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ABSTRACT. - This paper provides a new algorithm for estimating state space
dynamic models and, as an example, it considers the estimation of time-varying
parameter models. The novel elements of the algorithm are: a simple, easily
implementable, square root method which is shown to solve the numerical problems
affecting the standard Kalman filter algorithm and the related information filter and
smoothing algorithms;an iterative framework, where information and covariance
filters and smoothing are sequentially run in order to estimate all the parameters of
the model; four different algorithms to consistently estimate the distribution of
the estimated parameters, which are described and then compared by performing
appropriate Montecarlo experiments.
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triques

RESUME. - Cet article présente un nouvel aigorithme pour estimer des modéles
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de modéles dont les parameétres varient au cours du temps. L’'aspect novateur de
Falgorithme tient d"abord 3 une méthode de racine carrée simple, facile & mettre en
ceuvre, qui permet d’éviter les problémes numériques que I'on rencontre avec le
filtre de Kalman classique et les algorithmes de lissage ou le filtre d’information
associés. |l tient aussi au cadre itératif ou les filtres d'information et de covariance
et le lissage sont appliqués successivement pour estimer tous les parametres du
modéle. On compare quatre versions différentes de I'algorithme 3 I'aide de simula-
tions de Monte-Carlo.
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1 Introduction

The conventional Kalman filter, as proposed by KALMAN [1960}, has been
frequently applied to econometric models and time series analysis in recent
years (secc HARVEY [1981] for an accurate survey). However, all those
applications of the Kalman filter utilize the standard Kalman algorithm,
without facing the problems related to the actual implementation of the
Kalman filter equations.

In particular, even if difficulties related to computer roundoff and other
numerical problems appeared in the very early literature on the Kalman
filter (see for example BELLANTONI-DODGE [1967]); SCHMIDT-WEINBERG-
LukesH [1968]; ScHMIDT [1972]), only in the engineering literature it is
possible to find analyses and solutions of those difficulties. Amazingly
enough, no application of Kalman filtering in economics discusses the
numerical problems which affect the conventional Kalman algorithm and
which are very likely to undermine the meaning of the obtained results.

It is indeed common experience (see KAMINSKI-BRYSON-ScHMIDT [1971]),
including our own experience, that the conventional Kalman algorithm
often provides covariance matrices of the estimated parameters which fail
to be positive semi-definite and, consequently, estimated parameters which
largely differ from the true parameters. Even worse, the values of the
estimated covariance matrices may be explosive because of computer roun-
doff errors and ill-conditioned Kalman algorithms.

The above problems, in particular, the non-positive semi-definiteness of
the parameter covariance matrices, may occur during one of the recursions
of the filter, so that they affect the final estimates of the parameters even
when the final covariance matrices are positive definite. This may explain
why econometricians are seldom aware of the issues that we are going to
discuss 1n this paper.

Even in engineering however, the most appropriate techniques for dealing
with those numerical problems (the square root algorithms) have had diffi-
culty gaining acceptance and, despite their demonstrated superior per-
formance, have been received to a large extent as curiosities. This cold
reception is due perhaps to the fact that too few articles on square root
algorithms have appeared and that these articles have unfortunately led
many to conclude that square root techniques are too complicate.

The first goals of this paper are therefore:

(i) to show the relevance of numerical problems for the conventional
Kalman algorithm in its three forms (covariance, information and
smoothing);

(ii) to propose a new, very simple, square root algorithm for both Kalman
covariance and information filters and for the smoothing equations. Our
algorithm may be more likely to be understood and accepted by econometri-
cians;

(iii) to prove that our algorithm, named Square Root Iterative Filter, is
very effective in solving the numerical problems affecting the conventional
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Kalman algorithm so that good estimates and covariance matrices always
positive semi-definite can be obtained.

It is important to emphasize that this paper not only provides new
theoretical results on square root filtering, but it is also aimed at defeating
the indifference surrounding square root techniques in econometrics. There-
fore, several simulation experiments will be performed in order to show the
superior performance of our square root algorithm when used for estimating
time varying parameter models.

A second important problem which makes it difficult to apply Kalman
filters to econometric models concerns the possibility of deriving explicit
estimators for all the unknown parameters of the state space model derived
from the original econometric model (transition and covariance matrices in
particular) and for the initial conditions.

When applying the Kalman filter it is often assumed either that initial
conditions and covariance and transition matrices of the state space model
are known, or that they can be estimated by numerically optimizing the
likelihood function of the innovations generated by the Kalman filter (see
PAcan [1980]; Chow [1983]; Los [1983]). This latter approach, which is
known as Prediction Error Method in the engineering literature, is not
always convergent and, like most numerical methods (see Basso [1986]),
does not provide precise estimates of the parameters of the model.

Other methods for estimating all the unknown elements of the state space
model are based on:

(1) the E-M algorithm (see DEMPSTER-LAIRD-R UBIN [1977); ENGLE-WATSON
{1983]; Los [1985]);

(i) the Extended Kalman filter (see JAzZwWiNsKI (1970}, Linune [1979)):

(ii1) the Innovation Correlation Method (see MEHRA [1970};, CarrARO
[1983, 1985]).

Since none of the above methods is completely satisfactory from a theore-
tical viewpoint and efficient from a numerical viewpoint, the second goals
of this paper are:

(1) to provide a theoretically simple algorithm for estimating all the
unknown parameters of the state space model, including the initial condi-
tions. This task will be accomplished by combining the covariance and
information filters and the smoothing equations into an iterative square
root filter;

(1) to show the numerical efficiency of the above estimation method by
performing a large number of Montecarlo experiments so that actual and
estimated values can be compared.

The plan of the paper is therefore the following: section 2 deals with the
theoretical characteristics of the Square Root Kalman filter and presents
and discusses some new results on square root filtering. Sections 3 extends
those results to the information filter and the smoothing equations and
emphasizes the numerical drawbacks of former algorithms.  Section 4
presents the Iterative Filter and the estimation equations for the transition
and covariance matrices of the state space model and for the initial condi-
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tions. Finally, section 5 describes the time varying parameter model which
will be used in the Montecarlo experiments and analyses the results of the
numerical simulations. A concluding section summarizes the achievements
of this paper and explores its possible developments.

In particular, we hope that more reliable Kalman filtering techniques,
based on the Square Root Iterative Filter proposed in this paper, can
increase the number of econometric applications of state space modelling
and estimation.

2 Square Root Kalman Filter

Even if the Kalman filter equations have been presented many times in
the econometric literature, it is important to start the analysis of this section
with a discussion of the conventional Kalman filter.

Let us therefore consider the following state space model:

(1 y.=H,z+e,
(2) z,=F,z,_+G,u,

where y, is the output of the system, z, the state vector and the matrices
{H, F,G,} are supposed to be known at any time ¢. The case of unknown
system matrices will be later discussed.

Suppose that the random disturbances {e,}, {4} are independent, zero
mean, gaussian white processes with

(3) E(er e)=R 5:3 E (u, u;)=05u

where 8, is the Kronecker delta.

Suppose furthermore that the initial state z, is a gaussian random variable
with mean z} and covariance P, and that z, is independent of {e,} and

{u}.

Therefore, the unknown elements of the model are the initial conditions
(zo, P,), the covariance matrices R and Q and the state vectors
{z;t=1,... T}, where T is the number of available observations.

Suppose for the moment that (zy, Py, R,Q)=0 is known and define
Y,={y4,¥2 ---»¥ ). The Kalman filter equations determine the estimates
z-1=E(z,|Y,-1,0), z,,,=E(z,| Y,,0) and the associated error covariance
matrices P, 4, Py,

Since the Kalman filter is a sequential procedure, the following equations
hold for any t=1,2,... T:

(4) zr]r—lzprzr—llr- 1
) Pr]:—letPt—ln—lF;“’G:QG;
(6) Dt:yt_lelll—l

438



(7 C0t=HtPt—l[:—1H:+R

(8) Kr=PrJr—1H:C(J_tI
(9) Ze=Z -1 +K,p,
(10) P:|r=(I_KtHr)Pt|r—l

Equations (4) (5) represent respectively the one step ahead predictor and
its covariance matrix, v, is the one period prediction error for y, and is
called innovation, C,, is the innovation covariance matrix at time ¢ and K,
is the Kalman gain. The last two equations provide the updated estimates
of the state vector z, and the relative €rror covariance matrix.

As stated in the introduction, two problems frequently arise when using
the conventional Kalman algorithm described by equations (4) to (10): first,
the covariance matrices P,|,and P, |:-1 may fail to be positive semi-definite
at some ¢ since the Kalman filter equations do not constrain P, and P, ,_,
to be positive semi-definite. Secondly, explosive values of the covariance
matrices P,,, and P, .-, may be obtained. Both problems may imply
estimated parameters which largely differ from their true values.

The above problems are often the effects of computer roundoff and
usually occur for models with perfect or nearly perfect measurement or with
singular or nearly singular error covariance matrices, that is when a linear
combination of state vector components is known with great precision,
while other combinations are essentially unobservable (see BIERMAN [1982]).
Notice that the latter case often arises when estimating time varying parame-
ter models where a subset of the parameters is constant,

The effects of numerical errors are generally manifested in the appearance
of computed covariance matrices which fail to be positive semi-definite.

Among the methods that have been used in the engineering literature to
improve accuracy and to maintain positive semi-definiteness and symmetry
of the computed covariance matrices are:

(1) computation of only the upper triangular entries;

(i) periodic testing and resetting of the diagonal elements (to retain
positivity) and of the off-diagonal elements (to assure correlations that are
less than one);

(i) replacement of equation (10) with the more general, symmetric
expression P, |, =(I—-K,H,) P, - (I-K, H) +K,RK;;

(iv) the use of larger measurement and state covariance matrices when
they are assumed to be known.

It is now established in the engineering literature that these methods are
not reliable and our numerical experiments confirm this conclusion, !

In contrast, square root algorithms have been proposed in the engineering
literature (accurate Surveys are provided by KAMINsKI-BRYSON-SCHMIDT
[1971] and Bierman [1982]); square root filtering has been shown to perform
very well and to assure stability of the filter and positive semi-definiteness
of the covariance matrices Py,and P, ,.

1. Due to space limits we do not report in this paper the results of the numerical experiments
devoted to test the reliability of the four above methods,
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Furthermore, square root algorithms are characterized by a reduced
dynamic range of the numbers entering into the computations since they
use about half the word lenght required by conventional algorithms. There-
fore, the square root method can provide twice the effective precision of
the conventional filter implementation in ill-conditioned problems.

As the computational burden for the square root filter is not much
higher than for conventional filtering (see Table 2), we would expect to see
a great amount of applications of this technique. However, with the
exception of avionics applications, the square root filter has remained an
obscure complicated technique.

In this paper we do not want to review and explain existing square root
algorithms (accurate surveys are provided by KAMINSKI-BRYSON-SCHMIDT
[1971] and BierMAN [1982]), but we propose a new simple square root
algorithm which can easily be implemented. This avoids the two main
disadvantages of square root filtering without excessively increasing the
computational burden (see Table 2).

The basic idea is to estimate two square root covariance matrices S\
and S, |,_, such that:

(11) P:}:—1=S:|x—1s;|:—1
(12) Pllr__"sllts;lt

Let us substitute the conventional equations (5) (7) (10) with the following
equations:

(13) A;l:__[s;—llr—lF:]
QG
S;,-{H.
14 A' — tli—1+%
( ) 21 [ R,l ]
(15) A =[S:|,_1(I—K,H,)']
* R K;

where Q, Q;=Q and R, R|=R.

It is easy to prove that P,,_,=A, A}, Co:=A,,A,, and
P,|:=A;,Aj, Therefore, since the product A, A, i=1, 2, 3 is always posi-
tive semi-definite, the calculation of Pi-1» Cop Py, by using equations
(13) to (15) cannot lead to a matrix which fails to be positive semi-definite
as a result of computational errors.

The following algorithm can therefore be proposed:

(1) let Py, R and Q, when R and Q are known a priori, or P,, R, and
Qo, the initial values of P,;» R and Q, when R and Q are unknown, be
positive definite and determine, by using the Cholesky algorithm, Ses Rys

Qi;

(i) determine A,, by using equation (13) and P o=A A}, so that
P, o will be positive semi-definite by construction;

(i) factorize P, |, via Cholesky and use S, |0 to determine C,, and P, I
through the other filter equations (see Table 1);
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(iv) since P, |, is positive semi-definite by construction, it can be factori-
zed in order to obtain S, . Then the previous steps can be repeated for
t=2 and so on.

This simple algorithm therefore ensures the positive semi-definiteness of
the covariance matrices P, ,_,, C,,, P, atany t=1,...T. In order to
understand the simplicity of our algorithm with respect to existing algo-
rithms, we want to emphasize that the only computational addition with
respect to conventional filtering is the Cholesky factorization of the cova-
riance matrices P,),_, and P, , at each step.

Therefore, unlike other algorithms, the covariance matrices P,,-; and
P, . are not propagated in square root form throughout all the steps and
recursions of the filter, but we exploit their positive semi-definiteness at
each step in order to simplify the algorithm. Furthermore, the matrices S’s
and P’s are computed simultaneously and interdependently, while all other
algorithms compute the sequences {S,|,_,}, {S,,} independently of

{Prfr—l} and {Prlt}'

This can be more easily understood by looking at Table 1 where our
algorithm is compared with the most popular existing square root algorithm:
the Potter algorithm in its two generalized versions proposed by Schmidt
(in order to allow for Q different from zero) and by Andrews (in order to
consider the vector measurement case).

Table 1 shows that the factorization of the covariance matrices P,,, and
P,|,-, required by our algorithm is substituted by the computation, at each
step of the filter, of the matrix T, and the scalar ¥, in the Schmidt-Potter
algorithm, ? and by the computation of T, and the factorization of C,, in
the Schmidt-Andrews algorithm. The definitions of T, and v, can be found
in KAMINSKI-BRYSON-ScHMIDT [1971]. In particular, the computation of
T, performed either by the Householder algorithm or by the modified
Gram-Schmidt algorithm, is particularly complicated.?.

In contrast, the Schmidt-Potter algorithm, together with the Householder
routine for computing T,, results to be less time consuming than the other
algorithms (see KAMINSKI-BRYSON-SCHMIDT, [1971]).

In order to provide a more precise comparison between our algorithm
and previous square root algorithms, we computed the number of additions,
multiplications, inversions and square roots required by our algorithm and
then, using the coefficients provided by KAMINSKI-BRYSON-SCHMIDT [1971],
we determined the run time required by our algorithm for one time and
one measurement update.

2. Notice that, when y, is not scalar, it is possible to process the r-th vector ¥, as r scalar
outputs. When R is diagonal, the components of y, can be treated as independent outputs,
whereas when R is not diagonal, R, can be computed by the Cholesky factorization and
»» H? can be determined recursively by solving R;'»°=yp, and R;'H°=H, This
transformation yields a new measurement error e® with identity covariance mairix. Thus
the components of y;’ can be processed independently.

3. See BIERMAN [1982] for an illustration of this algorithm.
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TaBLE 1

Square Root Algorithms

Squaring/Square Root:

Z-1=FiZ (-1 P,“_,=A,,A'1,
Sepe-1Ste-1=Prpey
v,=y,—H, 2, Cor=A A%
KI=P”,_1H;C5,1
Z 1 =Z -1t Ko P, ,=A;Aj5
S,1/S/1=Pi 0

Schmidt-Potter (scalar measurement):

S
Z1e-1=FiZi—1 -1 [ ”(; l:|=TrAis

v,=y,—H,z -1, Co=A5 A%
K,:S,“_‘S;l,_,H:C&’
z,|,=z,|,_1+K,v,, S, =(0-7KH)S, -,
Y,=(1+Cg5'R) ™!

Poi=S -1 8- P, =85,

Schmidt-Andrews (vector measurement):

zrlr—l"_‘F:zt—llt—I’ [ ”(;_1}=Tﬁ‘\'u

v,=y,—H,z, -y Co=A, A%,
B, B,=C,,
K,=8§,,-1 S;i-1 Hy (B ) B!
2= 2 -1t K Uy S,l,:(f—l(,B,(B,+R1)’'H:)S,,,_1
P 1=Si-180-0 Py =85

Table 2 shows that our algorithm is in general more time consuming
than other algorithms, so that its simplicity is traded off by a certain degree
of inefficiency. However, unlike other algorithms, the complexity of our
algorithm does not depend on the output vector dimension r, so that it
becomes relatively more efficient as r increases (see the last column of Table
7). This result can be proven more rigorously by taking the first derivative
of the difference between the number of operations performed by our
algorithm and those performed by previous algorithms, with respect to r.

In any case, our algorithm may be preferred for its easy implementation
by using standard computer routines and without modifying the basic
structure of the conventional Kalman filter.

Furthermore, in the next sections it will be shown that our algorithm not
only can be easily added to available Kalman filter algorithms, but it is
also very effective in eliminating the numerical problems which affect the
conventional Kalman algorithm.
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TABLE 2
Approximate run time for one time and one measurement update

Time
n=10,
n=10, n=10, k=10,
Filter implementation k=5r=1 k=10,r=10 k= I, r=10
Conventional filter.. . . . .. ... . . 14 28 - 24
Schmidt-Potter.. . ... ... .. .. .. . 18 42 36
Squaring/Square Root. . ........ 32 53 36

3 Square Root Information Filter
and Smoothing

Since the SRIF algorithm, which will be proposed in the next section for
estimating the parameters of the state space model equations (1) to (3), is
composed by three filters (covariance, information, smoothing) which run
sequentially, we must derive the square root version of the information
filter and the smoothing equations.

The information filter is important since it allows for diffuse prior on the
parameter vector. It is indeed possible to initialize the information filter
by assuming P, ' =0, so that the absence of g priori information can exactly
be introduced into the filter equations. This is due to the fact that the
information filter propagates the inverse error covariance matrices P,_lf_ :
and P} and a transformed state vector d,), such that d, | ,=P;}! 2,y The
conventional formulation of the information filter is the following:

(14) di-1=0-LG)(F, ") dy_y,_,
(15 P =(I-L,G)(F, 'Y P ,_, F'(I-LG)y+LQ 'L
(16) L=(F YYPY,,_,F'G,
x[Q™ +G(F 'Y Py |, ,F/ 1G] !
(17) dy,=d,),_,+H;R 1y,
(18) Phi=P i, +H/R 'H,
(19) 2,=P,,d,,
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If no a priori information on the state vector is available, the obvious
initial values are P, ' =0 and d,=0.

However, these initial values imply that the square root method previously
proposed cannot be directly used for deriving the square root information
filter. The covariance matrices P; ! and P}, are indeed equal to zero and
the error covariance matrices may not be invertible even in following
iterations. The Cholesky factorization becomes therefore impossible.

In order to overcome this difficulty we propose the following square root
recursive information filter (see CARRARO [1986] for a detailed derivation of
the equations below):

(20) oy =0—-L,G)(F, Y d_y -,
(21) Ay=F7 YAy,

(22) L=A;A5G,(Q ' +G/A;, AL G) ™!
(23) A =[01-LG)(F ')Ay L Q]
(24) P i-1=ALAL

(25) dtltzdrlr—l"'H;R_l.Vr

(26) Ay=[A, H/R]

(27 e =Ag A%

(28) =P, d; |,

This recursive formulation of the square root information filter is simpler
than previous formulations (see KAMINSKI-BRysoN ScumipT [1971] for a
survey of previously existing square root information filters) and provides
inverse error covariance matrices which are non negative definite at each
step of the filter.

The only problem concerns the column dimension of the matrix A,,
which increases at any step of the algorithm and which may become very
large if the number of observation and/or the number of system outputs is
large. This problem can easily be solved by running the recursive square
root information filter in the first n periods, where n is the state vector
dimension, until the matrix P;|; becomes invertible. *

Then P, |1,, can be inverted and the square root Kalman (covariance) filter
previously derived can be used to estimate the state vector and its covariance
matrix in all the remaining periods.

The derivation of the square root smoothing formulas is slightly more
complicated. First of all, it must be emphasized that the smoothing algo-
rithm which is relevant in econometrics and time series analysis is not the
fixed lag smoothing often considered in the econometric literature (see
CHow [1983] for example), but the fixed interval smoothing. The fixed lag
smoothing provides indeed the projection of the unknown state vector z, .
on the information set Y, where j>t and j—t is fixed. In contrast,
the fixed interval smoothing provides the projection of z, on Y for any
t=1, ..., T, thus determining estimates of the parameters contained into
the state vector which are based on all the available information.
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The conventional fixed interval smoothing is described by the following
equations (see ANDERSON-MOORE [1979)) :

(29) A:—1=Pr—1 [¢—1 F: t-I:—.l
(30) Z:—ur:zr—l|:—1+A:—1(Z¢|T_z:|:—1)
(31) P:~1]T:Pr-1|t—1+At—l(P:|T_P:|t—l)A:—l-

The first problem to be solved concerns equation (31). In order to apply
our square root method, it must indeed be transformed into a quadratic
equation composed by symmetric matrices. In particular the difference
between the matrices P, and P, .-, has to be eliminated.

After a little bit of algebra, equation (31) can be written in the following
way (see CARRARO [1986]):

(32) Pr—i|T=(I_Ar—1Ft)Pt—1Ir*l(l__Ar—lFt)!
+A,-1 (P, 1+G,QG) A;_,.

Our square root method can now be used recursively from t=T to t=0,
since the starting matrix Pr |1, which is obtained by using the square root
Kalman (covariance) filter, is positive semi-definite by construction. Define

(33) B:—l =[(I_A:—1 Fr)St~—1|r—1 EAr—l S:.‘TEAt—lG: Ql]

Then, Sy |y can be obtained by factorizing Pr |, whereas Sy_1|1-1 Was
obtained during the Kalman filter recursions, so that By_, can be computed.
It is easy to show that P,_|, 1=Br_; B1_;. Being positive semi-definite,
the covariance matrix P;_, i can be factorized to obtain S;_, it and the
previous steps can be repeated at any time t, thus guaranteeing the positive
semi-definiteness of all the error covariance matrices.

However, a second numerical problem affects the smoothing algorithm.
Equation (30) can indeed be written as:

(34) Z;—1;T=A;—1z:|r+(I"‘A:—1Fr)z:—1|:-1~

Since we suppose not to have prior information on the state vector Z,,
the limit, as ¢ goes to zero, of P 1|, and P,]}_l is, respectively, infinity
and zero. Therefore, the limit of A, as t goes to zero, is indeterminate (it
will be proven to be F;! later on). However, any computer, given its
limited numerical capacity, will compute A, =0, if the conventional formula

is used.

In order to solve this problem we re-write A, , and I—A, | F, in the
following way (see Carraro [1986)):

(35) A:—IZF;I(I_GtQG: Pt_l :—1)
(36) I—A,__lFI=F;1(G,QG';P‘_,:_I) F,

4. If the state vector is identifiable, then P}, is invertible after n recursions of the square
root information filter (see CARRARO [1986]). However, this condition is only a sufficient
condition and depends on the number of system outputs and stochastic inputs. The
condition becomes necessary and sufficient for systems with scalar output and deterministic
variability of the state vector.
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so that equations (3. 3. 2) and (3.6) can be written as:

(37) thr—-l|T=(I—Grq};.Pr_|:—l)zt|T
+(Gt QG: Pr_|:—l)zr|t~1'

As t goes to zero, the limit of P; ;-1 is zero (no prior information), so
that the limit of A, is F; ! from equation (35).

In contrast, if the conventional formula were used, the computer would
have provided A,=0. Symmetrically, the true limit, as ¢ goes to zero, of
I-AF,,, is zero, whereas the computer, using the conventional formula,
would have computed the identity matrix. The correct value can instead
be computed by using equation (36). Therefore, our square root smoothing
will be based on equations (35), (36), (37), (32) and the factorization method
previously described. In this way, a correct evaluation (conditional on all
the available information) of the state vector will be provided and the
relative error covariance matrix will be assured to be positive semi-definite.

It is important to emphasize that the smoothing algorithm is relevant not
only because it provides estimates of the state vector which are conditional
on the whole sample, but also because it can be considered a natural way
of obtaining estimates of the initial conditions zo and P,. Using equation
(37) it is indeed possible to compute the projection z, |t and its covariance
matrix P, which can be used as initial conditions in the next iterations
of the algorithm (see ENGLE-WATSON [1983]). This is why, as later stated, a
diffuse prior will be used as starting value for the estimation of the initial
conditions z, and P,

The next section will consider this issue and other problems related with
the estimation of the other unknown elements of the system (1) to (3).

4. SRIF: Square Root Iterative
Filter

The previous sections have considered numerical problems related to the
estimation of the state vector of the system (1) to (3). We derive now
estimation equations for all the other unknown elements of the system, viz.
the covariance matrices R and Q and the transition matrix F,

As stated in the introduction, several methods have been proposed for
estimating the unknown elements contained into R, Q and F,. In particular,
the Prediction Error method, the E—M method, the Extended Kalman
filter and the Innovation Correlation method have been considered. Appli-
cations of those methods in econometrics can be found in PAGAN [1980],
ENGLE-Wartson [1983], CLARK [1985], CARRARO [1985].

As far as F, is concerned, we propose an estimation method which_ is
similar to the E—M method proposed by ENGLE-WATsON [1983] and applied
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by CLARK [1985). The basic result is contained in CARRARO [1985] where it
is shown that

(38) lim E(z,)=E(z)

and

(39) lim Cov(z,,,)=Cov (z,)
t— o

where Cov(z,) indicates the true variance-covariance matrix of the state
vector z,.

Therefore, z,,, can be considered a “consistent™ estimate of the mean
state vector E(z,). Furthermore, the structure of the smoothing equations
implies that there exists a number K such that, as T goes to infinity,
z,;r—E(z) <o, for any t>K and any small ¢. Therefore z, |1 €an also be
considered a “consistent” estimate of E(z,). This implies that the time
invariant parameters of the transition matrix F, can be consistently estimated
by an appropriate regression of Z)T O 2,y .

Suppose, for the sake of simplicity, that F,=B, +B,X,, so that F, is a
linear function of exogenous, fixed, variables X, t=1,2...T. Then, the
matrices B; and B, can be consistently estimated by regressing z,,; on
Z,_qrand X, z,_, |-

Having estimated the unknown elements contained into F, we must
provide estimation equations for the parameters of the covariance matrices
R and Q. Most methods proposed in the literature for estimating R
and Q are based on the innovation sequence {v,} and are reviewed in
CARRARO-SARTORE [1985], where simulation experiments are also performed
in order to test the performance of those methods. In particular the
innovation correlation method (see CARRARO [1985]) was shown to provide
good estimates of the covariance matrix Q, while only a numerical maximi-
zation of the innovation likelihood function could provide satisfactory
estimates of R.

More precisely, R was estimated by solving the following maximization

problem:
T

(40) max log L=Const.—1/2 ¥ log (C,,)
R t=1
T
—1/2 3 v Cg/!
=1
whereas Q was estimated by the following equation:

41 Q*=[W' W] 'W W
where
H,G®H, G U1U;_H1F1P0F;H1_R
W= : I, W°= :
H,G®H,G vror—HyFrPr_y o FrHi—R

Q* is a vector containing all the upper triangular elements of Q and I is
a selection matrix such that vec(Q)=TI"Q.
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However, having obtained smoothed estimates of the state vector Z, 1t 18
also possible to use the residuals ¢,=y,—H, z,,r and :I,=z,|T—F,z,_1 |t to
obtain consistent estimates of R and Q. However, the covariance matrices
of the residuals e, and u, depend on the covariance matrices P,_, ;v and
P, |1, which do not converge to zero asymptotically. Therefore the sum of
square of e, and u, has to be corrected in order to derive consistent estimates
of R and Q.

From obvious definition, we have:
(42) é.‘*-:e‘+Ht (z,—z, [ )
(43) G!JI__'Gt“t+Fl(z£"l‘zt—l|T)—(ZI-ZIIT)'

Defining S=E[(z,~z,,1)(G,u,)] and V=E[e,(z,—z, 1)}, the following
equations can be derived:

(44) Ele,e;]=R+H,P, . H,+2 VH,

(45) E[G:':r&;G:’:':GtQG:*'Pr|T_F1P:—l|TF:_2SI

(46) E[G,u,e]=SH,+F,P,_, {F,H,— P, H,— V"

@7 Elee,_,]=H,F,V'+H,F,P,_, H,_,.

In order to solve for V', we write equation (4.4.4) as:

Ele;ei]-H,F, Py zH; 7| [H,F,]

(48) Ele, e’z]—H.s Fy P2|TH3 _ Hs.Fs vV’

|Elerer_;]—HyFrPr_ | Hy_,| | HrFq]

which can solved with respect to V' after having used the residuals 1 é}
for estimating the covariances E[¢,é,_,]. Defining the left hand side of (48)
as D° and the right hand side as DV, it is easy to show that:

(49) V'=[D’'D] ! D’ D"

The remaining equations (44) to (47) can now be used to solve with
respect to R and Q. Substituting equation (46) into (45), we have:

E[G, u,u; G H;
(50) =G, QG H;—P, |+ H;
+F,P,_, ;F/H,—2E[G,u,e]-2V".
Assuming, as usual, G,=G for any t=1... T, we re-write equation (50)
ds:
GQG’[H{ Hj; ... Hy]
=[E(Gu,u; G)H; . .. E(Guyu; G') HYJ
(51) +[PYH, ... PRH{]
+2[E(Gu,ey) ... E(Guréy)]
+2[V V. V)
where PP=P, ,—F,P,_, F.
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Defining the right hand side of (51) as N° and the matrix
G’[H{ Hj ... Hf] as N, the following estimation equation can be derived

for Q:
(52) GQ=N°N[N’'N]"!

which can be solved with respect to the unknown elements of Q whenever
G is known (usually G is a known matrix of which the elements are either
zero or one). Again, the residuals E, and 4, must be used for estimating
E[Gu,u;G] and E[Gu,¢]].

Finally, equation (44) can easily be solved for obtaining a consistent
estimate of the output covariance matrix R. We have indeed:

T
(53) ﬁ=1/T[ y [E,é;—H,P,lTH;—2VH;]]
t=1

where E [e, e;] can be estimated by using the sample residuals e,.

Therefore, we have now two methods for estimating the covariance
matrices R and Q: the first is based on the innovation sequence { v, } and
the innovation likelihood function, the second is based on the smoothing
residuals { ¢, } and { %, }. In the next section we will perform simulation
experiments by using both methods in order to compare their performance
at least when used for estimating a simple time-varying parameter model.

We can now describe the whole structure of the Square Root Iterative
Filter (SRIF) that we have implemented for estimating econometric and
time series models in state space form.

SRIF Algorithm

Step 1: Choose initial values M,, Ry, Q, for the covariance matrices R
and Q and the matrix M containing the unknown elements of the transition
matrix F and initialize the information filter by the diffuse prior P; ' =0.

Step 2: Run the information filter for the first n recursions, where n is
the state dimension, and invert P!

n|n

Step 3: Run the Kalman filter, initialized by P,,, previously determined,
from time n+1 to time T.

Step 4: Run the smoothing from time T to time 0 in order to obtain
{Zg1; t=1...T}, the residual sequences { ¢, and u,; t=1...T} and
estimates of the initial conditions z, and P,

Step 5: Regress Zy)T ON z, 1 for estimating M and use equations (52)
and (53) for estimating R and Q.

Step 6: Re-initialize the Kalman filter by using the estimated values of
Zp» Po, M, R and Q, and run the Kalman filter from time 1 to n. Then
iterate the previous steps, from 3 to 6, until convergence.

A second version of SRIF, based on the innovation sequence {v,} for
estimating the covariance matrices R and Q, can be described by adding
the following step between Step 3 and Step 4:
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Step 3" Use the innovation sequence { v, } and equations (40) and (41)
for estimating the covariance matrices R and Q. Then re-run Step 2 and
Step 3 by using the estimated values of R and Q.

Consequently, Step 5 must be simplified in the following way:

Step 5" Estimate M by regressing the smoothing estimate z, ; on z, | 1.

Notice that the Kalman filter and smoother are iterated until convergence
of the algorithm. In the next section it will be shown that iterating SRIF
on the same sample is very important in order to reduce the influence of
the initial conditions My, R, and Q, on the final estimates on the system
parameters.

Given its general features, the SRIF algorithm can be used for estimating
any econometric or time series model that can be written in a suitable state
space form. From the smoothing equations and (52), we have that the
matrices of the state space form must indeed satisfy the following conditions:

T

(54) rank[ Y. G’'H; H,G:I =n

t=1

(55) rank [F,]J=n forany t=1,...T.

Furthermore, in order to guarantee the “consistency”’ of the state vector
estimates, the observability condition must be satisfied (see CARRARO [1985)),
so that:

(56) rank[H' F"H' F¥* H ... F"~'Y H|=n
when H and F are time invariant, or

. T-1
(57) rank[ y Q(E,T)’H;R‘lH,.Q(i,T):’ =n

i=0

where Q(i, T)=F 4 F.% ... F; ', if the system is time-varying.

Having defined features, properties and requirements of the SRIF algo-
rithm, we need now to test its performance. Therefore, in the next section,
we will present the results of several Montecarlo experiments that we have
performed in order to analyse the actual characteristics of SRIF. The
model used in the simulations is a simple time-varying parameter model
where a subset of the parameters is assumed to be constant (this is important
for emphasizing the numerical problems affecting the conventional Kalman
algorithm). It will be shown that SRIF provides precise estimates of all
the unknown parameters of the model, that the error covariance matrices
are always positive semi-definite and that SRIF’s sensitivity to different
initializations is very low.
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5 Montecarlo Experiments

In order to test the performance of the SRIF algorithm proposed in the
previous section, we considered the following time-varying parameter model
(see CARRARO [1985] for a detailed analysis of the model):

(58) V=X Br+en e,~NID (O, 0.2)
(59) B1=Mﬁr—1+zr6+G*un u,~NID (O, Q

where y, is the scalar, dependent, variable, x, the (1xk) vector of fixed
regressor, B, a (k x 1) vector of time-varying and constant parameters and
¢, 4 measurement error which is assumed normally and independently
distributed. Furthermore, M is a (k x k) matrix representing the autoregres-

sive structure of the vector B, and Z,=diag(z,,...z,) is a (k X p) matrix
k

of fixed explanatory variables, where P= Y. Pf and P¥ is the dimension
i=1

of the row vector z,. Finally, § is a (p x 1) vector of constant parameters

and u, defines the system noise which is also assumed normally and indepen-

dently distributed. For the sake of simplicity, e, and u, are assumed to be

independent. The matrix G* defines whether the variability of the i-th

parameter is assumed stochastic or deterministic.

We performed the Montecarlo experiments by assuming k =3, but only
B,, was assumed to be time-varying (p¥=p=2 was chosen, which implies
n=>35), so that we had to estimate the following state space form:

(60) y,=H,b,+e, e,~NID (O, 6?)
(61) b,=F,b,_,+Gu, u,~NID(O, Q)
where
(62) bi=[Bo By, B, 8 8]
(63) H=[1 x,, x,, 0 0]
[1 0 0 0 o]
0O m 0 1 2z,
(64) F=10 0 1 0 0
0 0 0 1 o0
000 0 0 1|
(65) G'=[0 1 0 0 0]

The Montecarlo experiments were performed under the assumptions:

(66) Bo=100, B,=0.7
(67) 8o=10, 5 ,=3
(68) m=0.4, o? =100, Q=10

which define the true values of the unknown parameters of the model.
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The exogenous variables { x,,, x,, z,,; t=1... T } were generated by
simulating a simple ARMA process for each exogenous variable. The
characteristics of these variables remain unchanged in all experiments, except
for the number of observations. All the variables were appropriately scaled.

The pseudo-random number disturbances, generated independently for
each replication (using the IMSL routine GGNML) are independently and
identically distributed with zero mean and variances as specified in (68).
Furthermore, there is no correlation between the random disturbances.

The dependent variable y, and the time-varying parameter [,, were
generated by using the structure (62) to (65), (66) to (68) and the previously
described exogenous variables and random disturbances. Then, the time
series { y,, X, p» Xz 21,3 t=1... T } were used as inputs for SRIF. *

Each Montecarlo experiment was replicated 30 times and double precision
computations were performed.

The Montecarlo experiments were designed for analysing the stability of
the square root equations, the sampling distribution of the SRIF estimates
under different sample dimensions and the sensitivity of SRIF to different
initializations.

In order to analyse the sampling distribution of the SRIF estimates of
the time-varying parameter, we used Theil’s inequality coefficient which
was computed with respect to the difference between true and estimated
parameters. In contrast, the sampling distribution of the constant parame-
ters can be examined by comparing the computed values reported in the
following Tables and the true values previously reported.

The stopping rule for the iterative filter was chosen to be 6'—6'"' <0.01,
where '=[B, B, 8, & m o? Q] and i indicates the i-th iteration
of the Square Root Iterative Filter.

The results of the Montecarlo experiments are reported in Tables 3
to7.°

TABLE 3

N=100 R=100 Q=10 m=04

Mean Variance
of estimated of estimated
Parameter parameter parameter
Boov oo 99,922 40.541
(19.605)
By oo 0.696 0.001
(0.001)
Sg oo 10.020 0.182
{0.052)
S i 2.981 0.024
(0.013)
R............ 100.
Q. ... ......... 10.
M. 0.4
Theil'sU . . ... .. 0.017 0.00002
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Table 3 is aimed at distinguishing between the methods proposed for
estimating R, Q and M and the square root algorithm that we propose in
order to assure the positive semi-definiteness of the parameter covariance
matrices. Therefore, Table 3 contains the average values, over thirty replica-
tions, of the estimated parameters and their variances when R, Q and M
are assumed to be known. It is easy to see that the estimated parameters
are very close to their true values and that all variances are positive. This
is therefore a first important evidence of the high performance of the square
root method we have proposed in this paper. In contrast, when the standard
Kalman and smoothing algorithms were used, some variances failed to be
positive, the estimated parameters were far from their true values and the
algorithm was seldom convergent.

Important information is also provided by Table 4 which contains the
average values, over thirty replications, of the estimated parameters and
their variances, when the first version of SRIF was used. The smoothing
residuals ¢, and u, were indeed used for estimating the unknown covariance
matrices R and Q.

It is easy to see that the estimates of the constant and time-varying
parameters are fairly good, but that R and Q are not well estimated. The
estimated constant parameters are indeed very close to their true values and
Theil’s U indicates that the evolutionary structure of the time-varying
parameters has been well captured by SRIF. In contrast, R is estimated to
be equal to zero and all the variability is attributed to the system stochastic
mputs u,.

TABLE 4

N=100 R,=1000 Q,=100 my=0.2

Mean Variance
of estimated of estimated
Parameter parameter parameter
Booo oo oo 99.626 50.260
(401.272)
By oo i 0.697 0.003
(0.0247)
Og oo i i 13.427 0.920
(1.030)
. 3.059 0.038
(0.261)
R............ 0.0000 0.0000
Q. ... ....... 2679.402 7048918.
m.o... 0.722 0.071
(0.163
Theil's U . .. ... 0.023 0.001

5. The computer program implementing the SRIF algorithm has been written by the authors,
Antonella Basso and Enrico Dalla Vecchia.

6. In Tables 3-7, the number between brackets represents the estimated variance of the
parameter, whereas the second column reports the variance (over the thirty replications)
of the estimated parameter.
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This result can be explained by the special features of the smoothing
equations which modify the state vector estimates in such a way to minimize
the difference between actual and estimated system output. The flexibility
of the time-varying parameter model enables the smoothing equations to
provide a residual sum of squares which is zero in all samples, whatever
the initializations of the filters. In other words, the smoothing’s goal is not
a precise estimate of the state vector parameters, but a perfect fitting of the
output time scries y,. This fact and the degree of freedom provided by the
time-varying structure of the parameters explain why all the variability is
captured by the sum of squares of the residuals u,.

Finally, the autoregressive parameter m is poorly estimated at the end of
the first iteration of SRIF and no further iteration can be performed because
of the zero value of the estimated R.

Table 5's results are therefore more interesting. In that Table we present
the results of the Montecarlo experiments performed by using the second
version of SRIF, which uses the innovation sequence v, for estimating the
covariance matrices R and Q.

Table 5 shows that almost all the estimates of the parameters are very
precise. Only §,, the constant in the equation explaining the evolution of
the time-varying parameter B, ,, is slightly underestimated. This is the effect
of having obtained an estimate of the transition parameter m which is
slightly above its true value. Nonetheless, the estimates of the time-varying
parameters are very precise, as indicated by Theil’s U.

Notice that the covariance matrices R and Q are much better estimated
than in the previous case, when the first version of SRIF was used, even if
the estimate of R is still unsatisfactory. In particular Q, the estimated
covariance matrix of the disturbances u, is very close to its true value.
Hence, the second version of SRIF should be preferred to the first version.

Two preliminary conclusions can therefore be derived from the previous
analysis: first, the second version of SRIF provides better estimates of all
the parameters of the model (in particular of the parameters m, R and Q).

TABLE 5

N=100 Ry=1000 Q,=100 m,=0.2

Mean Variance
of estimated of estimated
Parameter parameter parameter
Bo-vvvennn.. 99.567 62.503
(61.437)
By ..o 0.697 0.001
(0.003)
g . 9.082 3.449
(0.064)
Oy 2.927 0.028
(0.016)
R...... .. ..., 1043.23 1052284.
Q. ... ... ... 10.286 5.718
m....... ... 0.447 0.008
TheilsU. ...... 0.0216 0.00002
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Secondly, a precise estimate of m is crucial for obtaining very good
estimates of 8,, R and Q. The regression approach implemented in the
second version of SRIF seems to be the appropriate method for obtaining
a good estimate of m.

In order to support this conclusion, we implemented a third version of
SRIF, which uses the innovation likelthood maximization approach for
estimating m, R and Q, Using this method, the most used in engineering
and economics even if computationally the most expensive, we replace
Step 3’ of the second version of SRIF by:

Step 3”: Maximize the innovation likelihood (40) with respect to R, Q
and M by appropriate numerical methods. Then re-run Step 2 and Step 3,
by using the estimated values of R, Q and M, until convergence,

As a consequence, Step 5 and Step 5 must be climinated.

The results obtained by using the third version of SRIF are presented
in Table 6 which shows that all the parameters, including the transition
parameter m, are well estimated by the innovation likelihood maximization
method. 1In particular, Theil’s U shows that the second and third version
of SRIF perform in a similar way even with respect to the time-varying
parameter. Only the covariance matrix R is still poorly estimated, thus
affecting the standard errors of the estimated parameters.

As a final test we therefore implemented a fourth version of SRIF, which
uses the E-M method for estimating the unknown elements of F, R and Q
(see ENGLE-WATSON [1983]). The results are reported in Table 7.

It is easy to see that the E-M method does not improve the estimates of
the parameters m, R, Q, whereas the other parameters are still satisfactorily
estimated.

We can therefore conclude that no clear evidence on the best method to
be used for estimating the parameters contained into the matrices R, Q and
M can be deduced from our Montecarlo experiments, even if the second

TABLE 6

N=100 Ro=1000 Qy=100 m,=0.2

Mean Variance
of estimated of estimated
Parameter parameter parameter
Bo. - oo, 100.324 56.229
(51.449)
By oo oo 0.694 0.001
(0.002)
Bo v, 10.508 1.916
(0.056)
Sy 2.982 0.024
(0.014)
R............ 795.72 152177.
Q... .. ... 9.502 3.135
m. ... ... 3.775 0.005
Theil’'sU. . ... . 0.0211 0.00004
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TABLE 7

N=100 R,=1000 Q=100 m,=0.2

Mean Variance
of estimated of estimated
Parameter parameter parameter
Bo - - 101.886 170.511
(196.897)
By - - 0.709 0.006
(0.011)
8 ... 10.905 2.618
(0.088)
&, .. 2.997 0.029
(0.023)
R............ 7258.240 466087700.
Q........ ... 7.706 5.569
M., 0.355 0.008
Theil'sU ....... 0.0291 0.00026

version of SRIF, based on the innovation correlation approach, is probably
to be preferred for its computational simplicity. ’

In contrast, a clear and important conclusion is supported by our results
(see Table 3 above all). The square root algorithms implemented in SRIF
were able to solve all numerical problems that normally affect the applica-
tion of Kalman filters and smoother to real data. The covariance matrices
of the estimated parameters are always positive semi-definite and the algo-
rithms always convergent. In contrast, when the standard Kalman algorithm
was used for estimating the simple time-varying parameter model previously
presented, the covariance matrices were often ill conditioned (negative diago-
nal elements) and the algorithm was seldom convergent. It is true that the
simulated model, by implying a state vector with a single stochastic element,
emphasizes that type of numerical problems. However, our square root
algorithm was able to perform very well even in this difficult case.

6 Conclusions

This paper has proposed and tested a new algorithm for estimating
econometric and time series models in state space form. This algorithm,
named SRIF, modifies the standard Kalman filter and smoother algorithms
in order to guarantece the positive semi-definiteness of the error covariance
matrices at each step of the algorithms.

The Montecarlo experiments that we performed show that SRIF actually
succeeds in providing well defined covariance matrices and parameter esti-
mates which are close to their true values.
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However, the numerical experiments presented in this paper provide only
preliminary evidence about the performance of our Square Root Iterative
Filter. New evidence should be obtained by applying SRIF to unobserved
components models, missing observation models, ARMA models, rational
expectations models, etc.

We believe that more experiments, tests and applications can only confirm
that SRIF is both a numerically reliable algorithm, and an efficient and
flexible tool for estimating econometric and time series models.

7. We must emphasize that the poor estimates obtained, on average, for the covariance
matrices R and Q are mainly explained by the presence of two abnormal samples among
the thirty samples used for simulation. If we exclude those two samples, both the
innovation correlation, the maximum likelihood and the E-M method provide estimates
of m, R and Q very close to their true values, thus also improving the estimates of the
other parameters.
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