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1. Introduction

Risk aversion is referred to as the amount an agent is willing to pay in order to avoid risk.

In the expected utility theory, the risk aversion measure is generally given by the Arrow-Pratt
index, which requires the von Neumann-Morgenstern utility function.

There is no doubt that risk aversion is linked to the concavity of the utility function. For
example, the Arrow-Pratt measure of absolute risk-aversion (ARA) relates the degree of
concavity of a utility function measured by the curvature index known as the coefficient of
absolute risk aversion. As underlined by Machina (1987), since someone with a concave
utility function will always prefer receiving the expected value of a gamble to the gamble
itself, concave utility functions are termed risk averse.

Machina affirms that in the case of non-expected utility function we can use calculus to extend
the results obtained from the expected utility function. In particular he takes into account the
concavity in the consequences of the partial derivatives with respect to probabilities of the
preference function.

Other authors criticize the results obtained by this extension. For example, Montesano (1991)
argues that, unlike what happens in the expected utility function, in non-expected utility
function we can find examples of agents that prefer the lottery to its expected value (denoting
risk attraction) while they prefer a smaller risk and vice versa. In this case, the concavity of
the derivatives of the utility function cannot be considered an index of risk aversion for
smaller risks.

Li Calzi and Sorato (2004), starting from the consideration that the existing parameterizations
of prospect theory are not satisfactory, suggest a parameterization for utility and value
functions that works across both the expected utility and prospect theory. With this
parameterization the consequent family of functions are twice differentiable and are
restricted to have only possible shapes: convex, concave, S-shaped and reverse S-shaped.

The drawback of the suggested parameterization is that the family includes utility (or value)
functions which have no representation in closed-form, even thought their first derivatives
always admit an explicit representation.

We have mentioned some articles that discuss the concavity and the risk aversion by
considering properties of the functions in two-dimensional space.

In three-dimensional space, we can quote Lajeri and Nielsen (1998) whose aim is to
determine whether one decision maker is more risk averse than another. For this purpose,
Lajeri and Nielsen limit themselves to the two-parameter family of random variables and the
risk aversion is measured considering the expected utility as a function of mean and standard
deviation. In their analysis the concavity of the utility function plays an important role in
determining the decision maker’s attitude, measured by the marginal rate of substitution
between mean and standard deviation, that is, by the slope of an indifference curve. The
authors also establish the equivalence of the concept of decreasing absolute prudence (DAP),
introduced by Kimball (1990), and the decreasing of the slope of the indifference curves of the
utility function. Eichener and Wagener (2001) show that this latter result cannot be
generalized for distributions other than the normal distribution.



The purpose of our paper is to determine the differential conditions for the downward
concavity of the Expected Utility Function E[U(W)] in the 3D space [Risk, Target,E[U(W)]],
when the Utility Function U(W) is risk-averse, Wealth is defined asW = W,(1 +r), r is the
return with a generic distribution which depends on two parameters and Risk and Target are
defined as a functions of these two parameters; Target, usually, is the Expected value of the
return.

The risk-averse conditions are related to the first and the second derivatives of the U(W) and
the degree of risk aversion can be measured by the curvature of the U(W).

These conditions are defined in two dimension and, taking the expectation of the U(W),
E[U(W)], these conditions do not necessarily imply that in three dimensional space
[Risk, Target, E[U (W)]] the E[U(W)] has a downward concavity. The downward concavity in
3D means that E[U(W)] depends decreasingly on Risk and increasingly on Target.

As a particular case, the paper describes the Constant Relative Risk Aversion Utility Function
(CRRA) applied to a return that has a Truncated Normal distribution.

The paper is organized as follows. Section 2 introduces the properties for the Utility Function
when wealth depends on the return r that is a Normal variable. These properties are extended
when the return r has a generic distribution which depends on two parameters and the
definitions of Risk and Target are transformations of these two parameters.

Section 3 takes into consideration the CRRA Utility Function and the transformation of a
Normal variable, e.g. a Truncated Normal variable, and illustrates that Standard Deviation and
Mean of the starting Normal variable cannot be a correct definition for Risk and Target, due to
the fact that the E[U(W)] has not the downward concavity in the space
[Risk, Target,E[U(W)]]. This Section introduces the example to analyze the conditions for
the concavity in 3D in a more general way.

Section 4 defines the Differential Conditions that must be respected when we consider a
parametric representation of the surface concerning the Risk, Target and E[U((W)] and we
desire that the concavity of the E[U((W)] remains downward, i.e. E[U(W)] depends
decreasingly on Risk and increasingly on Target. The Conditions pertain to any two-
parameter distribution.

This is obtained without restrictions for the U(W) or definitions of Risk and Target.

As a particular case, taking in account the Truncated Normal variable for the return and using
its Expected value for Target, Standard Deviation, VaR and Expected Shortfall of the return
with CRRA Utility Function are analyzed. Only the Standard Deviation respects the Differential
Conditions and maintains the concavity of E[U(W)] downward.

Section 5 contains the conclusions.



2. Utility Function in the case of Normal distribution.

Let us consider the Utility Function U(W), where W is wealth (or a quantity of the uncertain
payment), given by:

(2.1) W =W,(1+r),
with the initial value W, and the returnr.
If U(W) represents a risk-averse person with insatiable appetite:

(2.2) UWw) >0; U"Ww) < 0

Ull(w)

7 >

(2.3) ARA = Absolute Risk Aversion = —

Theorem 2.1: Let > be an expected utility preference relation on all normal distributions
N(u, a?) for the return r. Then there exists a mean-variance Expected Utility Function (o, 1)
which describes =.

In the case of risk aversion, ¥ (o, u) has the following partial derivatives and the first derivative
of the implicit function p, (0):

aP(o, 1) o (o, 1) duy() W
(20 o Y T <0 2y ——M>O
u

Proof: Appendix A. []

The Theorem 2.1 describes a reasonable and intuitive behavior for the risk-averse investor
translated in 3 dimensional space [0, u, ¥ (o, u)] when r~N (u, 02).

More generally we consider the return r~G (o, i), where G is any two-parameter distribution
and g(r, o, 1) is the probability density function defined for r € [§;, 6,]-
It is possible to compute the following Expected Utility Function, (o, ).

&2
(2.5) Ylo,u) = E[lUW)] =E[U1+1)] = L UA+r)g(r,o,wdr

The Target can be defined, as usual, as the Expected value of r :

)
Target =T(o,u) = f rg(r,o,uw)dr
81
and Risk, e.g., as the Standard Deviation of r :
82
Risk =R(o.) = | I = T(. P gGr,o,dr
8



We can choose any other definition for Risk as a generic functions of (o,u), e.g. VaR or
Expected Shortfall (ES). In the same line it is also possible to introduce a generic
transformation to define the Target :

Risk = R(o, 1)

Target =T (o, u)

where R(o, 1) and T (o, 1) are generic functions of (g, u) and we assume that they are at least
once differentiable with continuous first derivatives.

For sake of simplicity we named the generic parameters as (o, u); later we will introduce the
specific case of the Normal variable, and this choice allows us not to rename the parameters.

The question is: if we consider a risk-averse Utility Function and define Risk and Target as a
generic functions of (o,u), which conditions must be satisfied by the three functions
R(o,u),T(o,u), Y(o,u) so that in the parametric space [R(o,u),T(o,w), Y(o,u)] the
Expected Utility Function (o, ) maintain the concavity downward? Is it sufficient that U(W)
is risk-averse or is it necessary to introduce other conditions for the three functions
mentioned above?

It is useful to recall that concavity downward means iso-utility curves with positive slope or,
alternatively, a positive first derivative of the Implicit Function that is defined by the intercept
of ¥ (o, u) with a generic horizontal plane.

The conditions that will be determined later on also assure that the following inequalities are
true :

d

_l/) < 0

OR
(2.6)

a_l/) > 0

aT

The following section describes which counterintuitive behavior may be encountered if the
definition of Risk and Target are not correctly done and do not precisely respect some
differential conditions.



3. CRRA Utility Function and the Truncated Normal case

Consider a generic CRRA Utility Function:

W7y, y>-1, y#0
(3.1) CRRA(y) =
logW y=0

where W is defined by (2.1) and v is a parameter that expresses an investor’s sensitivity to
risk.

The following Figure 3.1 shows the behavior of the CRRA with respect to different values of
the y parameter.

Figure 3.1: Constant Relative Risk Aversion Utility Functions
CRRA
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y < —1 : the investor is a risk lover rather than risk-averse.
y = —1: means that the degree of risk aversion is zero, and the investor is indifferent

between a risk-free choice and a risky choice so long as the arithmetic average expected
return is the same.

y = 0: the investor is indifferent between a risk-free choice and a risky choice so long as the
geometric average expected return is the same.

y > 0: the investor is risk-averse and calls a premium against his choice of a risky asset, the
larger the value of y the greater the risk penalty.

In this paper, we consider vy = 2.

Without any loss of generality we state W, = 1 in (2.1), therefore the ARA (Absolute Risk
Aversion) and RRA ( Relative Risk Aversion) for the CRRA have the following expressions:



+1
ARA[CRRA(y)] = % , RRA[CRRA(Y)] =y + 1

The value r = —1 represents a singular point for the (3.1), when y > 0; this means that
r > —1is a condition that we have to pose. Furthermore, for r < —1 the CRRA Utility Function
is not risk-averse.

Therefore, as particular case of r~G (o, u), where G is any two-parameter distribution,
consider the return r as a Truncated Normal variable, that is r is constrained to assume values
only in the interval K = (kq, k,), with —1 < k; <0<k, < 2 and k; < u < ky; we call rpy
this constrained variable, where the suffix “TN” means Truncated Normal. In this paper the
computations are done for k; = —0.99, k, = ©o. To define the density of the random
variable r, we use the following notations:

52

ez 1 (¢ 2
b0 == 0@ = =] Tar
ky, — ki —
==t b= 2E A0 = o) - (R

Then, the density of the random variable r is given by:

b (rTNo'_ .“) ) 6_(rTN_ﬂ)2/20'2

flrry) = oADy B sz e_(x_”)z/mz dx
k1

0 v € K

oy EK

and the Expected Utility Function, defined as ¥ (o, u) is:

dx

(v 2
1 ] 1 sze(x #)/202

1
b = BRI =~ ] =~ |, T

With the substitution 7 = (x — u)/o the function (o, 1) becomes:

h e

12 2

6D wow———t [ T
' YV2rAdy Jy, (L+u+o1)Y Y f:ze_fz/z dr

1

In this example, Risk and Target are given by the transformation R(o, 1) = o, T (o, 1) = .

Now we give the three-dimensional representation with (o,u) € [(0.001 <0 < 0,2)X
(—0.2 < u < 0.2)], and we see that in this domain (o, 1) has the concavity downward in the

space [R(o, 1), T(o, 1), Y (o, )] = [o, u, Y (o, w].



Figure 3.2: 3D (o, 1)
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The same representation in two dimension of iso-utility curves:

Figure 3.3: 2D Iso-utility curves of Y (o, 1)
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Looking at these results, a question can arise about the persistence of the concavity for
Y(o, 1. If we increase the range space of (o, 1) to [(0.001 < 0 < 1,2)X(—0.9 < u < 0.3)] we
have a counterintuitive behavior of the iso-utility curves, their slope becomes negative; for
lower values of u and greater values for o we can observe that the change of the slope of the
iso-utility curves is relevant. We graph this case in Figure 3.4, but again the anomalous
behavior is more evident in Figure 3.5.



Figure 3.4: 3D (o, 1)
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Figure 3.5: 2D Iso-utility curves of Y (o, 1)
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Figure 3.5 tells us that the iso-utility curves have negative slope in some region, that is the
first derivatives of Implicit Function u,, (o) defined by the intercept of ¥ (g, u) with a generic
horizontal plane is negative. This counterintuitive behavior of the iso-utility curves was
evident in studying the Morningstar’s utility function used for Fund ranking (see Corradin and

Sartore 2014).



From expression (3.2), it is possible to obtain the first derivative of the Implicit Function
Ky (0):

a )
duy(@) t/)((ai )
do  0yY(o,p)
u

and the result is reported in Appendix B. The related graph is given by Figure 3.6:

Figure 3.6: 3D duy(0)/do

First Derivative of the Implicit Function
du(o)ydo
09<p<03 0001 <eo<12

[ LGt
B Plane ko dpfo)da =0

dy(o)/de

Figure 3.6 confirms that du,(c)/do can be negative.

This is due to the fact that the Cartesian system defined on (o, i), derived from the definitions
of R(o,u) = o, T(o,u) = u, is not the proper space in which to consider the Expected Utility
Function Y (o, u) of the CRRA, when the distribution of return is the Truncated Normal. We

need to consider the proper alternative definitions for R(a, u), T (g, u).

This is a particular case and in the following section we answer the more general question of

Section 2.

10



4. Differential Conditions for the Concavity of the Expected Utility Functions.
The specific case of the Truncated Normal.

As already introduced in Section 2, we consider r~G (o, 1) and define Risk and Target as
functions of (o, u):

(4.1 Risk = R(o,u), Target =T(o,u)

The Expected Utility Function (o, u) is defined in (2.5).

First of all we have to impose the condition that the transformation [, u] = [R(o, 1), T (o, u)]
defined by (4.1) is bijective.

This condition implies that the determinant of the Jacobian matrix J must be different from
Zero:

dR(o,u) OR(o, 1)

B do ou
(4.2) det) =det| or(ow) oT(o,w |7 °
do ou

Now we want to find the conditions for Risk and Target so that the function (o, u) maintains
its concavity downward in the space [R (o, 1), T (o, 1), Y (o, w)].

Consider a parametric representation of a surface:
X axis = Risk = R(o, ).
y axis = Target = T (o, u).
z axis = Expected Utility Function =y (o, u).
This surface is described in the space [R(o, u), T (o, 1), Y (o, u)] by the three functions
R(o, ), T(o,u), Y(o,u) that depends on (o, u) defined in [(Ouin, Onar) X Unin, Umax)] in the

cartesian space (g, u).

Using the vector notation, the surface is defined by vector s(o, i) in the space
[R(o,w), T (o, ), Y(o,u)], where i, j, k are the relative unit vectors:

(4.3) s(o,u) = R(o, Wi+ T(o,wj+ (o, Wk
For regularity of the surface, the Jacobian Matrix /;:

dR(o,) OR(o,p)

do au

dT (o, 0T (o,
(4.4) Ji= f;;“ ) g;“ )
0Y(o,p) 0Y(o, 1)

do au

must have rank two; e.g. this condition is satisfied if (4.2) is true.

11



The orthogonal unit vector of the surfaces is done by:

ds(o, 1) , 9s(o, 1)

do du
”as(a, W, 9s(o, #)”
do du
where:
i j k
os(o,u) 0s(o,u) OR(o,u) 9T(o,p) 0Y(o, 1)
(4.5) ———Xx——"—=| do do do
? K dR(o,1) 9T(o,p) AP(o,p)
au u au
_[0T oy 0y aTy, [OROY 0Y aR] . [OROT OTOR
" ldocou 9o ou l do du 0do du J doou doou

where the dependence by (o, ) is omitted in the last formula. For a generic ¥ (o, u):

Figure 4.1: 3D Y (o, ) with Orthogonal Vectors
3D 4 (o,) with Orthogonal Vectors

St
St

T(o, p) h 0

R{o , j)

The surface is concave if the components of the orthogonal unit vectors are positive for
R — axis and iy — axis and negative for T — axis. We get the Differential Conditions:

(a—Ta—lp - O_I/JB_T >0 :Differential Condition1 = D(C1
doodu Odoadu

(4.6) { OROY 0¥ IR >0 :Differential Condition 2 = DC2
do du Jdo du
OROT OTOR , . .
t%@ — %a >0 :Differential Condition 3 = DC3

Note the that DC3 is the same as in the expression (4.2).

12



In the particular case of the Section 3, where R(o,u) = 0o, T(o,u) = u:

OR OR aT
% =1; E = 0; a_ =0
we have:
o _owar "
ocodu 0dodu —~ <0
4.7) A OROY _ 0 OR >0 = 317)
do du 0do du —>0
ORIT_OTOR
\do du do du

T _
) a# - )
ACAD)
_ Jdo _ dﬂd} (0-)
0Y(o, 1) do
u
1>0

where (o) is the Implicit Function determined by ¥ (o, u). The last condition
duy(0)/do > 0 is reasonable taking into consideration that U(W) is risk-averse.

As we have seen in Figure 3.4, the case of the Truncated Normal does not maintain the
concavity downward in the range space [(0.001 < ¢ < 1,2)X(—0.9 < u < 0.3)]; this means
that the conditions (4.7) are not satisfied and dp,,(¢)/do can be negative as it is possible to
see in Figure 3.5. Adding in Figure 3.4, the orthogonal unit vectors, we see that they have
negative components along the 0 — axis in some regions of the surface.

Figure 4.2: 3D Y (o, ) with Orthogonal Vectors
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We give a possible economic interpretation for the Differential Conditions in (4.6).
The condition (4.2) that the transformation [o, u] = [R, T] is bijective implies that the inverse
transformation 6 (R, T) , u(R, T) exists locally:

Y(o,w) =¢(a(R,T),uR,T)) =¢(R,T)

Computing the partial derivatives:

(o, T),u(R,T)) _ 3y do Lo
OR do 0R  OuoR
(4.8)
dp(o(R,T),u(R,T)) _ 0y do L ou
aT do 0T ~ Ou oT

By the Theorem of the Inverse Function we have:

1

d0(R,T) 0(R,T) OR(o,1) OR(o,p)\
oR orT |_| 0o o
ou(R,T) Ou(R,T) dT(o,u) 9T (o, 1)
OR aT do ou

that has solution for the condition (4.2). We can write:

do(R,T) 90(R,T) 1dr 1 0R
oR oT _ | detjou det] op
ou(R,T) ouR,T) |~ 1 oT 1 OR
oR oT "~ det]dc  det] oo

and substituting in (4.8) we have:

W 1 apaT 1 apar oy aTdy apar
9R ~ det] 90 0u _ det] ou 9o YR T acou " 90 ou
@ 1 0poR 1 APaR o OROY aPaR
oT ~ det] 9o du  det] du do 9T T a5 au ~ a0 o

Substituting in (4.6) we obtain:

ATy _opar ; ;
9 o 90 op L A (.
ORI 9P IR oR IR VAR
49 {———————>0 = 0 = <0 = d
49\ 9501 ~ 30 on detj 22507 1250 4R o
OROT T OR or or d
9ROl Lo det] > 0 det] > 0 et] >0
\do du do du

14



The inequalities in (4.9) shed light the meaning of the Differential Conditions in (4.6): the
Expected Utility Function y (o, 1) depends decreasingly on R and increasingly on T.

The conditions dy/dR < 0 and 0y /AT > 0 are not verifiable in closed form; they are a
consequence of (4.6) and they imply that the first derivatives of the Implicit Function Ty, (R),
defined by the intercept of Y (R, T) with a generic horizontal plane, is positive.

The inequalities (4.9) generalize the conditions given in Theorem 2.1 for the Normal
distribution because they apply to any two-parameter distribution and to any definition of
Risk and Target.

The condition, det /] > 0 implies that the transformation defined by R(o, 1) and T (o, 1) does
not change direction. If we walk around the border of the range defined by [(Gyin, Oyax) ¥
(Upins Umax)] counterclockwise, then in the same direction we walk on the border of
transformed range of the [R(o, 1), T (o, 1)] space.

It is possible to rewrite (4.9) to determine a geometric explanation.

We use, e.g., the hypothesis:

OR OR aT oT oY oY
%>0; £<0; %<0; a>0,’ a>0; %<O

From the first Differential Condition we have:

(4.10)

oy oT
oT oy o T
pc1 = Lo ¥ — os ., _" 1o

u

This means that the first derivative of the Implicit Function y;(o) determined by the
definition of Target = T (o, 1) is lower than the first derivative of the Implicit Function p,, (o)

defined by the Expected Utility Function = Y (o, 1).

From the second Differential Condition we have:

DC2=——7"—-——"———>0= — = u'r(o) > u'y(o)

and by the third Differential Condition:

aT oR
ORIT 9T IR
DC3 = o — — _ oo e

- > - = p'r(0) > u'r(0)
dodu 0o du aT/aM aR/a#

Summing up:
(4.11) Wr(o) < py(o) < pr(o)

which is an inequality between first derivatives of the Implicit Functions, which come from
T(o,w),Y(o,u), R(o, 1) respectively, and indicates the constraints that the curvature with
respect to ¢ of these three Implicit Functions measured in a plane parallel to the plane (o, 1)
must satisfy.

15



Until now R(a, 1), T (o, 1), Y (o, 1) are supposed to be generic functions. It is interesting to
discuss three cases of definition of Risk when the return is a Truncated Normal variable 7y
defined in Section 3 and we assume the CRRA Expected Utility Function (3.2) with v = 2.
Target is defined, as usual, as Expected value of r, more briefly Expected Return.

Case 1: R(o,u) = Standard Deviation = SDyy (o, 1)
T(o,u) = Expected Return = ERry (o, 1)
Y(o,u) = Expected CRRA Utility Function with vy = 2.

We have the transformation:

—(x—p)? —(x—p)?
f:z x%e /207 dx fkkz xe /207 dx
_ 1 N L
SDry(o,p) = kz _(x_ﬂ)z/ ) Kk, —(x—u)z/ ]
. 202 dx fkl 202 dx
(4.12)
—(x—p)?
fkklz xe /20'2 dx
ERry(o,p) = kz —(x—u)z/
fk 202 dx
1

with the parametric representation for ¥ (o, 1) given by the following:

Figure 4.3: 3D [SDyy (o, 1), ERry (0, 1), ¥ (o, n)] with Orthogonal Vectors

4 (o, ;) With Orthogonal Vectors
09 < <03 0001 <o <1.2
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The related Iso-utility curves are represented by:

Figure 4.4: Iso-utility curves of (o, u) in 2D [SDyy (o, 1), ERry (0, 1]

Iso-utility curves: ¢ (o, 1)
09<,<03 0001<o<12

~—

04}

024

08 /

02 04 06
SDTN(G y jt)

Figures (4.3) and (4.4) show that (4.12) are coherent definitions of Risk and Target, according
with the Differential Conditions (4.6).
The Differential Conditions are greater than zero in all the domain as is shown in Appendix C.

08

Case 2: R(o,u) = Value at Risk = VaRy(o, 1)
T(o,u) = Expected Return = ERry (0o, 1)

Y(o,u) = Expected CRRA Utility Function with vy = 2.
a = Confidence Level = 0.95

In Appendix D we compute the Value at Risk for a Truncated Normal, VaRy. We have the
transformation:

VaRyy(0,1) = =it — 0@y (@@ (hy) + (1 — @) P (hy))

(4.13)
—(x-w?
:12 xe /202 dx
ERry(o,p) = v —(—p)?
fklz e /207 dx

with the following parametric representation for (g, u):
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Figure 4.5: 3D [VaR;y (o, 1), ERry (o, 1), Y (0o, w)] with Orthogonal Vectors

4 (o , ) With Orthogonal Vectors
09 < <03 0001 <o <12

(o, 1)

ERp\(0 ;1)

VaRTN(n . )

and the iso-utility curves represented by:

Figure 4.6: Iso-utility curves of Y(o,u) in 2D [VaRy (o, 1), ERry (o, )]

Iso-utility curves: ¢ (o , p2)
09 < <03 0001 <o <1.2

a4l ]
02 ﬁ
— OF
&
=z 02
-
a sy
w
04} J
Q6+
V8¢ “

-0:2 0 06 08

02 04
VaRTN(n s ft)

This case demonstrates that VaR;y is not a coherent Risk measure in the (4.6) sense, some
iso-utility curves have a negative slope. Indeed, the Differential Conditions computed for

VaRyy are not respected in all the 3D space [VaRry (o, 1), ERry (o, 1), Y (o, w)].
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To be more precise, Differential Condition 2, relative to the component of the axis of ERyy of
the Normal unit vector in (4.5), is negative (see Appendix D). The conclusion is that, in some
region of the domain the behavior of the ¥ (o, 1) is not concave.

Writing ERy instead of T in (4.9) we have:

oy

0
IERy

that disagrees with (4.9) constraint.

Case 3: R(o,u) = Expected Shortfall = ESy(o, 1)
T(o,u) = Expected Return = ERry (0o, 1)

Y(o,u) = Expected CRRA Utility Function with vy = 2.
a = Confidence Level = 0.95

In Appendix E we compute the Expected Shortfall for a Truncated Normal, ES;y. We have the
transformation:

_ 0[¢(h1) B d)[q)mv(b)]]

ESTN(O-'M) = —u (1 _ a)A(D
K
(4.14)
—(x-w)?
kklz xe /202 dx
ERry(o,p) = v —(—p)?
fklz e /207 dx

with the parametric representation for ¥ (o, u):

Figure 4.7: 3D [ESty (0, 1), ERyy (0, ), ¥ (0, u)] with Orthogonal Vectors

4 (e, ;1) With Orthogonal Vectors
09< <03 0001 <o=<12

20
4
40 |
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80 |

(o, pt)

-100 |
-120 |
140 |
-160

ER

i 1) ES (01 1)
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and with the Iso-utility curves represented by:

Figure 4.8: Iso-utility curves of (o, ) in 2D [ESty (0, 1), ERpy (o, )]

Iso-utility curves: : (o, p)
09 < <03 0001 <o <1.2

04}

02

. ft)

02 |

Ry

Q4L

08}

(3

I. l"ll

; 1 L.
04 06 08

02
ESTN(O , Jt)

-0.2 0

that also demonstrates ESry is not a coherent Risk measure in the (4.6) sense.

Indeed, the Differential Conditions computed for ES;y are not respected in all the domain 3D
[EStn (0, 1), ERpn (0, 1), ¥ (0, w)]. To be more precise, Differential Condition 2, relative to the
component of the axis of ES;y of the Normal unit vector in (4.5), is negative (see Appendix E).

The Quadratic Utility Function case is developed in Appendix F, G, H. This is an interesting
case because it is possible to compute analytically the region in which the Differential
Conditions are satisfied. We show how they represent the border between the risk-averse and
risk-lover regions.

5. Conclusions

Starting with a risk-averse Utility Function U(W) with a wealth W = W,(1 + r), where
r~G(o,u) with G a generic distribution depending on two parameters, we consider the
generic definitions of Risk = R(o, 1), Target = T (o, u) . We find that the three functions
R(o,u), T (o, u) and Expected Utility Function (o, 1) must satisfy the Differential Conditions
(4.6) so that Y (o, u) has the concavity downward on the entire three dimensional space
[R(o, ), T (o, ), Y (o, W].

These Conditions are verifiable because the analytic expressions of R(o, 1), T (o, 1) and

Y (o, 1) are known.
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The (4.6) imply the (4.9), that is (o (R,T),u(R,T)) has dy/0R < 0,0y /0T > 0. A third
necessary condition is det | > 0, which is the determinant of the Jacobian matrix J of the
transformation defined by R(o,u) and T(o,u), must be positive. In other words, the
transformation does not make a change direction.

We present some cases in which the Differential Conditions show that not all the Risk and
Target definitions are coherent with the chosen form of the Utility Function.

More precisely, if we consider the Truncated Normal case and define the Target as the
Expected Return, ERyy, then neither VaR nor Expected Shortfall (named VaR;y and ESyy in
Case 2 and Case 3 respectively, discussed on the previous section) are a coherent definition of
Risk, in the sense that some iso-utility curves have negative slope when we take into
consideration the CRRA Utility Function.

Only the most elementary definition of Risk, the Standard Deviation, SD;y in Case 1 of the
previous section, respects the Differential Conditions.
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Appendix A. Proof of Theorem 2.1

Theorem 2.1: Let > be an expected utility preference relation on all normal distributions
N(u, o?) for the return r. Then there exists a mean-variance Expected Utility Function (o, i)
which describes .

In the case of risk-aversion, ¥ (o, u) has the following partial derivatives and the first derivative
of the implicit function p, (0):

(o, 1) av(o, 1) duy () W
@H TR T < 2 T e
ou

Proof:
Consider (2.1) here reported:

and without loss of generality pose W, = 1. We have:
r-N(u,o2) = W -NA+u,0?)

We prove at first the existence of Y (o, u):

0 U(W)e_(w_l_”)z/mz
E[UW)] = f_ = aw

changing variable z= (W — 1 —u)/o:

“UQ 7/, >
E[UW)] = f_oo ( +u\;—§z)e dz = f_ooU(l +u+oz)p(z)dz = Y(o,u)

where ¢ (z) is the probability density function of the standard normal distribution.

Therefore, E[U(W)] can be expressed as (o, i), function of (o, u).
Now we can prove (2.4) when U(W)is risk-averse:

%Z,u) _ f:ou'(l +u+02)p(z)dz >0

from (2.2). And:

W = f_O:OZU’(l +u+oz)p(z)dz

0 co

=f ZU’(1+,u+az)qb(Z)dz+f zUU(l+pu+o0z)p(z)dz
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oo

_ f 2lU(L+pu+02) —U' 1+ p— 02)]d(2) dz

where the last line follows by the symmetry of ¢(2).
By risk aversion U" (W) < 0 for all W, so thatwe have U'(1 + u + 0z) < U'(1 + u — 0z) for
z > 0, thus
Y (o,
LACHTD
do

i.e., risk aversion imply that investor likes higher expected returns and dislikes higher
standard deviation. Differentiating implicity:

Y (o,
duy(@) lpgc;ﬂ) _,
do ~ 0yY(o,u)

ou

Not surprisingly, indifference curves are upward in (o, i) cartesian plane.

Appendix B. First Derivative of the Implicit Function for the Truncated Normal case.

We give the following definitions that will be useful in the next expressions:

(B.1)
x — k, — k, —
T = ,Ll’ h2 = 2 H , hl = 1 M,
o o o
h, 2 h; 2 h 2
11:O'f e_T/ZdT, Iz:f Te_T/Zd‘[ [3:] ,L_Ze—T /sz
hq hq hq
h; 2 hy 2 hz 72
4=0 (u+o1)e” /2 dr, I5 = (u+o1)Te” /2 dr, 16 = (u + o1)T2e” /9 dr,
hq hy hq
h; 2 hj 2 ha 72
[7=0 (u+o7)?e” /2 dr, I8 = (1 + o1)?te” /2 dr, 19 = (u + o7)?72%e” /2 dr,
hq hq hq

hZ e _T2/2 hZ e_TZ/Z hZ ) e _TZ/Z
110 = —— 1, 111 = ——df1, 112 = —d
Uhl A+u+or) ' fhl T(1+,u+ar)y t fhlf(1+y+a‘r)y '

Consider function (3.2) here reported for brevity:

(12
v e (x—u) /202
1k, 1+ x)
l/)(O',‘Ll) = _; « —(£—p)?
fklz e /202 dr

dx
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As a first step, we compute the first derivatives of the integrals in the numerator and
denominator with respect to o and pu:

1

—(x—1)2 —(v—11)2
5 f,% (-1 /Zazd ) sz (x—p)e (x-h) /Zazd .
9o A+x)y X7 o (A+xy 7
kl kl
—(x—1)2 —(v—12
3 sze (x—p) /Zazd ~ sz (x—p)e (x—p) /202d oy
o A+xyr *° o2 (A+xr &7
kq k
a9 (k2 -@E-w? k2 (x —p)? -E-w?
Ep e /202dx=f (0—3#)6 /Zazdx=13
kl kl
d [*2 -¢-w? k2 (x —p) -G-w?
a e /Zozdxzf ( Uz'u)e /Zozdx =]2
kq ky
Therefore, the derivative of the function Y (o, 1) with respect to o is:
0y (o, w)
oo
k —(f—“)z/ ky (x — pu)? e_(x_u)2 202 k e_(x_#)2 202 ky (x — p)? —(f—u)z/
2 2 _ 2 2 _
fkl e 202 dxl fkl o3 (1+x)7’ dx| — fkl —(1+X)y dx lfkl —0_3 e 202 dx
1 Ky ~EW? ?
[fkl e 202 dx]
From (3.2):
—(v—1\2
kze (x—p) /202 k, _(5_#)2/ ,
f de = —IIJ(G,#)VI e 202 dx
kq keq
and we get:
(o) _
do
k ‘(f‘l‘)z/ ky (x — p)? e_(x_u)2 202 ky (x — p)? —(f—u)z/
fk: € 20 dxl fk12 o3 (1 + X)V dx |+ l/)(O', ,u))/ lfk: Te 207 dxl
1
_; -(§-w? 2
[fkkf e /252 dx]
—(x—u)z/ ,
ky (x — )26 202 ky (x — )2 -(-w
fk: 03# L dx| + (o, Wy lfk:a—s.ﬂe /202 dx
-7y —(-n)?
14 fkklz e /202 dx
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Finally, by using (B.1) we have:

0Y(o,p) 1112+ (o, wyI3

(B.2) dc  y 1

The derivative of the function (o, u) with respect to u is:

Iplo, W) _

(B3) =5

—(x-p)?
—(x—p)? - —(x—p)
fkklz e 202 dxl [ —pe 27" x| + Y(o, Wy lsz G-, /202 dxl

1 kq 02 (1 + ))/ o2
_; -(§-w? 2
[fkkf e /252 dx]
-(x-p)*
ke (x — ) e ks (x —(x-w)?
Jei ( 02#) 1+ x)V -dx| + Yo,y [f - Gzﬂ) ¢ for dxl

1
-y —E-w?

14 fkklz e /202 dx
111+ 9o, wyl2
oy 11

In the end, the first derivative of the Implicit Function (o) is:

0y (o,
duy(o) __ Gt
do (o)
ou
—(x—u)z/ .
_ 2 o2 , _ 2 —(x—p)
fkklz & g3ﬂ) : (1+ x)?’ dx|+ (o, Wy [fkkl (xa—;i)e g /202 dx]
- ~G-w?) _ 2
— o? ) ~(x—p)
fkkf (xazﬂ)e (1 +x)2y dx| + (o, Wy [fk (xaz W /262 dx]

112 + (o, wyI3
111 + (o, wyl2
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Appendix C.
Case 1: R(o,u) = Standard Deviation = SDry (o, 1)
T(o,u) = Expected Return = ERry (0o, 1)
Y(o,u) = Expected CRRA Utility Function with vy = 2.

To compute the Standard Deviation and the Expected Return of the Truncated Normal
variable, it is preferable to start with the following definitions:

~(x-p? ~(x-p? 2
[¥2 x2e /202 dx [¥2 xe /202 dx
SDyy(o,p) = |2 — =
TN K, ~R? Kk, ~(-0?
fkl e 202 dx fkl e 202 dx
(C.1)
—(r—11)2
ERryn(o,p) = , w7,
e 20% dx

ky

The (C.1) formulas transform the set [o, u] into the set [SD;y (o, 1), ERzy (0, 1)] asitis
possible to see from the following Figure C.1:

Figure C.1: Transformation [o, u] = [SDyy (o, 1), ERpy (o, 1)]

Transformation [ o, u] — [SDTN(a L), ERTN(o )]

Set [0, 4] Set [SD;\ (o, 1), ERpp (o, 1) ]
09< <03 0001 <o<12

001 0.01
0008 0008
0008 0008
0004 0.004

0.002 0002 |

05
08

05

ERTN(” s jt)

02
SDy (. 11)
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The partial derivatives, using (B.1) are:

—(x—u)z/

k
OER7y (o, 1) _ 0 fklz xe 20% dx
F) " 9o —(x-p)?
o o fkklz e /20_2 dx

k —-(x-p)? k (x — ’u)z -(x-p)? k —-(x-p)? k (x — ‘u)z -(x-p)*
fk:e /202 Xm lfk12XT€ 202 dx| — fklzxe /202 dx fklzTe 202 dx

Ky~ ?

[fkl e 202 dx]

OERpy(o,1) 1116 —13 * 14

9o anz
k —(x—u)z
OERmy(o,1) @ kf xe /202 dx
0 9 —(x-p)?
H’ l’l' fkkz e /20_2 dx
1
k _(x_ﬂ)z k xX—U _(x_ﬂ)z k _(x_ﬂ)z ky (X — U —(x—ll)z
o ] ) - e o] [ ()

ks _(x_#)z/

2
[fkl e 202 dx]

OERyy(o,1) I1%15—12 x4
o a7

To compute the partial derivatives of SDyy we consider:

—(x—p)?
9 fkkz x%e 202 dx
- 1

d —(x-w)?
? fkklz e /207 dx

k —(x—p)? k (x - #)2 —(x—p)? k —(x—p)? k (x - M)Z —(x—p)?
fk: e /202 dxl lfk12 x2 Te 262 dx | — fklz xze /202 dx fklz Te 202 dx

ko _(x—ﬂ)z/ 2

[fkl e 202 dx]

_11*19—13*17
B (11)?
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= — 2 ME+y\ (0o,
do 2 SDry (o, 1) (11)? (0 1) do
and:
—(x-w)?
9 f:z x?e /202 dx
_ 1

d —(x-w?
# f:lz e /207 dx

e_(x_ﬂ)z/w2 dxl lfkklz x2 (x - #) e_(x_ﬂ)z/m2 dxl — lf:lz xze_(x_ﬂ)z/zcrz dxl lfkklz (x _2#) e_(x_ﬂ)z/za2 dxl

o2 o
Ky~ ?
[fkl e 202 dx]

_11*18—12*17
B (11)2
dSD;y (o, 1 1118 — 1217 OME,y (o,

v (0, 1) _ l _ — 2 MEpy (o, 1) n ( Il)l

ou 2 SDry (o, 1) 11 ou

[t is possible now to compute and to graph the Differential Conditions (4.6):

Figure C.2: Differential Condition 1 for [SDyy (o, 1), ERry (0, 1]

Differential Condition 1 for [SD (o, 1) , ERp (o, p)]
09 < <03 0001 <o<12
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Figure C.3: Differential Condition 2 for [SDyy (o, 1), ERpy (o, 1)]

Differential Condition 2 for [SD_ (o', 1) , ER (o, 12)]
09<p<03 0.001<o0<1.2

a

Figure C.4: Differential Condition 3 for [SDyy (o, 1), ERpy (o, 1)]

Differential Condition 3 for [SDTN(" s 1) ERTN(” |
09< <03 0001<o<12

03
08 |
07 |
06
05 |
04

DC3

03]
02 |
0.1

02

0
02

04
06
H Q8

a
The three Figures above tell us that (4.6) are satisfied, all Differential Conditions are greater
than zero.
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Appendix D.

Case 2: R(o,u) = Value at Risk = VaRy(o, 1)
T(o,u) = Expected Return = ERry (0o, 1)
Y(o,u) = Expected CRRA Utility Function with vy = 2.
a = Confidence Level = 0.95

It is possible to analyze the behavior of VaR;y = VaRyy (o, u). Starting from its definitions:

{— g = ;I_VQRTN e—(f—ﬂ)z/zaz d
B O'\/%Aq)l{ ky
we have:
1 —VaR;y — —VaR —
1—«a :A(DK [cp( a ;‘N H) _CD(hl)] = CD(%) = (1 — Q)Ady + d(hy);
—VaRn —
CD( - GTN M) =1 -a)®(hy) — (1 —a)®(hy) + P(hy) = ad(hy) + (1 — a)P(hy)

VaRyy(o, 1) = —p = 0@y (a®(hy) + (1 = )P (hy))
obtaining the transformation:
VaRyy(o, 1) = —p = 0@y (a®(hy) + (1 — )@ (hy))

(D.1)

—(v—11)2
fkkf xe 20 dx

ERry(o,p) = v —(—p)?
J. e /207 dx
1

The (D.1) transforms the set [g, u] in the set [VaR;y (o, 1), ERry(o, )] as it is possible to see
in the following Figure D.1:
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Figure D.1: Transformation [o,u] = [VaRy (o, 1), ERry (o, 1)]
Transformation [ o, ] — [VaRTN(o i), ERTN(o )]

Set [0, 4] Set [VaR (o, 1), ERpy(0, 1) ]
09 < <03 0.001 < o <1.2

0.01 0.01
0008 0008
0006 0006

0004 0004

0.002 0002 |

Defining:
(D.2) b=ad(h)+A-a)P(hy), c=Ppy(b), Piny(b) =—-VaRy +u)/o
and computing:

- hl 2
(“%@) =JLMM—( )MM

db a
(0:3)  Go=— o) -

we can use the Theorem of derivative of the inverse function:

dcbinv(b) _ 1 .. dcl)(C)
b de Y g *O
dc

to compute the partial derivatives of:

0Piny(b)  dPy,(b) 0b 1 db

(D-4) dc  db 9o dd(c) do
d
By the definition of ®: ‘
ddo
aOR f $(D)dr = $(0) = (i (D))
we have:

aq)inv(b) _ 1 . ﬁ
do B (»b(q)inv(b)) da
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and consequently:
0Pin,(b) 1 db

o p(Ppy(b) Ou

So we can compute the partial derivatives of VaRy:

a 1-a)
aVaRTN L <_E¢(h1) - o (I)(hz))
aﬂ - ° (p(q)inv(b))

14 adp(hy) + (1 — a)dp(hy)
¢(=(VaRry +p)/o)

hy (1 _ )hz
<_QT¢(h1) - Ta(b(hz))

VaRen _ g (ad(hy) + (1 — a)d(hy)) —
do - inv(a ( 1) ( C() ( 2)) o ¢)(Cbmv(b))
(Zhl _ (1 - a)hz
VaRTN +u <_T¢(h1) o (I)(hz))
= -0
o ¢(q)inv(b))

_VaRpy +u (ahyd(h) + (1 — Dhyd(hy))
B o ¢(—(VaRpy +u)/o)

Now, it is possible to compute the Differential Conditions (4.6) and to graph them.

Figure D.2: Differential Condition 1 for [VaRyy(o, 1), ERry(o, )]
Differential Condition 1 for [VaRy (o, 1) , ERp (o, 4]
0.9 < <03 0.001 <o <12

03
08 |
07 ]
06 |
05

DCH1

04 |
03 ]
02 |
041

DC1 is satisfied, it is > 0.
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Figure D.3: Differential Condition 2 for [VaRyy (o, 1), ERry(o,1)]

Diferential Condition 2 for [VaR_ (o , ) , ER (o , ju)]

DC2

0.9 < 2 <03

0001 <o <12

o

Table D.1: Values of the Differential Condition 2 for [VaR

TN (0' :u)) ERTN (U' ,u)]

0,300

0,414

0,379

0,350

0,291

-0,192

-0,279

-0,205

-0,134

-0,088

-0,060

-0,044

-0,035

-0,029

-0,025

-0,023

0,214

0,487

0,446

0,410

0,283

-0,258

-0,252

-0,170

-0,106

-0,068

-0,047

-0,035

-0,028

-0,024

-0,021

-0,019

0,129

0,570

0,524

0,477

0,182

-0,276

-0,217

-0,134

-0,081

-0,052

-0,037

-0,028

-0,022

-0,019

-0,017

-0,016

0,043

0,661

0,610

0,547

-0,024

-0,263

-0,176

-0,101

-0,060

-0,039

-0,028

-0,022

-0,018

-0,016

-0,014

-0,014

-0,043

0,751

0,698

0,603

-0,182

-0,230

-0,134

-0,073

-0,044

-0,029

-0,021

-0,017

-0,014

-0,013

-0,012

-0,012

-0,129

0,833

0,780

0,607

-0,241

-0,184

-0,095

-0,051

-0,031

-0,021

-0,016

-0,013

-0,012

-0,011

-0,010

-0,010

-0,214

0,899

0,846

0,445

-0,237

-0,133

-0,063

-0,034

-0,021

-0,015

-0,012

-0,010

-0,009

-0,009

-0,008

-0,008

-0,300

0,946

0,887

0,080

-0,194

-0,086

-0,038

-0,021

-0,014

-0,011

-0,009

-0,008

-0,007

-0,007

-0,007

-0,007

-0,386

0,974

0,900

-0,151

-0,132

-0,048

-0,022

-0,013

-0,009

-0,007

-0,006

-0,006

-0,006

-0,006

-0,006

-0,006

-0,471

0,989

0,874

-0,189

-0,071

-0,023

-0,011

-0,007

-0,006

-0,005

-0,005

-0,004

-0,004

-0,004

-0,005

-0,005

-0,557

0,996

0,757

-0,129

-0,027

-0,008

-0,004

-0,003

-0,003

-0,003

-0,003

-0,003

-0,003

-0,004

-0,004

-0,004

-0,643

0,999

0,265

-0,045

-0,004

-0,000

-0,000

-0,001

-0,001

-0,002

-0,002

-0,002

-0,003

-0,003

-0,003

-0,003

-0,729

1,000

-0,070

0,004

0,006

0,004

0,002

0,001

0,000

-0,000

-0,001

-0,001

-0,002

-0,002

-0,002

-0,003

-0,814

1,000

0,022

0,017

0,009

0,006

0,004

0,002

0,001

0,000

-0,000

-0,001

-0,001

-0,002

-0,002

-0,002

-0,900

1,000

0,046

0,018

0,010

0,007

0,004

0,003

0,002

0,001

0,000

-0,000

-0,001

-0,001

-0,001

-0,002

UAGD)

0,001

0,087

0,172

0,258

0,344

0,429

0,515

0,601

0,686

0,772

0,857

0,943

1,029

1,114

1,200

Condition DC2 is not satisfied, as it is possible to see from Figure D.3 and Table D.1, where its
values are reported. This means that this transformation, even if it is based on Risk Averse
Utility Function, does not preserve the concavity property and there are regions of its domain

where

(see (4.9) and pose ER;y instead of T) .

oy

dERy

<0
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Figure D.4: Differential Condition 3 for [VaRyy (o, 1), ERry(o, )]
Differential Condition 3 for [VaR_ (o , ) , ERpy (o, 42)]

09< <03 0001<0<12

DC3

o

DC3 is satisfied, it is > 0.

Appendix E.

Case 3: R(o,u) = Expected Shortfall = ESy(o, 1)
T(o,u) = Expected Return = ER;y (0o, 1)
Y(o,u) = Expected CRRA Utility Function with vy = 2.
a = Confidence Level = 0.95

Starting from the definitions of Expected Shortfall of a Truncated Normal:

—(v—11)2
e )

T A N
we have:
1 (=VaRrn-w)/o
—ESry = m[hl (ot +we(r)dr
1 (=VaRrn—-w)/o (-VaRrn—-p)/o
:m{afhl (1) d‘[-i-,ufh1 (1) d‘[}
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1 VaRTN— o
{ol-p @14 ™1 1 p[@(=(VaRmy + 1) /o) — ©(hy)]}

T (- a)Ady
— e 018 () = B(-(VaRny +10/0)] + WO~ VaRon + W)/o) ~ S(h)]
_ m{awo — G D1y (D] + U[@[ 1 (B)] — D(h)])
— e (018 () = $10uG)] + ulb - 2]
1

= A= wne, 10 =9l @umyM]] +ulad(hy) + (1 = )(h) — P(h)]]

1
= m{a[qb(hl) — P[Py (D] + (1 — ) [P (Ry) — D(hy)]}

1
= m{a[qb(ho — @[y (D] + u(1 — @)AD )

and finally:

op(hy) — [Py (B)]]
(1 - a)Ady

ESty = —pu—

Therefore, the transformation becomes:

_ G[d)(hl) B ¢[q)im7(b)]]
(1 - a)Adg

ESiy(o,u) = —u

(E.1)

2
k —(x—p) /
’ xe 202 dx
k1

—(x-p)?
fkkz e /202 dx
1

METN(U,IJ) =

Formulas (E.1) transform the set [, u] into the set [ES;y (0, 1), ERry(o, )] as it is possible
to see from the following representations:
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Figure E.1: Transformation [o,u] = [ESyy(0, 1), ERpy (o, 1)]
Transformation [ o, ] — [ES;\(o . 1) . ER (o, 1) ]

Set [o, 1] Set [ES TN(U s 1) ERTN(U s 1) ]
09< <03 0001<o0<12

001 001
0008 0.008 |
0008 0006

0004 0004 |

0002 0002 |

05

08
04 e

05 02

Q
ER (7 . 1) 02

ESTN(G . )

Using the definitions (D.2) and the Theorem of derivative of the inverse functions (D.4):

dcbinv(b) _ 1 .. dcl)(C)
b de Y g *O
dc

we can compute the partial derivatives of:

P (D)
99(@u)@0)  0p(0ue) 1 00w (= ")

do B do 2 do
We have:
0p(Piny(®) 1 @7, (b) 1 ab
do B —mexp< /2> Piny (b) - dd;l(c) 90
c
1 db
= _¢(q)mv(b)) Dy () - dq)(C) aO'
d
By the definition of ®: ‘
dd
2= o@ar=9(0) = (9 )
we have:
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B(Om®) o 1 o
G = () D) S s 5= o (8)

Using (D.3):

ad)(q)inv (b)) — cDinv (b)

(E.2) P .

[ah1¢(h1) +(1- “)hzq)(hz)]
and with the same rationale:

ad)(q)inv (b)) — cDinv (b)

(E.3) o -

lad(hy) + (1 — )P (h,)]

We rewrite ESry as:

o le_(kl_ﬂ)z/zaz - e_[q}im(b)]z/mz
_ O'[¢(h1) - ¢[(Dinv(b)]] =—u-—
Ty (1-a) f:lze_TZ/z dt

ESry = —u

and using (B.1) we compute the partial derivatives of ESy:

—(ky—p)? _cl)invb2
Uze(lﬂ)/zaz_e[ ()]/202
OESty 1 0

ou o (1-a)l1

—hy? i —hq? =[Pinv(b z
02{11[%6 R /2—w/2nM _le hy /Z—e [ ()]/ZUzlf:zTe_Tz/ZdT}
1

u
- =)D
0_2 {11 l%e_hlz/z _ mad)(q)alzv(b))l _ le—h12/2 . e_[q)inv(b)]z/zo_zl 12}
= A= UD?

Here, we can use (E.3) instead of d¢)(®;,,,(b))/op.

_ _ 2 _ 3 2
(k1—w) /20_2 e [©®iny(D)] /Zo-zl

do do 1-a)l1

2
0ES;y 0 |° le
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—h,? —[® iy (D)]? 2 _p.2 _
Il{ZaIe " e [ ()]/2azl+azl%e " /z_m—ad)(dg;v(b)) }+

(1-a)(U1)?
—h4? = Piny(b 2
— 02 I e e Pin (0] /ZUZl fhhzrze‘fz/z dt
1

(1-a)(U1)?

—h,? _[q)inv(b)]z 2 _p.2 a D, b
U{Ie hy /2 —e /202] [211_0_13] +O'11 %e hq /2 _m ¢( al;v( )) }

(1 -a)(J1)?

and then we have the following figures and tables:

Figure E.2: Differential Condition 1 for |[ESty(o,u), ERry(o, 1)]
Differential Condition 1 for [ES_ (' , 1) , ERy (o, 2)]
09< <03 0001<o<12

DCH

DC1 is satisfied, it is > 0.
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Figure E.3: Differential Condition 2 for |[ESyy (o, 1), ERpy (o, 1)]

Differential Condition 2 for [ES_, (o , 1) , ER (0, 2)]
0.9< <03

DC2

0.001 <o <1.2

Table E.1: Values of the Differential Condition 2 for |[ESyy (o, 1), ERry (0, 1]

0,300

0,414

0,388

0,373

0,346

-0,027

-0,146

-0,093

-0,052

-0,030

-0,018

-0,013

-0,009

-0,007

-0,006

-0,006

0,214

0,487

0,457

0,439

0,374

-0,103

-0,125

-0,070

-0,037

-0,021

-0,013

-0,009

-0,007

-0,006

-0,005

-0,004

0,129

0,571

0,537

0,514

0,337

-0,131

-0,099

-0,050

-0,026

-0,015

-0,009

-0,007

-0,005

-0,004

-0,004

-0,004

0,043

0,661

0,625

0,595

0,180

-0,126

-0,072

-0,034

-0,017

-0,010

-0,007

-0,005

-0,004

-0,003

-0,003

-0,003

-0,043

0,751

0,715

0,668

0,003

-0,103

-0,048

-0,021

-0,011

-0,006

-0,004

-0,003

-0,003

-0,002

-0,002

-0,002

-0,129

0,834

0,799

0,707

-0,083

-0,073

-0,029

-0,012

-0,006

-0,004

-0,003

-0,002

-0,002

-0,002

-0,002

-0,002

-0,214

0,899

0,866

0,629

-0,095

-0,044

-0,015

-0,006

-0,003

-0,002

-0,002

-0,001

-0,001

-0,001

-0,001

-0,001

-0,300

0,946

0,911

0,321

-0,071

-0,022

-0,007

-0,003

-0,001

-0,001

-0,001

-0,001

-0,001

-0,001

-0,001

-0,001

-0,386

0,974

0,931

0,040

-0,038

-0,008

-0,002

-0,000

0,000

0,000

0,000

-0,000

-0,000

-0,000

-0,000

-0,001

-0,471

0,989

0,924

-0,039

-0,011

0,000

0,001

0,001

0,001

0,001

0,001

0,000

0,000

-0,000

-0,000

-0,000

-0,557

0,996

0,861

-0,020

0,003

0,004

0,003

0,002

0,002

0,001

0,001

0,001

0,000

0,000

0,000

-0,000

-0,643

0,999

0,507

0,008

0,008

0,005

0,004

0,003

0,002

0,002

0,001

0,001

0,001

0,000

0,000

0,000

-0,729

1,000

0,096

0,017

0,009

0,005

0,004

0,003

0,002

0,002

0,001

0,001

0,001

0,001

0,000

0,000

-0,814

1,000

0,058

0,015

0,008

0,005

0,004

0,003

0,002

0,002

0,001

0,001

0,001

0,001

0,001

0,000

-0,900

1,000

0,031

0,012

0,007

0,005

0,004

0,003

0,002

0,002

0,002

0,001

0,001

0,001

0,001

0,000

UArGD)

0,001

0,087

0,172

0,258

0,344

0,429

0,515

0,601

0,686

0,772

0,857

0,943

1,029

1,114

1,200

Also in this case condition DC2 is not satisfied, see Figure E.3 and Table E.1, and we can
conclude with the same considerations done for Differential Condition 2 of Appendix D.
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Figure E.4: Differential Condition 3 for |[ESyy (o, 1), MEry(o, )]

Differential Condition 3 for [ES_, (o , ) , ERpy (o , p1)]
09< <03 0.001<o<12

DC3

DC3 is satisfied, it is > 0.

Appendix F

Quadratic Utility Function

Consider the following general Quadratic Utility Function (QUF):

(F.1) QUF(W) = QUF = a+ bW — cW? b,c>0
where W is defined as in (2.1).

If the function (4.1) has positive first derivative and negative second derivative, it represents
arisk-averse person with insatiable appetite, that is:

b
QUF' =b—-2cW >0=W <—=W,(1 + uy)

2c
QUF" =-2c <0 = c >0
ARA[QUF] = QuF 2, RRA[QUF] = —W
QUFL= QUF  b—2cW ’ QUFL= b—2cW
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In the Appendices F, G, H we take into consideration v — N (i, 02).

Wy (1 + uyy) is the maximum value allowed for W such that (F.1) maintains its characteristic of
Risk aversion.

Proposition F.1: With the definition b = 2cWy(1 + py), the expected value of QUF in (4.1),
E[Q(uy)](o, ), is a function of Standard Deviation o and Expected Return u represented by a
paraboloid in the space (o, u, E[Q (uy)](o, 1) ) with downward concavity, whose vertex is given

by the point (0, pua, E[Q(par)1(0, ) . That is:
E[Qu)](o, 1) = QUF(Wp) + cWiiuiy — cWi[o? + (u — up)?]
where QUF (W,) = a + bWy — cW¢ = a + 2cWy (1 + )Wy — cWE .

Proof: Consider the expected value of the Quadratic Utility Function (F.1):

E[Q(um)] = E[a + bW — cW?]
= E[a+ bWo(1+71)—cWZ(1 +1)?]
= a+ bWy(1+ E[r]) — cW¢(1 + 2E[r] + E[r?])
= a+ bW, + bWou — cW¢ — 2cW¢u — cWi (a2 + u?)

= QUF(Wy) + Wou(b — 2cWy) — cWg (0% + p?)

Substituting parameter b with its expression, we have:

E[Q(um)] = QUF (W) + Wou(2cWy + 2cuy Wy — 2cW,) — cWg (62 + p?)

= QUF(Wy) + 2cW¢ iy — cWg (02 + p?)

Adding and subtracting the same quantity cWZu2and considering the E[Q (u,,)] as a function
of ¢ and u we obtain:

(F.2) E[Q(u)](o, ) = QUF (W) + cW¢tuiy — cWilo? + (1 — pm)?]

The expression (F.2) represents a paraboloid in the space (o, i, E[Q (uy)]1(o, 1) ) with
downward concavity, whose vertex is the point (0, ty, E[Q ()10, pa)).
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We assume for simplicity Wy = 1:

E[Q(u)]1(o, 1) = (o, 1) = QUF(Wy) + cupy — clo? + (i — par)?]
And we have

(o, Y (o,
—lpg; b _ —2¢(u = py) ’_ngz B _2c

that will be used for to compute the (4.6) for the Quadratic Utility Function case.

Appendix G

Case QUF 1: R(o,u) = Value at Risk = VaR(o, 1)
T(o,u) = Expected Return = u
Y(o,u) = Expected QUF with uy, =03, a=10, b =3, c = 15.
a = Confidence Level = 0.95

It is possible to analyze the behavior of VaR = VaR (o, 1), starting from the transformation:
G.1) R(o,p) =VaR(o,p) = —p+o®_4(a), T(op) =p
The (G.1) transforms the set [o, u] in the set [VaR (o, 1), u] as is possible to see:

Figure G.1: Transformation [o, u] = [VaR (o, u), ul
Transformation [ o,u] — [VaR(e , p) .u]

Set [o, 1] Set [VaR(o , p) ,p]
0.9 < 1 <03 0.001 <o <1.2

0.01 0.01 |
0008 0.008 |
0006 0006

0004 0004

0.002 0002

1

VaR(o , p)
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The partial derivatives, using (G.1):

d
ﬂ =o_;(a);

dor . our _ our _
oo -t !

Cow 7 0o
By (4.6), DC1: 2co > 0 is true.
By (4.6), DC2:

—2c®_1(a)(u — pp) — (—2¢0)(=1) > 0

(6.2) <—(u—uM)—>ﬁ+u<uM

®_,(a)

we can represent the DC2 in closed form:

Figure G.2: Differential Condition2 for [VaR (o, 1), U]

Differential Condition 2 (o, ;2) for [VaR, 1]
09<,p<03 0001<o0<1.2

06 |
04 |
02 |

DC2

02 | "
04
06 |
038 |

02

a

02

04

086
H

RIE]

DC2 is not satisfied, as is possible to see by Figure G.1. This means that this transformation,
even if started by Risk Averse Utility Function, does not preserve the characteristic of the
concavity and there are regions in the domain where:

w_ow

ar ~ o =0

that is not typical of the Risk Averse Utility Function, Theorem 2.1.
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By (G.2), taking in consideration that:

VaR +u
@_,(a) -
we have:
VaR
6.3) E%i%%+#<m4ﬁuﬂﬁiﬁqwﬂﬁ<—wm+ﬂﬂ¢qWHz

The DC2 is respected only below the straight line (G.3), above the straight-line the iso-utility
curves have negative slope.

Figure G.3: Iso-utility curves of Y (o, ) in 2D [VaR (o, w), u]

Iso-utility curves: 4 (o, j2)
09 < <03 0.001 < o <1.2

— :
02k J
of e - TeNg q
0z} e O ‘ |
= e |
04k [ 4
J | - B
06 / ; 3
/ f
08 - //
‘ L 1 I 1 g i /1 /
0 05 1 15 2 25
VaR(n /1)

By (4.6), DC3: ®_,(a) > 0 is true.

Appendix H

Case QUF 2: R(o,u) = Expected Shortfall = ES(o,u1)
T(o,u) = Expected Return = u
Y(o,u) = Expected QUF with uy, =03, a=10, b =3, c = 15.
a = Confidence Level = 0.95

It is possible to analyze the behavior of ES = ES(o, u), starting from the transformation:

(H.1) R(o,1) = ES(0,p) =~ + 7= [0, (@], T(o,1) =

The (H.1) transforms the set [, 1] in the set [ES(o, 1), u] as is possible to see:
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Figure H.1: Transformation [o, u] - [ES(o, 1), ul
Transformation [ o,p] — [ES( o, p) ,p]

Set [o, 1] Set [ES( o, p) 4]
09< <03 0001 <o<12

0.01 001
0.008 0.008 |
0.006 0006

0004 |
0.002 |

By (4.6), DC1: 2co > 0 is true.

By (4.6), DC2:
—ZCM(M — ) — (=2¢0)(=1) > 0
1—«a
o(1—a) o(1-a)
(H.2) NG I e T TN

We can represent the DC2 in closed form:

Figure H.2: Differential Condition2 for [ES(o, 1), u]

Differential Condition 2 (o, ) for [ES, p]
09< <03 0001<o<12

DC2
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DC2 is not satisfied, as it is possible to see by Figure H.2. This means that this transformation,
even if it starts with the Risk Averse Utility Function, does not preserve the characteristic of the
concavity and there are regions in the domain where

0 0

_l/} — _l/) < O
dT du

that is not typical of the Risk Averse Utility Function (Theorem?2.1).

By (H.2), taking into consideration that:

(S +w(1-a) _
pro_ (@]

we have:

(ES + (1 — a)? P[P, (a)]?

(H 3) d)[q)_l(a)]z tu<uy - ,U{(l - a)Z + ¢[q)—1(a)]2} <—-ES+ Um (1 _ (Z)Z

The DC2 is respected only below the straight line (H.3), above the straight-line the iso-utility
curves have negative slope.

Figure H.3: Iso-utility curves of Y (o, u) in 2D [ES (o, i), u]

Iso-utility curves: + (o, 1)
09< <03 0001 <o<12

| T T T T T
0zL — J
o} =\ ]
02 F ¥ B U .
2, T
04 L / - —\-_N
06 / 4
/
f
L8 - 7 S / .
1 1 ! 1 —1 =1 ey /
0 05 1 15 2 25 3

:.b
ES(o, n)
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