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8.1 ABSTRACT 

This chapter investigates on the effects of the hydrodynamic solver on the multi-objective hull-form 

optimization of the DTMB 5415 model in calm water. Potential flow and Reynolds-averaged Navier–Stokes 

(RANS) solvers are compared. The former is formulated and implemented using two linearization 

approaches (Kelvin and Dawson), combined with two methods for the wave resistance. The Pareto fronts for 

the reduction of the resistance at two speeds are obtained by a multi-objective deterministic particle swarm 

optimization and are significantly affected by the potential flow formulation. A correlation analysis with 

RANS is shown, in order to suggest the most effective potential flow formulation for the present case. 

Finally, a RANS-based metamodel is used for a single-objective optimization, for the calm water resistance 

at Fr=0.25, using global and global/local hybrid optimization algorithms. 
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8.4 INTRODUCTION 

High-fidelity solvers (such as Reynolds-averaged Navier–Stokes, RANS) have shown their capability to 

provide accurate solutions to the design problem [1]. Their computational cost is still a critical issue in 

simulation-based design optimization (SBDO). For this reason, metamodels and variable-fidelity approaches, 

based on low- and high-fidelity solvers, have been developed and applied to reduce the computational time 

and cost of the SBDO. Low-fidelity solvers (such as potential flow, PF) have been applied to identify 

suitable design spaces for RANS-based optimization [2]. Identifying the proper trend of the design objective 

versus the design variables often represents a critical issue for a low-fidelity solver, especially when large 

design modifications are involved. The choice of a low-fidelity solver within SBDO represents a critical 

issue and should be carefully justified, considering the trade-off between computational efficiency and 

solution accuracy. 

The objective of this chapter is to investigate the effects of the hydrodynamic solver on the results of a multi-

objective SBDO in ship hydrodynamics. Two different linearization approaches for the PF solver are 

compared, namely Kelvin and Dawson [3], combined with two different methodologies for the calculation of 

the wave resistance: a standard pressure integral over the body surface and the transversal wave cut method 

[4]. The chapter then presents a sensitivity analysis of the hydrodynamic performance using RANS, in order 

to compare and correlate PF and RANS trends, and evaluate benefits and drawbacks of the PF formulations 

within SBDO. 

The application presented is the hull-form optimization of the DTMB 5415 model. In the present chapter, a 

multi-objective SBDO example is shown, aimed at the reduction of the total resistance at 18 kn and 30 kn, 

corresponding to Froude number Fr=0.25 and Fr=0.41, respectively. The case considered is a 2 DOF 

problem with free-surface. The model advances in calm water and is free to heave (stationary sinkage) and 

pitch (stationary trim). A linear expansion of orthogonal basis function is used for the shape modification. 

Specifically, two sets of orthogonal functions are applied for the modification of the hull and the sonar dome 

shapes, and controlled by a total number of design variables N = 6. A multi-objective extension of the 

deterministic particle swarm optimization algorithm (MODPSO) is used [5]. The constraints include fixed 

displacement and fixed length between perpendiculars, along with a ±5% maximum variation of beam and 

draft, and a reserved volume for the sonar in the dome. PF simulations are conducted using the code WARP 

(WAve Resistance Program), developed at INSEAN. RANS investigations are performed using the 

CFDShip-Iowa code [6], developed at the University of Iowa.   

Finally, a single-objective high-fidelity optimization for the reduction of the model scale total resistance 

coefficient of DTMB 5415 is performed using RANS. Four global and global/local optimization algorithm 

have been applied on a RANS-based metamodel. The design space is composed by a total number of N = 11 

design variables, that are the result of a dimensionality reduction analysis, based on the Karhunen-Loève 

expansion (KLE) [7]. Geometrical and functional constraints are the same of the multi-objective problem. 

The chapter is organized as follows. Section 8.5 presents the low- vs high-fidelity multi-objective 

optimization in calm water at Fr=0.25 and Fr=0.41, comparing PF and RANS. Section 8.6 presents the high-

fidelity single-objective optimization in calm water at Fr=0.25, using a RANS-based metamodel. The final 

conclusions are included in Section 8.7. 

Further details of the current results have been published in [8] [9] [10]. 
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8.5 LOW- VS HIGH-FIDELITY MULTI-OBJECTIVE OPTIMIZATION 

In this section, the effects of the potential flow on the multi-objective optimization of the DTMB 5415 in 

calm water are investigated and the results compared to RANS-based solutions. 

8.5.1 Geometry, Conditions, and Optimization Problem Formulation 

Figure 8-1 shows the geometry of a 5.720 m length DTMB 5415 model used for towing tank experiments, 

as seen at INSEAN [11]. The main particulars of the full scale model and test conditions are summarized 

in Table 8-1 and Table 8-2, respectively. 

 

 

Figure 8-1: A 5.720 m length model of the DTMB 5415 (CNR-INSEAN model 2340). 

Table 8-1: DTMB 5415 model main particulars (full scale). 

Description Symbol Units Value 

Displacement   tonnes 8636 

Length between perpendiculars LBP m 142.0 

Beam B m 18.90 

Draft T m 6.160 

Longitudinal center of gravity LCG m 71.60 

Vertical center of gravity VCG m 1.390 
 

Table 8-2: Test conditions (full scale). 

Description Symbol Units Value 

Speed U1, U2 kn 18.00, 30.00 

Water density  kg/m
3 

998.5 

Kinematic viscosity  m
2
/s 1.0910

-6
 

Gravity acceleration g m/s
2 

9.803 

 

The multi-objective problem is defined as 

 

1 2minimize     ( ), ( )

subject to     

and to          ( ) 0,    1, ,k g

f f

g k N

 

 

x x

l x u

x

  (1) 

where f1 and f2 are the total resistance (RT) in calm water at Fr=0.25 and Fr=0.41; x is the design variable 

vector; l and u are the design variables lower and upper bound vectors, and gk are the geometrical 

constraints. These include fixed length between perpendiculars (LBP=142.0 m), fixed displacement 

(∇=8636 tonnes), beam and draft variation within ±5% of the original values (B=18.90 m; T=6.160 m), 

reserved volume in the dome for the sonar (4.9 m diameter; 1.7 m height). 
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8.5.2 CFD, Design Modification, and Optimization Methods 

The hydrodynamic solvers used are described in the following. The simulation setups are also briefly 

included. 

8.5.2.1 Potential Flow Formulations and Simulation Setup 

Wave resistance computations are based on the linear PF theory (e.g., [1]). The simplest linear formulation 

(Kelvin linearization) is obtained by assuming that the actual flow is slightly perturbed from the free stream, 

and its potential function is given by Ux   , which provides the Neumann-Kelvin (NK) problem for the 

Laplace equation. A further linearization, suggested by [12], is based on the assumption that the flow near 

the body is perturbed around the double model (DM) flow, and its potential function is given by 

dUx     . NK is usually reasonable for slender bodies and high speeds, whereas DM is usually more 

suitable for wider bodies and low speeds. Herein, once the flow is solved the wave resistance is evaluated by 

both a pressure integral over the body surface and the transverse wave cut method [4]. The frictional 

resistance is estimated using a flat-plate approximation, based on the local Reynolds number [13]. The 

steady 2 DOF (sinkage and trim) equilibrium is achieved by iteration of the flow solver and the body 

equation of motion. 

The solver used is WARP, and the linearization and the wave resistance estimation methods are combined, 

producing four different PF formulations: (a) Neumann-Kelvin with pressure integral method (NK-PI), (b) 

Neumann-Kelvin with transverse wave cut method (NK-WC), (c) double model linearization with pressure 

integral method (DM-PI), and (d) double model linearization with transverse wave cut method (DM-WC). 

Numerical implementation and validation of the numerical solvers are given by [1].  

Simulations are performed for the right demi-hull, taking advantage of symmetry about the xz-plane. The 

computational domain for the free-surface is defined within 1 hull length upstream, 3 lengths downstream 

and 1.5 lengths aside. Table 8-3 summarize the associated panel grid used (see Figure 8-2), and guarantee 

solution convergence. 

 

 
 

(a) Body grid (b) Free-surface grid 

Figure 8-2: Computational panel grid for WARP. 

Table 8-3: Panel grid used for WARP. 

Hull 
Free surface 

Total 
Upstream Hull side Downstream 

150 × 30 30 × 44 30 × 44 90 × 44 11k 
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8.5.2.2 RANS Solver and Simulation Setup 

RANS simulations are performed with the CFDShip-Iowa V4.5 code [6], which has the capability of a 6 

DOF simulation and has been developed at IIHR-Hydroscience & Engineering over the past 25 years, for 

ship hydrodynamics applications. The SST blended /k k    turbulent model is selected. The free-

surface location is predicted by a single phase level set method. A second order upwind scheme is used to 

discretize the convective terms of momentum equations. For a high performance parallel computing, an 

MPI-based domain decomposition approach is used, where each decomposed block is mapped to one 

processor. The code SUGGAR runs as a separate process from the flow solver to compute interpolation 

coefficients for the overset grid, which enables CFDShip-Iowa to take care of 6 DOF with a motion 

controller at every time step. Only 2 DOFs are considered in the current study. Table 8-4 summarizes the 

associated volume grid used (see Figure 8-3). 

  
(a) Background (b) Boundary layer 

Figure 8-3: Computational volume grid for CFDShip-Iowa. 

Table 8-4: Volume grid used for CFDShip-Iowa. 

Background Boundary layer Total 

227 × 155 × 115 243 × 71 × 115 6M 

 

 

8.5.2.3  Hull-form Modification Method 

An orthogonal representation of the shape modification is used [8], since it is more efficient in the context of 

shape design optimization [7]. For details of equations and numerical implementations the reader is referred 

to Chapter 3 (the design space used correspond to C.1). 

8.5.2.4  Multi-objective Deterministic Particle Swarm Optimization 

Details, formulation, and setup of the multi-objective deterministic particle swarm optimization algorithm 

[5] used can be found in Chapter 3. A maximum number of function evaluations is set equal to 1,536, 

which corresponds to 256N, where N is the number of design variables. 
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8.5.3 Numerical Results 

A preliminary validation of PF and RANS simulations versus experimental (EFD) data collected at INSEAN 

[14] is shown in Figure 8-4 for the original DTMB 5415 model (LBP=5.720 m). A reasonable trend is 

shown, especially for low Froude numbers, of total resistance coefficient (CT, Figure 8-4a), sinkage (σ, 

Figure 8-4b), and trim (τ, Figure 8-4c) for all formulations but NK-PI for total resistance and NK for 

sinkage. 

   
(a) Total resistance coefficient (b) Sinkage (c) Trim 

Figure 8-4: Model scale validation for PF and RANS. 

A preliminary sensitivity analysis in full scale (LBP=142.0 m) for each design variable is presented in Figure 

8-5, showing the associated objective function reduction, Δf1 and Δf2. Unfeasible designs are not reported in 

the plot. Changes in Δf1 and Δf2 are found overall significant with each PF formulation. It may be noted how 

Δf1 and Δf2 versus x1 with NK-PI show an opposite trend compared to the other formulations. 

    
NK-PI NK-WC DM-PI DM-WC 

(a) Fr = 0.25 

    
NK-PI NK-WC DM-PI DM-WC 

(b) Fr = 0.41 

Figure 8-5: Preliminary sensitivity analysis with PF. 
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Figure 8-6a shows the Pareto front obtained with each PF formulation. The design variable values of the 

Pareto front solutions are shown in Figure 8-6b. The best compromise solution between the two objective 

functions (minimum Δf1 + Δf2) is selected, and the corresponding design variable values are shown in Figure 

8-6c. Different formulations identify different optimal solutions, as also shown in Figure 8-7. 

 

Table 8-5: Hull-form optimization results (selected hulls). 

PF formulation x1 x2 x3 x4 x5 x6 f1 % f2 % 

NK-PI -1.000 0.239 -0.538 0.458 -1.000 1.000 -16.5 -4.9 

NK-WC 0.997 0.325 -0.862 -0.917 -0.136 -0.999 -2.5 -23.0 

DM-PI 0.880 -0.358 0.077 -0.505 1.000 0.799 -4.3 -1.1 

DM-WC 1.000 0.294 0.399 -0.732 0.427 -1.000 -3.1 -16.3 

 

 

   
(a) Pareto fronts (f1; f2) (b) Pareto fronts (x) (c) Selected design variables 

Figure 8-6: Multi-objective hull-form optimization results. 

 

Table 8-5 shows the objective function reduction achieved with each PF formulation, for the selected optimal 

solutions. Except for NK-PI, the reduction of the resistance is consistent with the reduction of the wave 

elevation pattern, both in terms of transverse and diverging Kelvin waves, for both Fr=0.25 (see Figure 8-8a) 

and Fr=0.41 (see Figure 8-8b). Figure 8-9 shows the pressure field of the optimized hulls compared to the 

original, showing a better pressure recovery towards the stern (except for NK-PI). 

 

    
(a) NK-PI (b) NK-WC (c) DM-PI (d) DM-WC 

Figure 8-7:  Selected optimal shapes, compared to the original. 
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NK-PI NK-WC DM-PI DM-WC 

(a) Fr = 0.25 

    
NK-PI NK-WC DM-PI DM-WC 

(b) Fr = 0.41 

Figure 8-8:  Wave elevation of the selected optimal hulls, compared with the original. 

 

    
NK-PI NK-WC DM-PI DM-WC 

(a) Fr = 0.25 

    
NK-PI NK-WC DM-PI DM-WC 

(b) Fr = 0.41 

Figure 8-9: Pressure of the selected optimal hulls, compared with the original. 

 

The heterogeneity of the results obtained with the different PF formulations motivates a further investigation 

by the RANS solver. Specifically, the sensitivity analysis (in model scale, LBP=5.720 m) at Fr=0.25 

obtained with the PF formulations is compared to RANS for each design variable, as shown in Figure 8-10. 

The RANS solutions show several differences compared to the PF formulations. In particular, the trend of 

the total resistance coefficient is captured only by NK-PI for x1, and by all the PF formulations for x2 and x3, 

whereas x4, x5, and x6 trends are not in agreement with RANS, even if the results are likely within the 

solution’s uncertainty band. Moreover, Figure 8-11 shows the error or difference (ε %) between PF 

formulations and RANS, for each design variable. The NK-PI formulation has the higher error, although 

almost constant. Table 8-6 summarizes the average absolute errors ( | |% ) of the PF formulations. 

Specifically, the NK-WC and DM-PI formulations have the lowest average error, close to 2%. The analysis 

of the Pearson’s correlation coefficient (r) between PF and RANS results (see Table 8-7) shows a good 

correlation between NK-PI and RANS for x1, x2, x3, and x5. The other PF formulations have a good 

correlation for x2 and x3, whereas the correlation for x4 and x6 is poor overall, indicating a totally different 

trend in some case. NK-PI has the better correlation with RANS solutions on average. 
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Figure 8-10:  Comparison of trends between PF and RANS at Fr=0.25. 

   

   

Figure 8-11: PF error compared to RANS at Fr=0.25 
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Table 8-6: PF average error compared to RANS. 

PF formulation 
1

| | %x  
2

| | %x  
3

| | %x  
4

| | %x  
5

| | %x  
6

| | %x  Average% 

NK-PI 52.5 52.3 53.4 52.7 53.8 53.1 53.0 

NK-WC 6.3 2.9 0.9 1.4 0.6 1.1 2.2 

DM-PI 4.9 2.5 1.0 1.4 0.8 1.4 2.0 

DM-WC 8.2 5.0 7.0 6.5 7.5 6.8 6.8 

 

Table 8-7: Pearson product-moment correlation coefficient between PF and RANS from Figure 8-11. 

PF formulation 
1xr [-] 

2xr [-] 
3xr [-] 

4xr [-] 
5xr [-] 

6xr [-] Average [-] 

NK-PI 0.997 0.998 0.993 -0.956 0.826 0.331 0.531 

NK-WC -0.983 0.985 0.994 0.538 0.818 0.482 0.472 

DM-PI -0.622 0.995 0.987 -0.679 0.827 0.335 0.307 

DM-WC -0.979 0.987 0.994 -0.269 0.790 -0.258 0.211 

 

8.6 HIGH-FIDELITY SINGLE-OBJECTIVE OPTIMIZATION 

In this section, four derivative-free global and hybrid global/local optimization algorithms are presented and 

applied to a single-objective high-fidelity optimization problem using RANS. Two algorithms are well-

known global optimization approaches, specifically (a) the DIRECT (DIviding RECTangles) algorithm [15], 

and (b) a deterministic version of the particle swarm optimization method (DPSO, [16]). The other two 

algorithms are hybrid global/local techniques integrated in (a) and (b), respectively, enhancing the global 

methods with proved stationarity of the final solution. A hybrid DIRECT method coupled with line search-

based derivative-free optimization, namely DIRMIN-2 [17], and a hybrid DPSO coupled with line search-

based derivative-free optimization, namely LS-DF PSO [18] are presented and applied. The problem is 

solved using a RANS solver (CFDShip-Iowa v4.5) [6] with a first order polyharmonic spline metamodel 

[19]. The basis functions for the shape modification are eleven and are the result of a dimensionality 

reduction analysis, based on the Karhunen–Loève expansion (KLE) [7][20]. 

8.6.1 Hull-form Optimization Problem 

The objective function is the total resistance coefficient (CT) in calm water at Fr = 0.25. The model scale is 

considered. Shape modifications 
s

δ  are produced directly on the Cartesian coordinates 
s

x  of the 

computational body surface grid, as per 

  
,0

( ) ( )
s s s

 x α x δ α  (2) 

where α ˛ is the design variable vector and 
,0s

x  represents the original body surface grid. An orthogonal 

expansion of the shape modification vector 
s

δ  is used, since it is deemed more efficient in the context of 

shape design optimization [21]. Geometric constraints include fixed length between perpendicular and fixed 

displacement (∇), with beam (B) and draft (T) varying between ±5% of the original hull. Fixed LBP and ∇ 

are satisfied by automatic geometric scaling, while constraints for B and T are handled using a penalty 

function method. This is used here, since the relationship between beam/draft variations and design variables 

is not explicitly provided by the orthogonal expansion and geometric scaling. 
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The main particulars of the DTMB 5415 model scale and tests conditions are summarized in Table 8-8 and 

Table 8-9, respectively. 

Table 8-8: DTMB 5415 model main particulars (model scale). 

Description Symbol Units Value 

Displacement   tonnes 0.549 

Length between perpendiculars LBP m 5.720 

Beam B m 0.760 

Draft T m 0.248 

Longitudinal center of gravity LCG m 2.884 

Vertical center of gravity VCG m 0.056 
 

Table 8-9: Test conditions (model scale). 

Description Symbol Units Value 

Froude number Fr - 0.25 

Reynolds number Re - 9.8210
6
 

Water density  kg/m
3 

998.5 

Kinematic viscosity  m
2
/s 1.0910

-6
 

Gravity acceleration g m/s
2 

9.803 

 

8.6.2 Design Modification and Dimensionality Reduction Methods 

The shape modifications 
S

δ  is identified using 27M   orthogonal basis functions of the Cartesian 

coordinates x, y, and z over a hyper-rectangle 

 
3 3

( , , ) : [0, ] [0, ] [0, ] ,      1, ,
j x y z

x y z L L L j M      φ  (3) 

as 

 
1

( , , ) ( , , )
s j j

j

M

x y z x y z


δ φ  (4) 

where the coefficients   ( 1, , )
j

j M     are the design variables, 

 (j)( , , ) : sin sin sin
j j j

j j j j q

x y z

n x m y l z
x y z

L L L

  
  

    
        

    

φ e   (5) 

and the following orthogonality property is imposed: 

 
,

( , , ) ( , , )
i j i j

x y z x y x dxdydz   φ φ   (6) 

In Eq. (5), ,  ,j jn m and 
j

l  , define the order of the function in x, y, and z direction respectively; ,  
jj

   

and 
j

   are the corresponding spatial phases; ,  
x y

L L  and 
z

L   define the domain size; 
( )q j

e  is a 

unit vector. Modifications may be applied in x , y , or z  direction, with ( ) 1,2,q j   or 3 respectively. 

Table 8-10 summarizes the parameters used herein. 
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Table 8-10: Orthogonal function parameters for shape modification 

j  jn  j  jm  j  jl  j  ( )q j  ,minj (m) ,maxj (m) 

1 1.0 0 1.0 0 1.0 0 2 -1.0 1.0 

2 1.0 0 1.0 0 2.0 0 2 -1.0 1.0 

3 1.0 0 2.0 0 1.0 0 2 -1.0 1.0 

4 2.0 0 1.0 0 1.0 0 2 -1.0 1.0 

5 1.0 0 2.0 0 2.0 0 2 -1.0 1.0 

6 2.0 0 1.0 0 2.0 0 2 -1.0 1.0 

7 2.0 0 2.0 0 1.0 0 2 -1.0 1.0 

8 2.0 0 2.0 0 2.0 0 2 -1.0 1.0 

9 1.0 0 1.0 0 3.0 0 2 -1.0 1.0 

10 1.0 0 3.0 0 1.0 0 2 -1.0 1.0 

11 3.0 0 1.0 0 1.0 0 2 -1.0 1.0 

12 1.0 0 2.0 0 3.0 0 2 -1.0 1.0 

13 2.0 0 1.0 0 3.0 0 2 -1.0 1.0 

14 1.0 0 3.0 0 2.0 0 2 -1.0 1.0 

15 2.0 0 3.0 0 1.0 0 2 -1.0 1.0 

16 3.0 0 1.0 0 2.0 0 2 -1.0 1.0 

17 3.0 0 2.0 0 1.0 0 2 -1.0 1.0 

18 2.0 0 2.0 0 3.0 0 2 -1.0 1.0 

19 2.0 0 3.0 0 2.0 0 2 -1.0 1.0 

20 3.0 0 2.0 0 2.0 0 2 -1.0 1.0 

21 1.0 0 3.0 0 3.0 0 2 -1.0 1.0 

22 3.0 0 1.0 0 3.0 0 2 -1.0 1.0 

23 3.0 0 3.0 0 1.0 0 2 -1.0 1.0 

24 2.0 0 3.0 0 3.0 0 2 -1.0 1.0 

25 3.0 0 2.0 0 3.0 0 2 -1.0 1.0 

26 3.0 0 3.0 0 2.0 0 2 -1.0 1.0 

27 3.0 0 3.0 0 3.0 0 2 -1.0 1.0 

 

The design space modification defined by Eq. (4) is reduced in dimensionality using the generalized KLE 

method presented in [7]: 

 
1

( , ) ( , )
N

s j j

j

    


δ Φ   (7) 

where   and   are curvilinear coordinates over the (demi) hull,  ( 1, , )
j

j N     are new design 

variables and 
j

Φ  are the solutions of the eigenproblem 

 ( ', ') ( , ) ( ', ') ( ', ') ( , )
s s j j j

d d               δ δ Φ Φ   (8) 

provided that ( , , ) ,  ( , , )
s

x y x     δ α 0 . The brackets   indicate ensemble average over the 

realizations of the design variable vector  j β , which is assessed here using 10,000 uniform 

random samples (each of them resulting in a modified hull form). The weight 


  defines a 

generalized inner product and is used to give more emphasis to the submerged grid nodes. The following 

orthogonality property holds [22][23] 
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,

( , ) ( , ) ( , )
j j i j

dxdydz         Φ Φ  (9) 

Finally, the reduced dimension N is selected in order to retain the 90% of the original variability of the 

geometric variance, as 

 

 
1 1

0.90
N

j k

j k

 


 

    (10) 

provided that 
1 2 1j j
   


    . For the current problem N=11 and the corresponding eigenfunctions 

(represented on the hull) are shown in Figure 8-12. Details of the formulation and numerical 

implementation of the design space dimensionality reduction technique may be found in [7]. Details of the 

application to the hull form optimization of the DTMB 5415 may be found in [20]. 

 

 

   
(j=1) (j=2) (j=3) 

   
(j=4) (j=5) (j=6) 

   
(j=7) (j=8) (j=9) 

  

 

(j=10) (j=11)  

Figure 8-12: KLE solutions j. 

 

8.6.3 Hydrodynamic Analysis and Metamodelling 

RANS simulations are performed with the CFDShip-Iowa v4.5 code, as presented in Section 8.5.2.2. Details 

about background and boundary layer volume grids can be found in Table 8-4 and Figure 8-3. The boundary 

layer grid is designed to have y
+
= 0.3 at Fr = 0.25.  

The optimization problem is solved using a metamodel, trained by 71 RANS simulations defined using a 

sequential sampling procedure [24]. The metamodel used is a first order polyharmonic spline, which is a 

special case of radial basis function (RBF) interpolation [19]. For the hull form optimization process, a limit 

to the number of metamodel-based function evaluations is set equal to 8800, i.e.,800N. 
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8.6.4 Automatic Boundary-layer Grid Modification 

The boundary layer (volume) grid is automatically modified, in order to reflect the shape modification 

applied to the body (surface) grid. Assume that the body surface grid is defined with index J = 1 and spanned 

by indices I = 1, ..., Imax and K = 1, ..., Kmax. Accordingly, the boundary layer grid is spanned by I = 1, ..., Imax, 

J = 1, ..., Jmax   and K = 1, ..., Kmax, with J = Jmax corresponding to the outer surface. Once the grid nodes of 

the body surface at J = 1 are modified as per Eq. (7), any arbitrary inner node of the boundary layer grid (J = 

2, ..., Jmax−1) is modified similarly to Eq. (2), as 

 
0

 x x δ   (11) 

with 

 
s s

l l l

l l


 δ δ δ   (12) 

where l is the distance between (original) inner and body surface nodes, with arbitrary J and J = 1, 

respectively (and same I and K indices); l* is the distance between (original) outer and body sur-face nodes, 

with J = Jmax and J = 1, respectively (and same I and K indices); 
s

δ  is the modification of the outer surface (J 

= Jmax): 

 
s s

cδ δ   (13) 

with 
0

c


 . 

The distance l (and l*) may be evaluated in the simplest form ast he Euclidean distance l : 

 
0 ,0

 || ||
s

l l  x x   (14) 

Alternatively, the approximate curvilinear distance l̂  along the grid line at constant I and K may be used 

[25]: 

 
1

( 1) ( )

0 0

1

ˆ | | ||
J

j j

j

l l






   x x   (15) 

where superscripts indicate grid indices, limited to J for the sake of compactness (since I and K are constant). 

In the current work, c = 0 in Eq. (13) and ˆl l  in Eq. (12). During the metamodel training, each modified 

grid is assessed for quality by means of y
+
, determinant of the Jacobian matrix and skewness. 
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8.6.5 Optimization Algorithms 

Consider the following objective function: 

 ( ) :
N

f α   (16) 

and the single-objective global optimization problem 

 min ( ),   
N

f



α

α   (17) 

where { }
j

α is the design variable vector and  is a closed and bounded subset of 
N

, identified here 

by the lower (
j
) and upper (

j
u ) bounds of each design variable 

j
 . The global minimization of the 

objective function ( )f α requires to find a vector a  so that: 

 : ( ) ( )f f  b a b   (18) 

Then, α a  is a global minimum for the function ( )f α  over . The exact identification of a global 

minimum might be very difficult, representing a theoretical, methodological, and technological challenge. 

Therefore, approximate solutions provided by heuristic procedures are often considered acceptable for 

practical purposes. The deterministic derivative-free global algorithms (DIRECT and DPSO) and their 

global/local hybridizations (DIRMIN-2 and LS-DF PSO) are presented in the following, for the solution of 

Eq. (17). 

8.6.5.1  The DIRECT Algorithm 

DIRECT is a sampling deterministic global derivative-free optimization algorithm and a modification of the 

Lipschitzian optimization method [15]. It starts the optimization by transforming the search domain  of the 

problem into the unit hyper-cube . At the first step of DIRECT, ( )f α is evaluated at the center (c) of ; 

the hyper-cube is then partitioned into a set of smaller hyper-rectangles and ( )f α  is evaluated at their 

centers. Let the partition of  at iteration k be defined as { : }
k i k

i  , with  

 
( ) ( )

{ : ,     1, , ,     } 
N i i

i j j j k
u j N i       α   (19) 

where N is the number of design variables, 
( )i

j
 and 

( )
[0,1]

i

j
u  , with 

k
i , are the lower and upper bounds 

defining the hyper-rectangle 
i
, and 

k
is the set of indices identifying the subsets defining the current 

partition. At a generic kth iteration of the algorithm, starting from the current partition 
k

 of , a new 

partition 
1k
, is built by subdividing a set of promising hyper-rectangles of the previous one. The 

identification of “potentially optimal” hyper-rectangles is based on some measure of the hyper-rectangle 

itself and on the value of ( )f α  at its center 
i

c . The refinement of the partition continues until a prescribed 

number of function evaluations have been performed, or another stopping criterion is satisfied. The 

minimum of ( )f α  over all the centers of the final partition, and the corresponding center, provide an 

approximate solution to the problem. It may be noted that the box constraints are automatically satisfied. 
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8.6.5.2  Local Hybridization of the DIRECT Algorithm: DIRMIN-2 

DIRMIN-2 is a global/local hybridization of the DIRECT algorithm and a variant of DIRMIN [26][17]. 

Differently from DIRMIN, that performs as many local searches as the number of identified potentially 

optimal hyper-rectangles, DIRMIN-2 performs a single derivative-free local minimization per iteration, 

starting from the best point produced by dividing the potentially-optimized hyper-rectangles. DIRMIN-2’s 

local minimization is used when the number of function evaluations reaches the activation trigger (0,1)  , 

a ratio of the maximum number of function evaluations (Nfmax). The local minimization proceeds until either 

the number of function evaluations exceeds Nfmax or the step size   falls below a given tolerance  . The 

local search is not allowed to violate the box constraints. The performance of the algorithm varying the 

tolerance   and the activation trigger   has been studied in [17], where DIRMIN-2 is applied to a ship 

optimization problem. Herein the following setup are used:   = 0,   = 10
−2

. 

8.6.5.3  The DPSO Algorithm 

The details about the single-objective deterministic particle swarm optimization algorithm, used in this 

section, can be found in Chapter 3 and in Ref. [16]. 

8.6.5.4  Local Hybridization of the DPSO Algorithm: LS-DF PSO 

Global convergence properties of a modified PSO scheme may be obtained by properly combining PSO with 

a line search-based derivative-free method, so that convergence to stationary points can be forced at a 

reasonable cost. Ref. [18] provides a robust method to force the convergence of a subsequence of points 

toward a stationary point, which satisfies first order optimality conditions for the objective function. The 

method, namely LS-DF_PSO, starts by coupling the DPSO scheme with a line search-based method. 

Specifically, a Positively Spanning Set (PSS) is used, where the set of search directions (D⊕) is defined by 

the unit vectors ±ei, i = 1, ..., N, as shown in the following equation (i.e., N = 2). 

 
0 1 0 1

, , ,
1 0 1 0

D







        
        
        

  (20) 

After each DPSO iteration, the local search from the best particle is performed if the swarm has not find a 

new global minimum. The initial step size (
k

 ) for the local search is set equal to 0.25 times the variable 

domain range, and it is reduced by ϑ = 0.5 at each local search iteration. Local searches continue in each 

direction until the step size is greater than   = 10
−3

. If the local search stops without providing a new global 

minimum, the actual global minimum is declared as a stationary point. The line search method is not allowed 

to violate the box constraints. 

8.6.6 Numerical Results 

A preliminary sensitivity analysis for each design variable is presented in Figure 8-13, showing the 

associated percent resistance reduction ( f ) with respect to the original hull. The quality of the grids 

produced by the method presented in Section 8.6.4 is assessed for each modified design. Figure 8-14b 

presents a modified grid laying on the boundary of the design space, showing an acceptable quality. Non-

dimensional design variables are shown in the plots, 2( ) / ( )
j j j j j

x u   . Changes in f are found 

significant for all variables, revealing a possible reduction of the total resistance at Fr = 0.25 close to 5%.  
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Figure 8-13: Sensitivity analysis of non-dimensional design variables. 
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(a) Original hull 

 
(b) Modified hull laying on the design space boundary (x1=1) 

 
(c) Optimized hull 

Figure 8-14: A 5.720 m length model of the DTMB 5415 (CNR-INSEAN model 2340). 

  
(a) (b)  

Figure 8-15: Objective function convergence history (a) and detail after the first 1000 function evaluations (b). 

The analysis of the results is conducted setting apart results (i) for a low budget of 1100 function evaluations 

(which corresponds to 100N, an eighth of the full budget), and (ii) for the full budget of 8800 function 

evaluations (which corresponds to 800N).  
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For the case (i), the optimization procedure achieves a total resistance coefficient reduction of 5.16% and 

5.37% using DIRECT and DIRMIN-2, respectively, and a reduction of 4.98% using both DPSO and LS-DF 

PSO. DIRMIN-2 outperform its global version, whereas DPSO and its hybrid reach the same result because 

non a local search has been activated by LS-DF PSO. DIRMIN-2 is found the most efficient algorithm for 

the present SBD problem, achieving the best design with the fastest convergence rate, as shown in Figure 8-

15. Figure 8-16 presents the values of the optimized design variables, showing appreciable differences, and 

shows the corresponding optimized shapes, compared to the original.  

 
(a) Objective function convergence of optimized design variables 

  
(b) DIRECT (c) DIRMIN-2 

  
(d) DPSO (e) LS-DF_PSO 

Figure 8-16: 1100 function evaluations. 
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For the case (ii), the optimization procedure achieves a resistance reduction of 5.95% and 5.98% using 

DIRECT and DIRMIN-2, respectively, and a reduction of 5.52% and 5.91% using DPSO and LS-DF PSO, 

respectively. The convergence history of the objective function towards the minimum is shown in Figure 8-

15, confirming the efficiency and robustness of the two hybrid global/local approaches DIRMIN-2 and LS-

DF PSO. More in detail, DIRMIN-2 achieves the most significant reduction of the objective function over-

all, although all the solutions are very close in this case. Figure 8-17 presents the values of the corresponding 

optimized design variables and shows the optimized shapes compared to the original.  

 
(a) Objective function convergence of optimized design variables 

  
(b) DIRECT (c) DIRMIN-2 

  
(d) DPSO (e) LS-DF_PSO 

Figure 8-17: 8800 function evaluations. 
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Table 8-11: Summary of the optimization results. 

N. funct. 

eval. 
Algorithm 

Design variables (non-dimensional) CT(x10
-3

) 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 Value f % 

1100 

DIRECT -0.22 -0.07 0.00 -0.07 0.44 0.07 0.00 0.15 0.07 -0.07 0.07 4.00 -5.16 

DIRMIN-2 -0.28 -0.03 0.03 -0.16 0.12 -0.03 -0.03 0.13 0.17 -0.09 0.40 3.99 -5.37 

DPSO -0.30 0.11 0.09 -0.14 0.11 -0.05 -0.04 -0.10 -0.31 -0.08 -0.05 4.01 -4.98 

LS-DF_PSO -0.30 0.11 0.09 -0.14 0.11 -0.05 -0.04 -0.10 -0.31 -0.08 -0.05 4.01 -4.98 

8800 

DIRECT -0.15 -0.01 0.01 -0.11 0.05 -0.03 -0.01 0.02 -0.77 -0.03 0.01 3.97 -5.95 

DIRMIN-2 -0.15 -0.01 0.01 -0.10 0.05 -0.03 -0.02 0.02 -0.77 -0.03 0.02 3.97 -5.98 

DPSO -0.21 -0.02 0.04 -0.11 0.06 -0.05 -0.04 0.12 -0.61 -0.07 -0.03 3.99 -5.52 

LS-DF_PSO -0.15 -0.06 0.02 -0.09 0.06 -0.03 -0.03 0.03 -0.77 -0.04 -0.01 3.97 -5.91 

 

The close agreement of the solutions obtained by the different algorithms indicates that the global minimum 

region has been likely achieved. A summary of the optimization results is presented in Table 8-11.  

The best design is finally assessed with RANS. The associated modified grid is assessed and presented in 

Figure 8-14c, showing a good quality. The results are presented in Figures 8-18, 8-19, 8-20, and 8-21, and 

Table 8-12. Figures 8-18 and 8-21 show a significant reduction of the diverging bow wave and a small 

reduction of the diverging and transverse stern wave. It may be also noted how the shoulder wave is 

cancelled. Specifically, the optimized shoulder shape induces a high pressure region in correspondence of the 

first trough of the original hull, causing a phase shift with the reduction of the diverging bow wave and the 

cancellation of the shoulder wave (well visible in Figure 8-21). This effect has been also shown in 

retrofitting studies by optimization of blisters attached to the original hull [27]. A longitudinal wave cut 

along the y = 0.1LBP plane is shown in Figure 8-19, highlighting the reduction of the wave elevation, 

especially at the bow.  

Table 8-12: Comparison between original and optimized DTMB 5415 hydrodynamic coefficients (Cpp 
represent the piezometric pressure, Ch the hydrostatic pressure, Cf the viscous shear stress, Cmg,x the 

component of the weight force along the longitudinal axis, and CT the total resistance) 

Parameter Unit Original Optimized 

Cpp - 1.38E-03 9.08E-04 -34.0 

Ch - 0.86E-03 1.24E-03 42.0 

Cf - 3.16E-03 3.18E-03 0.65 

Cmg,x - -1.19E-03 -1.35E-03 -13.4 

CT - 4.21E-03 3.97E-03 -6.00 

/LBP - -1.31E-03 -1.35E-03 -3.29 

 deg -0.11  -0.12 -15.3 

Sw,stat/LBP
2
 - 1.48E-02 1.50E-02 0.96 
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Figure 8-18: Wave patterns produced by optimized hull forms at Fr = 0.25 compared with original. 

 

 

Figure 8-19: Longitudinal wave cut on the y = 0.1 LBP plane at Fr = 0.25 for optimized and original hulls. 

 

 

Figure 8-20: Pressure field on optimized hull forms at Fr = 0.25 compared with original. 
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Finally, Figure 8-20 presents the pressure field on the optimized shape compared to the original shape, 

showing a more uniform pressure distribution along the hull and a slightly better pressure recovery at the 

stern. The hydrodynamic coefficients for the original and the optimized hulls are finally compared in Table 

8-11, confirming that a large part of the resistance reduction stems from the reduction of the piezometric 

pressure coefficient. 

 

 

Figure 8-21: Bottom view of wave pattern and pressure distribution at Fr = 0.25 for optimized (left) and 
original (right) hulls. 
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8.7 CONCLUSIONS 

A multi-objective deterministic SBDO of the DTMB 5415 model has been shown, using four different PF 

formulations, combining Kelvin and Dawson linearization with a standard pressure integral and the 

transversal wave cut method for the wave resistance calculation. The optimization aimed at the reduction of 

the total resistance in calm water at Fr=0.25 and Fr=0.41, using six design variables modifying the hull and 

the sonar dome. A sensitivity analysis at Fr=0.25 using RANS has been also shown, for comparison and 

correlation with the PF solutions. 

The results have shown the effects of the PF formulation on the SBDO outcomes. Specifically, the Pareto 

fronts look quite different and the selected optimal designs fall in different region of the design space, 

depending on the PF formulation used (Figure 8-6 and Figure 8-7). The following considerations can be 

made: (1) the validation for the original hull shows reasonable trends, but NK-PI for low Fr; (2) DM shows 

better validation especially for sinkage, compared to NK; (3) NK-PI provides significant resistance 

reductions at low Fr (likely due to an overestimate of the resistance for the original hull) and more limited 

improvements at high Fr; (4) NK-WC shows a quite opposite trend; (5) DM-PI indicates more limited (and 

realistic) improvements, for both low and high Fr; it also shows a limited possibility of improving both 

objectives at the same time; (6) DM-WC provides more significant resistance reduction at high Fr; (7) 

overall, the WC method always indicates greater improvements at high Fr than PI, likely due to an 

overestimate for the resistance of the original hull; (8) NK results seem more affected by the wave resistance 

estimation method than DM. 

These outcomes have motivated further investigations by RANS. Specifically, a sensitivity analysis at 

Fr=0.25 has been conducted and compared with the PF results. This comparison has shown several 

differences between PF and RANS solutions. Specifically, none of the PF formulations has shown a 

reasonable trend for all the design variables, compared to RANS. More in detail, DM-PI, NK-WC, DM-WC, 

and NK-PI show an average absolute error of 2.0, 2.2, 6.8, and 53.0% respectively (see Table 8-6). The 

analysis of the Pearson’s correlation coefficient between PF and RANS results (see Table 8-7) shows a good 

correlation between NK-PI and RANS for four out of six variables. For the current test case, NK-PI is the 

more effective PF formulation.  

The present work has shown a comparison of low- and high-fidelity solver and how the use of low-fidelity 

solvers in a hull-form optimization problem can lead to inaccurate design solutions. For this reason, a further 

deterministic derivative-free RANS-based single-objective optimization of the DTMB 5415 has been 

performed, using global/local hybridization by derivative-free line search methods of two well-known global 

algorithms, DIRECT and DPSO, respectively. The optimization has been performed aiming at the reduction 

of the model scale total resistance coefficient in calm water at Fr = 0.25. The design space has been 

generated by a linear expansion of orthogonal basis functions for the modification of the hull form. The 

problem has been solved with a number of design variables equal to eleven. A resistance reduction of 6% has 

been achieved by the optimized design. The RANS-based optimization relies on more accurate high-fidelity 

hydrodynamic analyses and provides a more realistic hull form. The final shape obtained with RANS 

induces a high pressure region in correspondence of the first trough of the diverging bow wave of the 

original hull. This causes a phase shift with a significant reduction of the bow wave and the cancellation of 

the shoulder wave. As a result, the pressure distribution appears more uniformly distributed along the hull 

and most of the resistance reduction stems from the piezometric pressure coefficient.  

The hybrid methods reach convergence using about 1100 function calls, whereas the original algorithms 

seem to need more than 10,000 evaluations to reach convergence. This motivates the use (as in the present 

study) of metamodels to reduce the computational cost. Nevertheless, latest studies [28] have shown the 

solution of a stochastic multi-objective optimization of a high-speed catamaran, using a number of 780 

RANS simulations in calm water and 1170 in regular waves, with a grid size of 6.9M. This demonstrates the 

technological possibility of applying directly the optimization algorithm to RANS simulations, even if the 
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number of function calls becomes larger than 1000, as in the present work. In this case, the efficiency of the 

optimization algorithm is a crucial issue and (in view of current results) hybrid methods may represent a 

viable and valid option.  

In conclusion, the present research has finally shown how global/local hybridization methods, namely 

DIRMIN-2 and LS-DF PSO, out-perform their original global algorithms, DIRECT and DPSO. This result 

has been found significant especially for low budgets of function evaluations. Hybrid algorithms have shown 

their capability to combine effectively the characteristics of global and local approaches, resulting in a faster 

(and computationally less expensive) convergence towards the global minimum. This, along with their 

derivative-free formulation and implementation, makes the present local hybridization methods a viable and 

effective option for SBD optimization, especially when computationally expensive objective functions are 

involved. The final hydrodynamic assessment of the RANS-based optimized shape has confirmed the 

effectiveness of the SBD optimization procedure, driven by hybrid global/local methods. 

Future work will focus on the stochastic optimization of the DTMB 5415 hull form, subject to real ocean 

environment and operations. In this context, the extension of hybrid global/local methods to multi-objective 

problems will be addressed and combined with metamodel-based optimization by adaptive sampling 

procedures [24]. Alternatively, multi-fidelity approximations may be used, combining the computational cost 

of low-fidelity evaluations with the accuracy of high-fidelity simulations [29]. 
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