another effect is in addition what 
we defined denial of similarity, because we are always 
led to think that what we experience is not similar at 
all to what happened in the past (e.g., two crisis are 
not the same, the periods are different, people are now 
smarter, the markets are nowadays more efficient, 
etc.). This would bring us, from one hand, to pretend 
to not take into account any irregular price oscillations 
because we do not have the means to forecast them, 
and from the other to complicate excessively the 
identification of a jump-cluster.  

To conclude, we provided several insights on 
aspects usually not considered when it comes to 
market fluctuations. The aim of this section was 
indeed to stress the importance of the behavioral 
component in explaining weird stock price variations. 
A market participant could be affect by some or none 
of those biases presented, but the point in question is 
that, in order to reach a better comprehension of this 
phenomenon, and to achieve new efficient level of 
understanding on how to manage them, the human 
component cannot be omitted.  
 
5 Conclusions 
 
The stock jumps are very common in financial 
markets, although their definition still remain unclear. 
The purpose of this work is to give an overview on the 
distinct aspects of the price oscillations, to stress the 
importance of this phenomenon and to contribute to 
the academic and professional debate on the topic. We 
provide four different perspectives (the mathematical 
one, the risk manager one, the trader and the investor 
ones). We then analyze the major stock indices such 
as the FTSE 100, the Nasdaq 100, and S&P 500, in 
order to test the stylised facts found by the literature, 
underlining that some of them hold while other do not. 
We finally provide a new behavioral interpretation on 
reasons and causes of the price jumps existence. Our 
comments and results are neither completely 
conclusive nor to be interpreted as “truth in stone”, but 
rather as a contribution to this topic that we still barely 
understand. 
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