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ABSTRACT:	The	condition	of	Risk	Aversion	implies	that	the	Utility	Function	must	be	concave.	
We	take	into	account	the	dependence	of	the	Utility	Function	on	the	return	that	has	any	type	of	
two-parameter	 distribution;	 it	 is	 possible	 to	 define	 Risk	 and	 Target,	 that	 usually	 is	 the	
Expected	value	of	the	return,	as	a	generic	function	of	these	two	parameters.		
This	paper	determines	the	Differential	Conditions	for	the	definitions	of	Risk	and	Target	that	
maintain	the	Concavity	of	the	Expected	Utility	Function	downward	in	the	3D	space	of	the	Risk,	
Target	 and	 Expected	 Utility	 Function.	 As	 a	 particular	 case,	 in	 the	 paper	 we	 discuss	 these	
conditions	in	the	case	of	the	CRRA	Utility	Function	and	the	Truncated	Normal	distribution.	
Furthermore,	different	measures	of	Risk	are	chosen,	as	Value	at	Risk	(VaR)	and	Expected	
Shortfall	(ES),	to	verify	if	these	measures	maintain	the	downward	concavity	property	for	the	
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1. Introduction	

	

Risk	aversion	is	referred	to	as	the	amount	an	agent	is	willing	to	pay	in	order	to	avoid	risk.	
In	the	expected	utility	theory,	the	risk	aversion	measure	is	generally	given	by	the	Arrow-Pratt	
index,	which	requires	the	von	Neumann-Morgenstern	utility	function.	
There	 is	 no	 doubt	 that	 risk	 aversion	 is	 linked	 to	 the	 concavity	 of	 the	 utility	 function.	 For	
example,	 the	 Arrow–Pratt	 measure	 of	 absolute	 risk-aversion	 (ARA)	 relates	 the	 degree	 of	
concavity	of	 a	utility	 function	measured	by	 the	 curvature	 index	known	as	 the	 coefficient	 of	
absolute	 risk	 aversion.	 As	 underlined	 by	 Machina	 (1987),	 since	 someone	 with	 a	 concave	
utility	 function	 will	 always	 prefer	 receiving	 the	 expected	 value	 of	 a	 gamble	 to	 the	 gamble	
itself,	concave	utility	functions	are	termed	risk	averse.	
Machina	affirms	that	in	the	case	of	non-expected	utility	function	we	can	use	calculus	to	extend	
the	results	obtained	from	the	expected	utility	function.	In	particular	he	takes	into	account	the	
concavity	 in	 the	 consequences	of	 the	partial	derivatives	with	 respect	 to	probabilities	of	 the	
preference	function.	

Other	authors	criticize	the	results	obtained	by	this	extension.	For	example,	Montesano	(1991)	
argues	 that,	 unlike	 what	 happens	 in	 the	 expected	 utility	 function,	 in	 non-expected	 utility	
function	we	can	find	examples	of	agents	that	prefer	the	lottery	to	its	expected	value	(denoting	
risk	attraction)	while	they	prefer	a	smaller	risk	and	vice	versa.	 In	this	case,	 the	concavity	of	
the	 derivatives	 of	 the	 utility	 function	 cannot	 be	 considered	 an	 index	 of	 risk	 aversion	 for	
smaller	risks.	
Li	Calzi	and	Sorato	(2004),	starting	from	the	consideration	that	the	existing	parameterizations	
of	 prospect	 theory	 are	 not	 satisfactory,	 suggest	 a	 parameterization	 for	 utility	 and	 value	
functions	 that	 works	 across	 both	 the	 expected	 utility	 and	 prospect	 theory.	 With	 this	
parameterization	 the	 consequent	 family	 of	 functions	 are	 twice	 differentiable	 and	 are	
restricted	to	have	only	possible	shapes:	convex,	concave,	S-shaped	and	reverse	S-shaped.	
The	drawback	of	the	suggested	parameterization	is	that	the	family	includes	utility	(or	value)	
functions	which	have	no	 representation	 in	 closed-form,	 even	 thought	 their	 first	 derivatives	
always	admit	an	explicit	representation.	
We	 have	 mentioned	 some	 articles	 that	 discuss	 the	 concavity	 and	 the	 risk	 aversion	 by	
considering	properties	of	the	functions	in	two-dimensional	space.	

In	 three-dimensional	 space,	 we	 can	 quote	 Lajeri	 and	 Nielsen	 (1998)	 whose	 aim	 is	 to	
determine	whether	one	decision	maker	 is	more	 risk	averse	 than	another.	 For	 this	purpose,	
Lajeri	and	Nielsen	limit	themselves	to	the	two-parameter	family	of	random	variables	and	the	
risk	aversion	is	measured	considering	the	expected	utility	as	a	function	of	mean	and	standard	
deviation.	 In	 their	 analysis	 the	 concavity	 of	 the	 utility	 function	 plays	 an	 important	 role	 in	
determining	 the	 decision	 maker’s	 attitude,	 measured	 by	 the	 marginal	 rate	 of	 substitution	
between	 mean	 and	 standard	 deviation,	 that	 is,	 by	 the	 slope	 of	 an	 indifference	 curve.	 The	
authors	also	establish	the	equivalence	of	the	concept	of	decreasing	absolute	prudence	(DAP),	
introduced	by	Kimball	(1990),	and	the	decreasing	of	the	slope	of	the	indifference	curves	of	the	
utility	 function.	 Eichener	 and	 Wagener	 (2001)	 show	 that	 this	 latter	 result	 cannot	 be	
generalized	for	distributions	other	than	the	normal	distribution.	
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The	 purpose	 of	 our	 paper	 is	 to	 determine	 the	 differential	 conditions	 for	 the	 downward	
concavity	 of	 the	Expected	Utility	Function	E[U(W)]	 in	 the	 3D	 space	 𝑅𝑖𝑠𝑘,𝑇𝑎𝑟𝑔𝑒𝑡,𝐸 𝑈(𝑊) ,	
when	 the	Utility	 Function	U(W)	 is	 risk-averse,	Wealth	 is	 defined	 as	𝑊 = 𝑊! 1+ 𝑟 ,	 r	 is	 the	
return	with	a	generic	distribution	which	depends	on	two	parameters	and	Risk	and	Target	are	
defined	as	a	functions	of	these	two	parameters;	Target,	usually,	is		the	Expected	value	of	the	
return.	
	The	risk-averse	conditions	are	related	to	the	first	and	the	second	derivatives	of	the	U(W)	and	
the	degree	of	risk	aversion	can	be	measured	by	the	curvature	of	the	U(W).	
These	 conditions	 are	 defined	 in	 two	 dimension	 and,	 taking	 the	 expectation	 of	 the	 U(W),	
E[U(W)],	 these	 conditions	 do	 not	 necessarily	 imply	 that	 in	 three	 dimensional	 space	
𝑅𝑖𝑠𝑘,𝑇𝑎𝑟𝑔𝑒𝑡,𝐸 𝑈(𝑊) 	the	E[U(W)]	has	a	downward	concavity.	The	downward	concavity	in	
3D		means	that	E[U(W)]	depends	decreasingly	on	𝑅𝑖𝑠𝑘	and	increasingly	on  𝑇𝑎𝑟𝑔𝑒𝑡.	

As	a	particular	 case,	 the	paper	describes	 the	Constant	Relative	Risk	Aversion	Utility	Function	
(CRRA)	applied	to	a	return	that	has	a	Truncated	Normal	distribution.	
The	paper	is	organized	as	follows.	Section	2	introduces	the	properties	for	the	Utility	Function	
when	wealth	depends	on	the	return	r	that	is	a	Normal	variable.	These	properties	are	extended	
when	 the	 return	 r	 has	 a	 generic	 distribution	 which	 depends	 on	 two	 parameters	 and	 the	
definitions	of	Risk	and	Target	are	transformations	of	these	two	parameters.	

Section	 3	 takes	 into	 consideration	 the	 CRRA	 Utility	 Function	 and	 the	 transformation	 of	 a	
Normal	variable,	e.g.	a	Truncated	Normal	variable,	and	illustrates	that	Standard	Deviation	and	
Mean	of	the	starting	Normal	variable	cannot	be	a	correct	definition	for	Risk	and	Target,	due	to	
the	 fact	 that	 the	 E[U(W)]	 has	 not	 the	 downward	 concavity	 in	 the	 space	
𝑅𝑖𝑠𝑘,𝑇𝑎𝑟𝑔𝑒𝑡,𝐸 𝑈(𝑊) .	 This	 Section	 introduces	 the	 example	 to	 analyze	 the	 conditions	 for	
the	concavity	in	3D	in	a	more	general	way.	

Section	 4	 defines	 the	 Differential	 Conditions	 that	 must	 be	 respected	 when	 we	 consider	 a	
parametric	 representation	 of	 the	 surface	 concerning	 the	Risk,	Target	 and	E[U((W)]	 and	we	
desire	 that	 the	 concavity	 of	 the	 E[U((W)]	 remains	 downward,	 i.e.	 E[U(W)]	 depends	
decreasingly	 on	𝑅𝑖𝑠𝑘 	and	 increasingly	 on   𝑇𝑎𝑟𝑔𝑒𝑡 .	 The	 Conditions	 pertain	 to	 any	 two-
parameter	distribution.	

This	is	obtained	without	restrictions	for	the	U(W)	or	definitions	of	Risk	and	Target.	
As	a	particular	case,	taking	in	account	the	Truncated	Normal	variable	for	the	return	and	using	
its	Expected	value	 for	Target,	 Standard	Deviation,	VaR	and	Expected	Shortfall	 of	 the	 return	
with	CRRA	Utility	Function	are	analyzed.	Only	the	Standard	Deviation	respects	the	Differential	
Conditions	and	maintains	the	concavity	of	E[U(W)]	downward.	

Section	5	contains	the	conclusions.	
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2. Utility	Function	in	the	case	of	Normal	distribution.	
	

Let	us	consider	the	Utility	Function	𝑈 𝑊 , where	𝑊	is	wealth	(or	a	quantity	of	the	uncertain	
payment),	given	by:	

2.1                                                             𝑊 = 𝑊! 1+ 𝑟 ,	
with	the	initial	value	𝑊!	and	the	return	r.	
If	𝑈 𝑊 	represents	a	risk-averse	person	with	insatiable	appetite:	
	
2.2                                                    𝑈′ 𝑊 > 0 ;                𝑈′′ 𝑊 < 0	
	

2.3                                        𝐴𝑅𝐴 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑖𝑠𝑘 𝐴𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = −
𝑈!! 𝑊
𝑈! 𝑊 > 0	

	
Theorem	2.1:	Let	≽	be	an	expected	utility	preference	relation	on	all	normal	distributions	
𝑁(𝜇,𝜎!)	for	the	return	r.	Then	there	exists	a	mean-variance	Expected	Utility	Function	𝜓 𝜎, 𝜇 	
which	describes	≽.	
In	the	case	of	risk	aversion,	𝜓 𝜎, 𝜇 	has	the	following	partial	derivatives	and	the	first	derivative	
of	the	implicit	function	𝜇! 𝜎 :		

2.4                      
𝜕𝜓 𝜎, 𝜇
𝜕𝜇 > 0,   

𝜕𝜓 𝜎, 𝜇
𝜕𝜎 < 0, ⇒  

𝑑𝜇! 𝜎
𝑑𝜎 = −

𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

> 0	

Proof:	Appendix	A.	� 

The	Theorem	2.1	describes	a	reasonable	and	intuitive	behavior	for	the	risk-averse	investor	
translated	in	3	dimensional	space 𝜎, 𝜇, 𝜓 𝜎, 𝜇 	when		𝑟~𝑁(𝜇,𝜎!).			
	
More	generally	we	consider	the	return	𝑟~𝐺 𝜎, 𝜇 ,	where	G	is	any	two-parameter	distribution	
and	𝑔 𝑟,𝜎, 𝜇 	is	the	probability	density	function	defined	for	𝑟 ⊆ [𝛿!, 𝛿!].	
It	is	possible	to	compute	the	following	Expected	Utility	Function,	𝜓 𝜎, 𝜇 .	
	

2.5                  𝜓 𝜎, 𝜇 ≡  𝐸 𝑈 𝑊 = 𝐸[𝑈 1+ 𝑟 ] = 𝑈
!!

!!
1+ 𝑟 𝑔 𝑟,𝜎, 𝜇 𝑑𝑟	

	
The	Target	can	be	defined,	as	usual,	as	the	Expected	value	of	r	:	
	

𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑇 𝜎, 𝜇 = 𝑟
!!

!!
𝑔 𝑟,𝜎, 𝜇 𝑑𝑟	

	
and	Risk,	e.g.,	as	the	Standard	Deviation	of	r	:	
	

𝑅𝑖𝑠𝑘 = 𝑅 𝜎, 𝜇 = 𝑟 − 𝑇 𝜎, 𝜇 !
!!

!!
𝑔 𝑟,𝜎, 𝜇 𝑑𝑟	
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We	 can	 choose	 any	 other	 definition	 for	 Risk	 as	 a	 generic	 functions	 of	 𝜎, 𝜇 ,	 e.g.	 VaR	 or	
Expected	 Shortfall	 (ES).	 In	 the	 same	 line	 it	 is	 also	 possible	 to	 introduce	 a	 generic	
transformation	to	define	the	Target	:	

𝑅𝑖𝑠𝑘 = 𝑅 𝜎, 𝜇 	
	
                                                                        𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑇 𝜎, 𝜇 	
	
where	𝑅 𝜎, 𝜇  𝑎𝑛𝑑 𝑇 𝜎, 𝜇 	are	generic	functions	of	 𝜎, 𝜇 	and	we	assume	that	they	are	at	least	
once	differentiable	with	continuous	first	derivatives.	
	
For	sake	of	simplicity	we	named	the	generic	parameters	as	 𝜎, 𝜇 ;	later	we	will	introduce	the	
specific	case	of	the	Normal	variable,	and	this	choice	allows	us	not	to	rename	the	parameters.	
	
The	question	 is:	 if	we	consider	a	risk-averse	Utility	Function	and	define	Risk	and	Target	as	a	
generic	 functions	 of	 𝜎, 𝜇 ,	 which	 conditions	 must	 be	 satisfied	 by	 the	 three	 functions	
𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇  	so	 that	 in	 the	 parametric	 space	 	 𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 	the	
Expected	Utility	Function		𝜓 𝜎, 𝜇 	maintain	the	concavity	downward?	Is	it	sufficient	that	U(W)	
is	 risk-averse	 or	 is	 it	 necessary	 to	 introduce	 other	 conditions	 for	 the	 three	 functions	
mentioned	above?		
	
It	is	useful	to	recall	that	concavity	downward	means	iso-utility	curves	with	positive	slope	or,	
alternatively,	a	positive	first	derivative	of	the	Implicit	Function	that	is	defined	by	the	intercept	
of		𝜓 𝜎, 𝜇 	with	a	generic	horizontal	plane.	
	
The	conditions	that	will	be	determined	later	on	also	assure	that	the	following	inequalities	are	
true	:	
	

2.6                                                                     

𝜕𝜓
𝜕𝑅 < 0

𝜕𝜓
𝜕𝑇 > 0

	

	
	
The	 following	 section	describes	which	 counterintuitive	behavior	may	be	encountered	 if	 the	
definition	 of	 Risk	 and	 Target	 are	 not	 correctly	 done	 and	 do	 not	 precisely	 respect	 some	
differential	conditions.	
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3.			CRRA	Utility	Function	and	the	Truncated	Normal	case	
	
Consider	a	generic	CRRA	Utility	Function:	
	

3.1                                       𝐶𝑅𝑅𝐴 𝛾 =
−𝑊!! 𝛾,    𝛾 > −1,   𝛾 ≠ 0 

𝑙𝑜𝑔𝑊                            𝛾 = 0
	

 
where	𝑊	is	defined	by	 (2.1)	and	γ	 is	a	parameter	 that	expresses	an	 investor’s	 sensitivity	 to	
risk.		
The	following	Figure	3.1	shows	the	behavior	of	the	CRRA	with	respect	to	different	values	of	
the	γ	parameter.	
	 	

Figure	3.1:	Constant	Relative	Risk	Aversion	Utility	Functions	

	
𝛾 < −1 ∶	the	investor	is	a	risk	lover	rather	than	risk-averse.			
𝛾 = −1	:	 means	 that	 the	 degree	 of	 risk	 aversion	 is	 zero,	 and	 the	 investor	 is	 indifferent	
between	 a	 risk-free	 choice	 and	 a	 risky	 choice	 so	 long	 as	 the	 arithmetic	 average	 expected	
return	is	the	same.	
𝛾 = 0	:	the	investor	is	indifferent	between	a	risk-free	choice	and	a	risky	choice	so	long	as	the	
geometric	average	expected	return	is	the	same.	
𝛾 > 0	:	the	investor	is	risk-averse	and	calls	a	premium	against	his	choice	of	a	risky	asset,	the	
larger	the	value	of	𝛾	the	greater	the	risk	penalty.		
In	this	paper,	we	consider	γ = 2.	
	
Without	any	loss	of	generality	we	state	𝑊! = 1	in	(2.1),	therefore	the	ARA	(Absolute	Risk	
Aversion)		and RRA ( Relative	Risk	Aversion)	for	the	CRRA	have	the	following	expressions:	
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𝐴𝑅𝐴 𝐶𝑅𝑅𝐴 𝛾 =
𝛾 + 1
1+ 𝑟  ,                    𝑅𝑅𝐴 𝐶𝑅𝑅𝐴 𝛾 = 𝛾 + 1	

The	 value	𝑟 = −1	represents	 a	 singular	 point	 for	 the	 (3.1),	 when	𝛾 > 0;	 this	 means	 that	
𝑟 > −1	is	a	condition	that	we	have	to	pose.	Furthermore,	for	𝑟 < −1	the	CRRA	Utility	Function	
is	not	risk-averse.	

Therefore,	as	particular	case	of		𝑟~𝐺 𝜎, 𝜇 ,	where	G	is	any	two-parameter	distribution,	
consider	the	return	r	as	a	Truncated	Normal	variable,	that	is	r	is	constrained	to	assume	values	
only	in	the	interval	𝐾 = 𝑘!, 𝑘! ,	with	−1 < 𝑘! < 0 < 𝑘! ≤∞		and		𝑘! < 𝜇 < 𝑘!;	we	call	𝑟!"	
this	constrained	variable,	where	the	suffix	“TN”	means	Truncated	Normal.	In	this	paper	the	
computations	are	done	for	 𝑘! = −0.99,   𝑘! =∞.	To	define	the	density	of	the	random	
variable	𝑟!" ,	we	use	the	following	notations:	
	

𝜙 𝜉 =  
𝑒!

!!
!

2𝜋
, Φ 𝜉 =  

1
2𝜋

𝑒!
!!
!

!

!!
𝑑𝜏	

	

  ℎ! =  
𝑘! − 𝜇
𝜎  ,       ℎ! =  

𝑘! − 𝜇
𝜎 , ΔΦ! =  Φ(ℎ!) −  Φ ℎ! 	

	

Then,	the	density	of	the	random	variable	𝑟!"	is	given	by:	

	

𝑓 𝑟!" =

𝜙 𝑟!" − 𝜇
𝜎

𝜎ΔΦ!
=

𝑒
!(!!"!!)!

!!!

 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
                       𝑟!"   ∈ 𝐾

 0                                                                                        𝑟!"   ∉  𝐾

	

	
and	the	Expected	Utility	Function,	defined	as	𝜓 𝜎, 𝜇 	is:	
	

𝜓 𝜎, 𝜇 ≡ 𝐸 𝐶𝑅𝑅𝐴 𝛾 = −
1
𝛾  𝐸

1
1+ 𝑟!" ! = −

1
𝛾𝜎 2𝜋ΔΦ!

𝑒
!(!!!)!

!!!

1+ 𝑥 !

!!

!!
𝑑𝑥	

	
With	the	substitution			𝜏 = 𝑥 − 𝜇 𝜎			the	function	𝜓 𝜎, 𝜇 	becomes:	

3.2          𝜓 𝜎, 𝜇 = −
1

𝛾 2𝜋ΔΦ!

𝑒!!
!
!

1+ 𝜇 + 𝜎𝜏 !

!!

!!
𝑑𝜏 = −

1
𝛾

𝑒!!
!
!

1+ 𝜇 + 𝜎𝜏 !
!!
!!

𝑑𝜏

𝑒!!
!
!

!!
!!

𝑑𝜏
	

	

In	this	example,	Risk	and	Target	are	given	by	the	transformation	𝑅 𝜎, 𝜇 = 𝜎, 𝑇 𝜎, 𝜇 = 𝜇.		

	
Now	 we	 give	 the	 three-dimensional	 representation	 with	  𝜎, 𝜇 ⊆ 0.001 ≤ 𝜎 ≤ 0,2 ×
(−0.2 ≤ 𝜇 ≤ 0.2) ,	and	we	see	that	in	this	domain		𝜓 𝜎, 𝜇 	has	the	concavity	downward	in	the	
space	 𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 = 𝜎, 𝜇, 𝜓 𝜎, 𝜇 .	
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Figure	3.2:	3D		𝜓 𝜎, 𝜇 	

	
The	same	representation	in	two	dimension	of	iso-utility	curves:	
	

Figure	3.3:	2D	Iso-utility	curves	of		𝜓 𝜎, 𝜇 	

	
	

Looking	 at	 these	 results,	 a	 question	 can	 arise	 about	 the	 persistence	 of	 the	 concavity	 for	
𝜓 𝜎, 𝜇 .	 If	we	 increase	 the	range	space	of	 𝜎, 𝜇 	to	 0.001 ≤ 𝜎 ≤ 1,2 ×(−0.9 ≤ 𝜇 ≤ 0.3) 	we	
have	 a	 counterintuitive	 behavior	 of	 the	 iso-utility	 curves,	 their	 slope	becomes	negative;	 for	
lower	values	of	𝜇	and	greater	values	for	𝜎	we	can	observe	that	the	change	of	the	slope	of	the	
iso-utility	 curves	 is	 relevant.	 We	 graph	 this	 case	 in	 Figure	 3.4,	 but	 again	 the	 anomalous	
behavior	is	more	evident	in	Figure	3.5.	
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Figure	3.4:	3D		𝜓 𝜎, 𝜇 	

	
Figure	3.5:	2D	Iso-utility	curves	of		𝜓 𝜎, 𝜇 	

	
	

Figure	3.5	tells	us	that	the	iso-utility	curves	have	negative	slope	in	some	region,	that	is	the	
first	derivatives	of	Implicit	Function	𝜇! 𝜎 	defined	by	the	intercept	of	𝜓 𝜎, 𝜇 	with	a	generic	
horizontal	plane	is	negative.	This	counterintuitive	behavior	of	the	iso-utility	curves	was	
evident	in	studying	the	Morningstar’s	utility	function	used	for	Fund	ranking	(see	Corradin	and	
Sartore	2014).	
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From	expression	(3.2),	it	is	possible	to	obtain	the	first	derivative	of	the	Implicit	Function		
𝜇! 𝜎 :	

𝑑𝜇! 𝜎
𝑑𝜎 = −

𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

	

	
and	the	result	is	reported	in	Appendix	B.	The	related	graph	is	given	by	Figure	3.6:		
	

 𝐹𝑖𝑔𝑢𝑟𝑒 3.6:  3𝐷  𝑑𝜇! 𝜎 𝑑𝜎	

	
	

Figure	3.6	confirms	that			𝑑𝜇! 𝜎 𝑑𝜎 can	be	negative.	 	

This	is	due	to	the	fact	that	the	Cartesian	system	defined	on	 𝜎, 𝜇 ,	derived	from	the	definitions	
of	𝑅 𝜎, 𝜇 = 𝜎, 𝑇 𝜎, 𝜇 = 𝜇,	 is	not	the	proper	space	in	which	to	consider	the	Expected	Utility	
Function	𝜓 𝜎, 𝜇 	of	 the	CRRA,	when	 the	 distribution	 of	 return	 is	 the	 Truncated	Normal.	We	
need	to	consider	the	proper	alternative	definitions	for	𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 .		

This	is	a	particular	case	and	in	the	following	section	we	answer	the	more	general	question	of	
Section	2.	
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4. Differential	Conditions	for	the	Concavity	of	the	Expected	Utility	Functions.	
The	specific	case	of	the	Truncated	Normal.		

	
As	already	introduced	in	Section	2,	we	consider	𝑟~𝐺 𝜎, 𝜇 	and	define	Risk	and	Target	as	
functions	of	 𝜎, 𝜇 :	
	
(4.1)																																													𝑅𝑖𝑠𝑘 = 𝑅 𝜎, 𝜇 ,      𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑇 𝜎, 𝜇 	
	
The	Expected	Utility	Function	𝜓 𝜎, 𝜇 	is	defined	in	(2.5).	
First	of	all	we	have	to	impose	the	condition	that	the	transformation	 𝜎, 𝜇 → 𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 	
defined	by	(4.1)	is	bijective.	
This	condition	implies	that	the	determinant	of	the	Jacobian	matrix		J	must	be	different	from	
zero:	

4.2                                       𝑑𝑒𝑡𝐽 = 𝑑𝑒𝑡

𝜕𝑅 𝜎, 𝜇
𝜕𝜎

𝜕𝑅 𝜎, 𝜇
𝜕𝜇

𝜕𝑇 𝜎, 𝜇
𝜕𝜎

𝜕𝑇 𝜎, 𝜇
𝜕𝜇

≠ 0	

	
Now	we	want	to	find	the	conditions	for	Risk	and	Target	so	that	the	function	𝜓 𝜎, 𝜇 	maintains	
its	concavity	downward	in	the	space	 𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 .	
	
Consider	a	parametric	representation	of	a	surface:	
	

x	axis	=	Risk	=	𝑅 𝜎, 𝜇 .		
y	axis	=	Target	=	𝑇 𝜎, 𝜇 .		
z	axis	=	Expected	Utility	Function	=	𝜓 𝜎, 𝜇 .	

	
This	surface	is	described	in	the	space	 𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇  by	the	three	functions	
𝑅 𝜎, 𝜇 , 𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 	that	depends	on	 𝜎, 𝜇 	defined	in	 𝜎!"#,𝜎!"# × 𝜇!"#, 𝜇!"# 		in	the	
cartesian	space	 𝜎, 𝜇 .	
	
Using	the	vector	notation,	the	surface	is	defined	by	vector	𝒔 𝜎, 𝜇 	in	the	space	
𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 ,	where	𝒊, 𝒋, 𝒌	are	the	relative	unit	vectors:		
	
4.3                                         𝒔 𝜎, 𝜇 = 𝑅 𝜎, 𝜇 𝒊 + 𝑇 𝜎, 𝜇 𝒋 + 𝜓 𝜎, 𝜇 𝒌	
	
For	regularity	of	the	surface,	the	Jacobian	Matrix	𝐽!:	
	

4.4                                                𝐽! =

𝜕𝑅 𝜎, 𝜇
𝜕𝜎

𝜕𝑅 𝜎, 𝜇
𝜕𝜇

𝜕𝑇 𝜎, 𝜇
𝜕𝜎

𝜕𝑇 𝜎, 𝜇
𝜕𝜇

𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

	

	
must	have	rank	two;	e.g.	this	condition	is	satisfied	if	(4.2)	is	true.	
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The	orthogonal	unit	vector	of	the	surfaces	is	done	by:		
	

𝜕𝒔 𝜎, 𝜇
𝜕𝜎 × 𝜕𝒔 𝜎, 𝜇𝜕𝜇

𝜕𝒔 𝜎, 𝜇
𝜕𝜎 × 𝜕𝒔 𝜎, 𝜇𝜕𝜇

	

where:	

4.5  
𝜕𝒔 𝜎, 𝜇
𝜕𝜎 ×

𝜕𝒔 𝜎, 𝜇
𝜕𝜇 =

𝒊 𝒋 𝒌
𝜕𝑅 𝜎, 𝜇
𝜕𝜎

𝜕𝑇 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝑅 𝜎, 𝜇
𝜕𝜇

𝜕𝑇 𝜎, 𝜇
𝜕𝜇

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

	

	

                                      =
𝜕𝑇
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑇
𝜕𝜇 𝒊 −

𝜕𝑅
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑅
𝜕𝜇  𝒋 +

𝜕𝑅
𝜕𝜎

𝜕𝑇
𝜕𝜇 −

𝜕𝑇
𝜕𝜎

𝜕𝑅
𝜕𝜇 𝒌	

	
where	the	dependence	by	 𝜎, 𝜇 	is	omitted	in	the	last	formula.	For	a	generic	𝜓 𝜎, 𝜇 :		
	

Figure	4.1:	3D	𝜓 𝜎, 𝜇 	with	Orthogonal	Vectors		

	
The	surface	is	concave	if	the	components	of	the	orthogonal	unit	vectors	are	positive	for		
𝑅 − 𝑎𝑥𝑖𝑠	and	𝜓 − 𝑎𝑥𝑖𝑠	and	negative	for	𝑇 − 𝑎𝑥𝑖𝑠.	We	get	the	Differential	Conditions:	
	

4.6                                   

𝜕𝑇
𝜕𝜎

𝜕𝜓
𝜕𝜇

−
𝜕𝜓
𝜕𝜎

𝜕𝑇
𝜕𝜇

> 0    ∶ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 ≡ 𝐷𝐶1

𝜕𝑅
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0    ∶ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 ≡ 𝐷𝐶2

𝜕𝑅
𝜕𝜎

𝜕𝑇
𝜕𝜇 −

𝜕𝑇
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0     ∶ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3 ≡ 𝐷𝐶3

          	

	
Note	the	that	DC3	is	the	same	as	in	the	expression	(4.2).	
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In	the	particular	case	of	the	Section	3,	where	𝑅 𝜎, 𝜇 = 𝜎, 𝑇 𝜎, 𝜇 = 𝜇	:	
	

   
𝜕𝑅
𝜕𝜎 = 1;   

𝜕𝑅
𝜕𝜇 = 0;   

𝜕𝑇
𝜕𝜎 = 0;   

𝜕𝑇
𝜕𝜇 = 1;  	

we	have:	
	

4.7        

𝜕𝑇
𝜕𝜎

𝜕𝜓
𝜕𝜇

−
𝜕𝜓
𝜕𝜎

𝜕𝑇
𝜕𝜇

> 0

𝜕𝑅
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0        ⇒

𝜕𝑅
𝜕𝜎

𝜕𝑇
𝜕𝜇 −

𝜕𝑇
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0

     

𝜕𝜓
𝜕𝜎 < 0

𝜕𝜓
𝜕𝜇 > 0

1 > 0

     ⇒     −
𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

=
𝑑𝜇! 𝜎
𝑑𝜎 > 0

1 > 0

 

	
where	𝜇! 𝜎 	is	the	Implicit	Function	determined	by	𝜓 𝜎, 𝜇 .	The	last	condition		
𝑑𝜇! 𝜎 𝑑𝜎 > 0	is	reasonable	taking	into	consideration	that	𝑈 𝑊 	is	risk-averse.	
	
As	we	have	seen	in	Figure	3.4,	the	case	of	the	Truncated	Normal	does	not	maintain	the	
concavity	downward	in	the	range	space	 0.001 ≤ 𝜎 ≤ 1,2 ×(−0.9 ≤ 𝜇 ≤ 0.3) ;	this	means	
that	the	conditions	(4.7)	are	not	satisfied	and	𝑑𝜇! 𝜎 𝑑𝜎	can	be	negative	as	it	is	possible	to	
see	in	Figure	3.5.	Adding	in	Figure	3.4,	the	orthogonal	unit	vectors,	we	see	that	they	have	
negative	components	along	the	𝜎 − 𝑎𝑥𝑖𝑠	in	some	regions	of	the	surface.			
	

Figure	4.2:	3D	𝜓 𝜎, 𝜇 	with	Orthogonal	Vectors	
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We	give	a	possible	economic	interpretation	for	the	Differential	Conditions	in	(4.6).	
The	condition	(4.2)	that	the	transformation	 𝜎, 𝜇 → 𝑅,𝑇 	is	bijective	implies	that	the	inverse	
transformation	𝜎 𝑅,𝑇  , 𝜇 𝑅,𝑇 	exists	locally:	
	

𝜓 𝜎, 𝜇 = 𝜓 𝜎 𝑅,𝑇  , 𝜇 𝑅,𝑇 = 𝜓 𝑅,𝑇 	
	
Computing	the	partial	derivatives:	
	

𝜕𝜓 𝜎 𝑅,𝑇  , 𝜇 𝑅,𝑇
𝜕𝑅 =

𝜕𝜓
𝜕𝜎

𝜕𝜎
𝜕𝑅 +

𝜕𝜓
𝜕𝜇

𝜕𝜇
𝜕𝑅	

(4.8)	
𝜕𝜓 𝜎 𝑅,𝑇  , 𝜇 𝑅,𝑇

𝜕𝑇 =
𝜕𝜓
𝜕𝜎

𝜕𝜎
𝜕𝑇 +

𝜕𝜓
𝜕𝜇

𝜕𝜇
𝜕𝑇	

	
By	the	Theorem	of	the	Inverse	Function	we	have:	
	

𝜕𝜎 𝑅,𝑇
𝜕𝑅

𝜕𝜎 𝑅,𝑇
𝜕𝑇

𝜕𝜇 𝑅,𝑇
𝜕𝑅

𝜕𝜇 𝑅,𝑇
𝜕𝑇

=

𝜕𝑅 𝜎, 𝜇
𝜕𝜎

𝜕𝑅 𝜎, 𝜇
𝜕𝜇

𝜕𝑇 𝜎, 𝜇
𝜕𝜎

𝜕𝑇 𝜎, 𝜇
𝜕𝜇

!!

	

	
that	has	solution	for	the	condition	(4.2).	We	can	write:	
	

𝜕𝜎 𝑅,𝑇
𝜕𝑅

𝜕𝜎 𝑅,𝑇
𝜕𝑇

𝜕𝜇 𝑅,𝑇
𝜕𝑅

𝜕𝜇 𝑅,𝑇
𝜕𝑇

=

1
𝑑𝑒𝑡𝐽

𝜕𝑇
𝜕𝜇 −

1
𝑑𝑒𝑡𝐽

𝜕𝑅
𝜕𝜇

−
1

𝑑𝑒𝑡𝐽
𝜕𝑇
𝜕𝜎

1
𝑑𝑒𝑡𝐽

𝜕𝑅
𝜕𝜎

	

	
and	substituting	in	(4.8)	we	have:	
	

𝜕𝜓
𝜕𝑅 =

1
𝑑𝑒𝑡𝐽

𝜕𝜓
𝜕𝜎

𝜕𝑇
𝜕𝜇 −

1
𝑑𝑒𝑡𝐽

𝜕𝜓
𝜕𝜇

𝜕𝑇
𝜕𝜎      ⇒  −𝑑𝑒𝑡𝐽

𝜕𝜓
𝜕𝑅 =

𝜕𝑇
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑇
𝜕𝜇	

𝜕𝜓
𝜕𝑇 = −

1
𝑑𝑒𝑡𝐽

𝜕𝜓
𝜕𝜎

𝜕𝑅
𝜕𝜇 +

1
𝑑𝑒𝑡𝐽

𝜕𝜓
𝜕𝜇

𝜕𝑅
𝜕𝜎  ⇒     𝑑𝑒𝑡𝐽

𝜕𝜓
𝜕𝑇 =

𝜕𝑅
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑅
𝜕𝜇 	

	
Substituting	in	(4.6)	we	obtain:	
	

4.9  

𝜕𝑇
𝜕𝜎

𝜕𝜓
𝜕𝜇

−
𝜕𝜓
𝜕𝜎

𝜕𝑇
𝜕𝜇

> 0

𝜕𝑅
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0

𝜕𝑅
𝜕𝜎

𝜕𝑇
𝜕𝜇 −

𝜕𝑇
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0

  ⇒  

−𝑑𝑒𝑡𝐽
𝜕𝜓
𝜕𝑅 > 0

    𝑑𝑒𝑡𝐽
𝜕𝜓
𝜕𝑇

> 0

    𝑑𝑒𝑡𝐽 > 0

 ⇒  

𝜕𝜓
𝜕𝑅 < 0

𝜕𝜓
𝜕𝑇

> 0

𝑑𝑒𝑡𝐽 > 0

⇒ 
𝑑𝑇! 𝑅
𝑑𝑅 = −

𝜕𝜓
𝜕𝑅
𝜕𝜓
𝜕𝑇

> 0

𝑑𝑒𝑡𝐽 > 0
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The	 inequalities	 in	 (4.9)	 shed	 light	 the	meaning	 of	 the	 Differential	 Conditions	 in	 (4.6):	 the		
Expected	Utility	Function	𝜓 𝜎, 𝜇 	depends	decreasingly	on	𝑅	and	increasingly	on  𝑇.	

	
The	conditions		𝜕𝜓 𝜕𝑅 < 0	and	𝜕𝜓 𝜕𝑇 > 0	are	not	verifiable	in	closed	form;	they	are	a	
consequence	of	(4.6)	and	they	imply	that	the	first	derivatives	of	the	Implicit	Function	𝑇! 𝑅 ,	
defined	by	the	intercept	of	𝜓 𝑅,𝑇 	with	a	generic	horizontal	plane,	is	positive.		
The	inequalities	(4.9)	generalize	the	conditions	given	in	Theorem	2.1	for	the	Normal	
distribution	because	they	apply	to	any	two-parameter	distribution	and	to	any	definition	of	
Risk	and	Target.	
The	 condition,	𝑑𝑒𝑡 𝐽 > 0	implies	 that	 the	 transformation	 defined	 by	𝑅 𝜎, 𝜇 	and	𝑇 𝜎, 𝜇 	does	
not	 change	 direction.	 If	we	walk	 around	 the	 border	 of	 the	 range	 defined	 by	 𝜎!"#,𝜎!"# ×
𝜇!"#, 𝜇!!" 	counterclockwise,	 then	 in	 the	 same	 direction	 we	 walk	 on	 the	 border	 of	
transformed	range	of	the	 𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 	space.		

	

It	is	possible	to	rewrite	(4.9)	to	determine	a	geometric	explanation.	
We	use,	e.g.,	the	hypothesis:	

 4.10                                   
𝜕𝑅
𝜕𝜎 > 0;    

𝜕𝑅
𝜕𝜇 < 0;     

𝜕𝑇
𝜕𝜎 < 0;    

𝜕𝑇
𝜕𝜇 > 0;     

𝜕𝜓
𝜕𝜇 > 0;   

𝜕𝜓
𝜕𝜎 < 0 	

From	the	first	Differential	Condition	we	have:	

𝐷𝐶1 =
𝜕𝑇
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑇
𝜕𝜇 > 0 ⟹ −

𝜕𝜓
𝜕𝜎

𝜕𝜓
𝜕𝜇

> −
𝜕𝑇

𝜕𝜎
𝜕𝑇

𝜕𝜇
 ⟹  𝜇′! 𝜎 > 𝜇′! 𝜎 	

This	 means	 that	 the	 first	 derivative	 of	 the	 Implicit	 Function	𝜇! 𝜎 	determined	 by	 the	
definition	of		𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑇 𝜎, 𝜇 	is	lower	than	the	first	derivative	of	the	Implicit	Function	𝜇! 𝜎 	
defined	by	the	Expected	Utility	Function	= 𝜓 𝜎, 𝜇 .		
From	the	second	Differential	Condition	we	have:	

𝐷𝐶2 =
𝜕𝑅
𝜕𝜎

𝜕𝜓
𝜕𝜇 −

𝜕𝜓
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0⟹−

𝜕𝜓
𝜕𝜎

𝜕𝜓
𝜕𝜇

< −
𝜕𝑅

𝜕𝜎
𝜕𝑅

𝜕𝜇
 ⟹   𝜇′! 𝜎 >  𝜇′! 𝜎 	

and	by	the	third	Differential	Condition:	

𝐷𝐶3 =
𝜕𝑅
𝜕𝜎

𝜕𝑇
𝜕𝜇 −

𝜕𝑇
𝜕𝜎

𝜕𝑅
𝜕𝜇 > 0⟹−

𝜕𝑇
𝜕𝜎

𝜕𝑇
𝜕𝜇

< −
𝜕𝑅

𝜕𝜎
𝜕𝑅

𝜕𝜇
 ⟹  𝜇′! 𝜎 > 𝜇′! 𝜎 	

Summing	up:	

4.11                                                𝜇′! 𝜎 < 𝜇′! 𝜎 <  𝜇′! 𝜎 	

which	 is	an	 inequality	between	 first	derivatives	of	 the	 Implicit	Functions,	which	come	 from	
 𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 ,𝑅 𝜎, 𝜇 	respectively,	 and	 indicates	 the	 constraints	 that	 the	 curvature	 with		
respect	to	𝜎	of	these	three	Implicit	Functions	measured	in	a	plane	parallel	to	the	plane	 𝜎, 𝜇 	
must	satisfy.	
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Until	now	𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 	are	supposed	to	be	generic	functions.	It	is	interesting	to	
discuss	three	cases	of	definition	of	Risk		when		the	return	is	a	Truncated	Normal	variable		𝑟!"	
defined	in	Section	3	and	we	assume	the	CRRA	Expected	Utility	Function	(3.2)	with	γ = 2.	
Target	is	defined,	as	usual,	as	Expected	value	of	𝑟!" ,	more	briefly	Expected	Return.	
	
Case	1:		𝑅 𝜎, 𝜇 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑆𝐷!" 𝜎, 𝜇  		

																	𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑅!" 𝜎, 𝜇 	

																 𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑅𝑅𝐴 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ γ = 2.	
	

We	have	the	transformation:	

	

𝑆𝐷!" 𝜎, 𝜇 =
𝑥!𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
−

𝑥𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

!

	

(4.12)	

                             𝐸𝑅!" 𝜎, 𝜇 =
𝑥𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

	
with	the	parametric	representation	for	𝜓 𝜎, 𝜇 	given	by	the	following:	
	

Figure	4.3:	3D	 𝑆𝐷!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 	with	Orthogonal	Vectors	
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The	related	Iso-utility	curves	are	represented	by:	
	

Figure	4.4:	Iso-utility	curves	of		𝜓 𝜎, 𝜇 	in	2D	 𝑆𝐷!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇  

	
Figures	(4.3)	and	(4.4)	show	that	(4.12)	are	coherent	definitions	of	Risk	and	Target,	according	
with	the	Differential	Conditions	(4.6).	
The	Differential	Conditions	are	greater	than	zero	in	all	the	domain	as	is	shown	in	Appendix	C.	
	

Case	2:	𝑅 𝜎, 𝜇 = 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑅𝑖𝑠𝑘 = 𝑉𝑎𝑅!" 𝜎, 𝜇 	
																𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑅!" 𝜎, 𝜇 	

																𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑅𝑅𝐴 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ γ = 2.	
																𝛼           = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 0.95	
	
In	Appendix	D	we	compute	the	Value	at	Risk	for	a	Truncated	Normal,	𝑉𝑎𝑅!" .	We	have	the	
transformation:	
	

𝑉𝑎𝑅!" 𝜎, 𝜇 = −𝜇 − 𝜎Φ!"# 𝛼Φ ℎ! + 1− 𝛼 Φ ℎ! 	
	
(4.13)	

                                          𝐸𝑅!" 𝜎, 𝜇 =
𝑥𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

	
with	the	following	parametric	representation	for	𝜓 𝜎, 𝜇 :	
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Figure	4.5:	3D	 𝑉𝑎𝑅!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 	with	Orthogonal	Vectors	

 
and	the	iso-utility	curves	represented	by:	
 

Figure	4.6:	Iso-utility	curves	of		𝜓 𝜎, 𝜇 	in	2D	 𝑉𝑎𝑅!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇  

 
This	case	demonstrates	that	𝑉𝑎𝑅!"	is	not	a	coherent	Risk	measure	in	the	(4.6)	sense, some	
iso-utility	curves	have	a	negative	slope.	Indeed,	the	Differential	Conditions	computed	for	
𝑉𝑎𝑅!"	are	not	respected	in	all	the	3D	space	 𝑉𝑎𝑅!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 .		
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To	be	more	precise,	Differential	Condition	2,	relative	to	the	component	of	the	axis	of	𝐸𝑅!"	of	
the	Normal	unit	vector	in	(4.5),	is	negative	(see	Appendix	D).	The	conclusion	is	that,	in	some	
region	of	the	domain	the	behavior	of	the	𝜓 𝜎, 𝜇 	is	not	concave	.	
Writing	𝐸𝑅!"	instead	of	 𝑇	in	(4.9)	we	have:	
	

𝜕𝜓
𝜕𝐸𝑅!"

< 0	

that	disagrees	with	(4.9)	constraint.	
	

Case	3:		𝑅 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 = 𝐸𝑆!! 𝜎, 𝜇  		
															 𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑅!" 𝜎, 𝜇 	

																𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑅𝑅𝐴 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ γ = 2.	
																𝛼           = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 0.95	

	
In	Appendix	E	we	compute	the	Expected	Shortfall	for	a	Truncated	Normal,	𝐸𝑆!" .	We	have	the	
transformation:	

  𝐸𝑆!" 𝜎, 𝜇  =  −𝜇 −
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏

1− 𝛼 ΔΦ!
	

(4.14)	

                                                  𝐸𝑅!" 𝜎, 𝜇 =
𝑥𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

	
with	the	parametric	representation	for	𝜓 𝜎, 𝜇 :	
	

Figure	4.7:	3D	 𝐸𝑆!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 	with	Orthogonal	Vectors	
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and	with	the	Iso-utility	curves	represented	by:	
	

Figure	4.8:	Iso-utility	curves	of		𝜓 𝜎, 𝜇 	in	2D	 𝐸𝑆!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇  

	
that	also	demonstrates	𝐸𝑆!"	is	not	a	coherent	Risk	measure	in	the	(4.6)	sense. 
Indeed,	the	Differential	Conditions	computed	for	𝐸𝑆!"	are	not	respected	in	all	the	domain	3D	
𝐸𝑆!" 𝜎, 𝜇 ,𝐸𝑅!" 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 .	To	be	more	precise,	Differential	Condition	2,	relative	to	the	
component	of	the	axis	of	𝐸𝑆!"	of	the	Normal	unit	vector	in	(4.5),	is	negative	(see	Appendix	E).	
	
The	Quadratic	Utility	Function	case	is	developed	in	Appendix	F,	G,	H.	This	is	an	interesting	
case	because	it	is	possible	to	compute	analytically	the	region	in	which	the	Differential	
Conditions	are	satisfied.	We	show	how	they	represent	the	border	between	the	risk-averse	and	
risk-lover	regions.	
	
	
	
5.		Conclusions	

	
Starting	with	a	risk-averse	Utility	Function	U(W)	with	a	wealth	𝑊 = 𝑊! 1+ 𝑟 , where 
𝑟~𝐺 𝜎, 𝜇 	with	G		a	generic	distribution	depending	on	two	parameters,	we	consider		the	
generic	definitions	of	𝑅𝑖𝑠𝑘 = 𝑅 𝜎, 𝜇 ,	𝑇𝑎𝑟𝑔𝑒𝑡 = 𝑇 𝜎, 𝜇   .	We	find	that	the	three	functions	
𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 	and	Expected	Utility	Function		𝜓 𝜎, 𝜇 	must	satisfy	the	Differential	Conditions	
(4.6)	so	that	𝜓 𝜎, 𝜇 	has	the	concavity	downward	on	the	entire	three	dimensional	space	
𝑅 𝜎, 𝜇 ,𝑇 𝜎, 𝜇 , 𝜓 𝜎, 𝜇 .	
These	Conditions	are	verifiable	because	the	analytic	expressions	of	𝑅 𝜎, 𝜇 , 	𝑇 𝜎, 𝜇  and	
𝜓 𝜎, 𝜇 	are	known.		
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The	 (4.6)	 imply	 the	 (4.9),	 that	 is	𝜓 𝜎 𝑅,𝑇  , 𝜇 𝑅,𝑇 	has	𝜕𝜓 𝜕𝑅 < 0,	𝜕𝜓 𝜕𝑇 > 0.	 A	 third	
necessary	 condition	 is	𝑑𝑒𝑡  𝐽 > 0,	 which	 is	 the	 determinant	 of	 the	 Jacobian	matrix	 	 J	 of	 the	
transformation	 defined	 by	𝑅 𝜎, 𝜇 	and	𝑇 𝜎, 𝜇 ,	 must	 be	 positive.	 In	 other	 words,	 the	
transformation	does	not	make	a	change	direction.	

	

We	 present	 some	 cases	 in	which	 the	Differential	 Conditions	 show	 that	 not	 all	 the	Risk	 and	
Target		definitions	are	coherent	with	the	chosen	form	of	the	Utility	Function.	

More	 precisely,	 if	 we	 consider	 the	 Truncated	 Normal	 case	 and	 define	 the	 Target	 as	 the	
Expected	Return,	𝐸𝑅!" ,	 then	neither	VaR	nor	Expected	Shortfall	 (named	𝑉𝑎𝑅!"	and	𝐸𝑆!"	in	
Case	2	and	Case	3	respectively,	discussed	on	the	previous	section)	are	a	coherent	definition	of	
Risk,	 in	 the	 sense	 that	 some	 iso-utility	 curves	 have	 negative	 slope	 when	 we	 take	 into	
consideration	the	CRRA	Utility	Function.		

Only	 the	most	 elementary	 definition	 of	Risk,	 the	 Standard	 Deviation,	𝑆𝐷!"	in	 Case	 1	 of	 the	
previous	section,	respects	the	Differential	Conditions.	
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Appendix	A.		Proof	of	Theorem	2.1	
	
Theorem	2.1:	Let	≽	be	an	expected	utility	preference	relation	on	all	normal	distributions	
𝑁(𝜇,𝜎!)	for	the	return	r.	Then	there	exists	a	mean-variance	Expected	Utility	Function		𝜓 𝜎, 𝜇 	
which	describes		≽.	

In	the	case	of	risk-aversion,	𝜓 𝜎, 𝜇 	has		the	following	partial	derivatives	and	the	first	derivative	
of	the	implicit	function	𝜇! 𝜎 :		

2.4                      
𝜕𝜓 𝜎, 𝜇
𝜕𝜇 > 0,   

𝜕𝜓 𝜎, 𝜇
𝜕𝜎 < 0, ⇒  

𝑑𝜇! 𝜎
𝑑𝜎 = −

𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

> 0	

Proof:	
Consider	(2.1)	here	reported:	

𝑊 = 𝑊! 1+ 𝑟 	
	
and	without	loss	of	generality	pose	𝑊! = 1.	We	have:	
	

𝑟 ∽ 𝑁 𝜇,𝜎!  ⟹  𝑊 ∽ 𝑁 1+ 𝜇,𝜎! 	
	

We	prove	at	first	the	existence	of	𝜓 𝜎, 𝜇 :	

𝐸 𝑈(𝑊) =
𝑈 𝑊 𝑒

!(!!!!!)!
!!!

2𝜋𝜎

∞

!∞
𝑑𝑊	

	
changing	variable		𝑧 =  𝑊 − 1− 𝜇 𝜎:	
	

𝐸 𝑈(𝑊) =
𝑈 1+ 𝜇 + 𝜎𝑧 𝑒!!

!
!

2𝜋

∞

!∞
𝑑𝑧 = 𝑈 1+ 𝜇 + 𝜎𝑧 𝜙 𝑧

∞

!∞
𝑑𝑧 =  𝜓 𝜎, 𝜇 	

	
where	𝜙 𝑧 	is	the	probability	density	function	of	the	standard	normal	distribution.	
	
Therefore,	𝐸 𝑈(𝑊) 	can	be	expressed	as	𝜓 𝜎, 𝜇 ,	function	of	 𝜎, 𝜇 .	
Now	we	can	prove	(2.4)	when	𝑈(𝑊)is	risk-averse:	
	

                         
𝜕𝜓 𝜎, 𝜇
𝜕𝜇 = 𝑈! 1+ 𝜇 + 𝜎𝑧 𝜙 𝑧

∞

!∞
𝑑𝑧 > 0	

	
from	(2.2).	And:	
	
	

                         
𝜕𝜓(𝜎, 𝜇)
𝜕𝜎 = 𝑧𝑈! 1+ 𝜇 + 𝜎𝑧 𝜙 𝑧

∞

!∞
𝑑𝑧      	

	

                                           = 𝑧𝑈! 1+ 𝜇 + 𝜎𝑧 𝜙 𝑧
!

!∞
𝑑𝑧 + 𝑧𝑈! 1+ 𝜇 + 𝜎𝑧 𝜙 𝑧

∞

!
𝑑𝑧	
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                                            = 𝑧 𝑈! 1+ 𝜇 + 𝜎𝑧  − 𝑈! 1+ 𝜇 − 𝜎𝑧 𝜙 𝑧
∞

!
𝑑𝑧	

	
where	the	last	line	follows	by	the	symmetry	of	𝜙 𝑧 .	
By	risk	aversion	𝑈!! 𝑊 < 0	for	all	W,	so	that	we	have	𝑈! 1+ 𝜇 + 𝜎𝑧 < 𝑈! 1+ 𝜇 − 𝜎𝑧 	for	
𝑧 > 0,	thus		

𝜕𝜓(𝜎, 𝜇)
𝜕𝜎 < 0	

	
i.e.,	risk	aversion	imply	that	investor	likes	higher	expected	returns	and	dislikes	higher	
standard	deviation.	Differentiating	implicity:	
	

𝑑𝜇! 𝜎
𝑑𝜎 = −

𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

> 0	

	
Not	surprisingly,	indifference	curves	are	upward	in	 𝜎, 𝜇 	cartesian	plane.	
	
	
	
Appendix	B.		First	Derivative	of	the	Implicit	Function	for	the	Truncated	Normal	case.	
	
We	give	the	following	definitions	that	will	be	useful	in	the	next	expressions:	
	
(B.1)	
	

𝜏 =
𝑥 − 𝜇
𝜎 , ℎ! =  

𝑘! − 𝜇
𝜎  ,       ℎ! =  

𝑘! − 𝜇
𝜎  ,  	

	

𝐼1 = 𝜎 𝑒!!
!
!

!!

!!
𝑑𝜏,                           𝐼2 = 𝜏𝑒!!

!
!

!!

!!
𝑑𝜏                            𝐼3 = 𝜏!𝑒!!

!
!

!!

!!
𝑑𝜏	

𝐼4 = 𝜎 𝜇 + 𝜎𝜏 𝑒!!
!
!

!!

!!
𝑑𝜏,           𝐼5 = 𝜇 + 𝜎𝜏 𝜏𝑒!!

!
!

!!

!!
𝑑𝜏,           𝐼6 = 𝜇 + 𝜎𝜏 𝜏!𝑒!!

!
!

!!

!!
𝑑𝜏,	

𝐼7 = 𝜎 𝜇 + 𝜎𝜏 !𝑒!!
!
!

!!

!!
𝑑𝜏, 𝐼8 = 𝜇 + 𝜎𝜏 !𝜏𝑒!!

!
!

!!

!!
𝑑𝜏, 𝐼9 = 𝜇 + 𝜎𝜏 !𝜏!𝑒!!

!
!

!!

!!
𝑑𝜏,	

𝐼10 = 𝜎
𝑒!!

!
!

1+ 𝜇 + 𝜎𝜏 !

!!

!!
𝑑𝜏,          𝐼11 = 𝜏

𝑒!!
!
!

1+ 𝜇 + 𝜎𝜏 !

!!

!!
𝑑𝜏, 𝐼12 = 𝜏!

𝑒!!
!
!

1+ 𝜇 + 𝜎𝜏 !

!!

!!
𝑑𝜏	

	
Consider	function	(3.2)	here	reported	for	brevity:	
	

𝜓 𝜎, 𝜇 = −
1
𝛾

 𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥

 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝜏
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As	a	first	step,	we	compute	the	first	derivatives	of	the	integrals	in	the	numerator	and	
denominator	with	respect	to	𝜎	and	𝜇:	
	

 
𝜕
𝜕𝜎

𝑒
!(!!!)!

!!!

1+ 𝑥 !

!!

!!
𝑑𝑥 =

𝑥 − 𝜇 !

𝜎!
𝑒
!(!!!)!

!!!

1+ 𝑥 !

!!

!!
𝑑𝑥 = 𝐼12	

	

 
𝜕
𝜕𝜇

𝑒
!(!!!)!

!!!

1+ 𝑥 !

!!

!!
𝑑𝑥 =

𝑥 − 𝜇
𝜎!

𝑒
!(!!!)!

!!!

1+ 𝑥 !

!!

!!
𝑑𝑥  = 𝐼11	

	
𝜕
𝜕𝜎 𝑒

!(!!!)!
!!!

!!

!!
𝑑𝑥 =

𝑥 − 𝜇 !

𝜎! 𝑒
!(!!!)!

!!!
!!

!!
𝑑𝑥 = 𝐼3	

	
𝜕
𝜕𝜇 𝑒

!(!!!)!
!!!

!!

!!
𝑑𝑥 =

𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!

!!
𝑑𝑥  = 𝐼2	

	
Therefore,	the	derivative	of	the	function	𝜓(𝜎, 𝜇)	with	respect	to	𝜎	is:	
𝜕𝜓(𝜎, 𝜇)
𝜕𝜎 =	

	

−
1
𝛾

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 − 𝜇 !

𝜎!
𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 −  𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 𝑥 − 𝜇 !

𝜎! 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
! 	

From	(3.2):	

𝑒
!(!!!)!

!!!

1+ 𝑥 !

!!

!!
𝑑𝑥 = −𝜓(𝜎, 𝜇)𝛾 𝑒

!(!!!)!
!!!

!!

!!
𝑑𝑥	

and	we	get:	
	
𝜕𝜓 𝜎, 𝜇
𝜕𝜎 =	

−
1
𝛾

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 − 𝜇 !

𝜎!
𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 + 𝜓(𝜎, 𝜇)𝛾 𝑥 − 𝜇 !

𝜎! 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
! 	

	

= −
1
𝛾

𝑥 − 𝜇 !

𝜎!
𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 + 𝜓 𝜎, 𝜇 𝛾 𝑥 − 𝜇 !

𝜎! 𝑒
! !!! !

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
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Finally,	by	using	(B.1)	we	have:	
	

𝐵. 2           
𝜕𝜓 𝜎, 𝜇
𝜕𝜎 = −

1
𝛾
𝐼12+ 𝜓 𝜎, 𝜇 𝛾𝐼3

𝐼1 	

	
The	derivative	of	the	function	𝜓(𝜎, 𝜇)	with	respect	to	𝜇	is:	
	

𝐵. 3   
𝜕𝜓 𝜎, 𝜇
𝜕𝜇 =	

	

−
1
𝛾

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 − 𝜇
𝜎!

𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 + 𝜓(𝜎, 𝜇)𝛾 𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
! 	

	

= −
1
𝛾

𝑥 − 𝜇
𝜎!

𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 + 𝜓(𝜎, 𝜇)𝛾 𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
 

                          = −
1
𝛾
𝐼11+ 𝜓 𝜎, 𝜇 𝛾𝐼2

𝐼1 	

	
In	the	end,	the	first	derivative	of	the	Implicit	Function	𝜇! 𝜎 	is:	
 

𝑑𝜇! 𝜎
𝑑𝜎 = −

𝜕𝜓 𝜎, 𝜇
𝜕𝜎

𝜕𝜓 𝜎, 𝜇
𝜕𝜇

	

	

                = −

𝑥 − 𝜇 !

𝜎!
𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 + 𝜓 𝜎, 𝜇 𝛾 𝑥 − 𝜇 !

𝜎! 𝑒
! !!! !

!!!
!!
!!

𝑑𝑥

𝑥 − 𝜇
𝜎!

𝑒
!(!!!)!

!!!

1+ 𝑥 !
!!
!!

𝑑𝑥 + 𝜓(𝜎, 𝜇)𝛾 𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

	

	

                = −
𝐼12+ 𝜓 𝜎, 𝜇 𝛾𝐼3
𝐼11+ 𝜓 𝜎, 𝜇 𝛾𝐼2	
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Appendix	C.	

Case	1:		𝑅 𝜎, 𝜇 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑆𝐷!" 𝜎, 𝜇  		

																	𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑅!" 𝜎, 𝜇 	
																 𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑅𝑅𝐴 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ γ = 2.	
	
	
To	compute	the	Standard	Deviation	and	the	Expected	Return	of	the	Truncated	Normal	
variable,	it	is	preferable	to	start	with	the	following	definitions:	
	

𝑆𝐷!" 𝜎, 𝜇 =
𝑥!𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
−

𝑥𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

!

	

(C.1)	

                              𝐸𝑅!" 𝜎, 𝜇 =
𝑥𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

	
	
The	(C.1)	formulas	transform	the	set	 𝜎, 𝜇 	into	the	set	 𝑆𝐷!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇 	as	it	is	
possible	to	see	from	the	following	Figure	C.1:	
	

Figure	C.1:	Transformation	 𝜎, 𝜇 → 𝑆𝐷!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇 	
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The	partial	derivatives,	using	(B.1)	are:	
	

 𝜕𝐸𝑅!" 𝜎, 𝜇
𝜕𝜎 =

𝜕
𝜕𝜎

𝑥𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

	

=
𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 𝑥 − 𝜇 !

𝜎! 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 − 𝑥𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 − 𝜇 !

𝜎! 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
! 	

	
	
 𝜕𝐸𝑅!" 𝜎, 𝜇

𝜕𝜎 = 
𝐼1 ∗ 𝐼6 − 𝐼3 ∗ 𝐼4

(𝐼1)! ;	

	

 𝜕𝐸𝑅!" 𝜎, 𝜇
𝜕𝜇 =

𝜕
𝜕𝜇

𝑥𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

 =
𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥 − 𝑥𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
! 	

	
	
 𝜕𝐸𝑅!" 𝜎, 𝜇

𝜕𝜇 =
𝐼1 ∗ 𝐼5 − 𝐼2 ∗ 𝐼4

(𝐼1)! ;	

	
To	compute	the	partial	derivatives	of	 𝑆𝐷!"	we	consider:	
	

𝜕
𝜕𝜎

𝑥!𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
=	

	
	

=
𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥! 𝑥 − 𝜇 !

𝜎! 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 − 𝑥!𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 − 𝜇 !

𝜎! 𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
! 	

	
	

=
𝐼1 ∗ 𝐼9− 𝐼3 ∗ 𝐼7

(𝐼1)! ⟹:	
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 𝜕𝑆𝐷!" 𝜎, 𝜇

𝜕𝜎 =
1

2 𝑆𝐷!" 𝜎, 𝜇
𝐼1 ∗ 𝐼9− 𝐼3 ∗ 𝐼7

(𝐼1)! − 2 𝑀𝐸!" 𝜎, 𝜇
 𝜕𝑀𝐸!" 𝜎, 𝜇

𝜕𝜎 	

	
and:	
	

𝜕
𝜕𝜇

𝑥!𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
=	

	
	

=
𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥! 𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥 − 𝑥!𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥 𝑥 − 𝜇
𝜎! 𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
! 	

	

=
𝐼1 ∗ 𝐼8 − 𝐼2 ∗ 𝐼7

(𝐼1)! ⟹	

	
 𝜕𝑆𝐷!" 𝜎, 𝜇

𝜕𝜇 =
1

2 𝑆𝐷!" 𝜎, 𝜇
𝐼1𝐼8 − 𝐼2𝐼7

𝐼1! − 2 𝑀𝐸!" 𝜎, 𝜇
 𝜕𝑀𝐸!" 𝜎, 𝜇

𝜕𝜇 	

	
It	is	possible	now to	compute	and	to	graph	the	Differential	Conditions	(4.6): 
 

Figure	C.2:	Differential	Condition	1	for	 𝑆𝐷!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇  
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Figure C.3: Differential Condition 2 for 𝑆𝐷!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇  
 

  
Figure C.4: Differential Condition 3 for 𝑆𝐷!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇  

 

 
The	three	Figures	above	tell	us	that	(4.6)	are	satisfied,	all	Differential	Conditions	are	greater	
than	zero.	
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Appendix	D.			

Case	2:	𝑅 𝜎, 𝜇 = 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑅𝑖𝑠𝑘 = 𝑉𝑎𝑅!" 𝜎, 𝜇 	

																𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑅!" 𝜎, 𝜇 	
																𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑅𝑅𝐴 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ γ = 2.	
																𝛼           = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 0.95	
	
It	is	possible	to	analyze	the	behavior	of	𝑉𝑎𝑅!" ≡ 𝑉𝑎𝑅!" 𝜎, 𝜇 .	Starting	from	its	definitions:	
	
	

1− 𝛼 =
1

𝜎 2𝜋ΔΦ!
𝑒
!(!!!)!

!!!
!!"#!"

!!
𝑑𝜉	

	
we	have:	
	

1− 𝛼 =
1

ΔΦ!
Φ

−𝑉𝑎𝑅!" − 𝜇
𝜎 −Φ ℎ! ⇒ Φ

−𝑉𝑎𝑅!" − 𝜇
𝜎 = 1− 𝛼 ΔΦ! + Φ ℎ! ;	

	

Φ
−𝑉𝑎𝑅!" − 𝜇

𝜎 = 1− 𝛼 Φ ℎ! − 1− 𝛼 Φ ℎ! + Φ ℎ! = 𝛼Φ ℎ! + 1− 𝛼 Φ ℎ! 	
	

𝑉𝑎𝑅!" 𝜎, 𝜇 = −𝜇 − 𝜎Φ!"# 𝛼Φ ℎ! + 1− 𝛼 Φ ℎ! 	
	
obtaining	the	transformation:	
 

𝑉𝑎𝑅!" 𝜎, 𝜇 = −𝜇 − 𝜎Φ!"# 𝛼Φ ℎ! + 1− 𝛼 Φ ℎ! 		
	

(D.1)	

                                         𝐸𝑅!" 𝜎, 𝜇 =
𝑥𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

	
	
The	(D.1)	transforms	the	set	 𝜎, 𝜇 	in	the	set	 𝑉𝑎𝑅!" 𝜎, 𝜇 ,  𝐸𝑅!" 𝜎, 𝜇 	as	it	is	possible	to	see	
in	the	following	Figure	D.1:	
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Figure	D.1:	Transformation		 𝜎, 𝜇 → 𝑉𝑎𝑅!" 𝜎, 𝜇 ,  𝐸𝑅!" 𝜎, 𝜇 	

	
Defining:		 
 
 𝐷. 2           𝑏 = 𝛼Φ ℎ! + 1− 𝛼 Φ ℎ!  ,        𝑐 = Φ!"# 𝑏  ,     Φ!"# 𝑏 = − 𝑉𝑎𝑅!" + 𝜇 /𝜎	
	
and	computing:	
	

(𝐷. 3)           
𝜕b
𝜕𝜇 = −

𝛼
𝜎ϕ ℎ! −

1− 𝛼
𝜎 ϕ ℎ! ;   

𝜕b
𝜕𝜎 = −

𝛼ℎ!
𝜎 ϕ ℎ! −

1− 𝛼 ℎ!
𝜎 ϕ ℎ! 	

	
we	can	use	the	Theorem	of	derivative	of	the	inverse	function:	
	

𝑑Φ!"# 𝑏
𝑑𝑏 =

1
𝑑Φ 𝑐
𝑑𝑐

    𝑖𝑖𝑓    
𝑑Φ 𝑐
𝑑𝑐  ≠ 0	

to	compute	the	partial	derivatives	of:	
	

(𝐷. 4)                                      
𝜕Φ!"# 𝑏

𝜕𝜎 =
𝑑Φ!"# 𝑏

𝑑𝑏 ⋅
𝜕b
𝜕𝜎 =

1
𝑑Φ 𝑐
𝑑𝑐

⋅
𝜕b
𝜕𝜎	

By	the	definition	of	Φ:	
	

𝑑Φ 𝑐
𝑑𝑐 =

𝑑
𝑑𝑐  𝜙 𝜏

!

!∞
𝑑𝜏 = 𝜙 𝑐 = 𝜙 Φ!"# 𝑏 	

	
we	have:	

𝜕Φ!"# 𝑏
𝜕𝜎 =

1
𝜙 Φ!"# 𝑏

⋅
𝜕b
𝜕𝜎	
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and	consequently:	
𝜕Φ!"# 𝑏

𝜕𝜇 =
1

𝜙 Φ!"# 𝑏
⋅
𝜕b
𝜕𝜇	

	
So	we	can	compute	the	partial	derivatives	of	𝑉𝑎𝑅!":	
	

𝜕𝑉𝑎𝑅!"
𝜕𝜇 = −1− 𝜎

−𝛼𝜎ϕ ℎ! − 1− 𝛼
𝜎 ϕ ℎ!

𝜙 Φ!"# 𝑏
	

	

                 = −1+
𝛼ϕ ℎ! + 1− 𝛼 ϕ ℎ!
𝜙 − 𝑉𝑎𝑅!" + 𝜇 /𝜎 	

𝜕𝑉𝑎𝑅!"
𝜕𝜎 = −Φ!"# 𝛼Φ ℎ! + 1− 𝛼 Φ ℎ! − 𝜎

−𝛼ℎ!𝜎 ϕ ℎ! − 1− 𝛼 ℎ!
𝜎 ϕ ℎ!

𝜙 Φ!"# 𝑏
	

	

                 =
𝑉𝑎𝑅!" + 𝜇

𝜎 − 𝜎
−𝛼ℎ!𝜎 ϕ ℎ! − 1− 𝛼 ℎ!

𝜎 ϕ ℎ!

𝜙 Φ!"# 𝑏
	

	

                 =
𝑉𝑎𝑅!" + 𝜇

𝜎 +
𝛼ℎ!ϕ ℎ! + 1− 𝛼 ℎ!ϕ ℎ!

𝜙 − 𝑉𝑎𝑅!" + 𝜇 /𝜎 	

	
Now,	it	is	possible	to	compute	the	Differential	Conditions	(4.6)	and	to	graph	them.	
	

Figure D.2: Differential Condition 1 for 𝑉𝑎𝑅!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇  

 
DC1	is	satisfied,	it	is > 0.	
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Figure D.3: Differential Condition 2  for 𝑉𝑎𝑅!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇 	

	
	

Table D.1: Values of the  Differential Condition 2 for 𝑉𝑎𝑅!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇 	

	
	

Condition	DC2	is	not	satisfied,	as	it	is	possible	to	see	from	Figure	D.3	and	Table	D.1,	where	its	
values	are	reported.	This	means	that	this	transformation,	even	if	it	is	based	on	Risk	Averse	
Utility	Function,	does	not	preserve	the	concavity	property	and	there	are	regions	of	its	domain	
where		

𝜕𝜓
𝜕𝐸𝑅!"

< 0	

(see	(4.9)	and	pose		𝐸𝑅!"		instead	of	T)	.	
	

0,300 0,414 0,379 0,350 0,291 -0,192	 -0,279	 -0,205	 -0,134	 -0,088	 -0,060	 -0,044	 -0,035	 -0,029	 -0,025	 -0,023	
0,214 0,487 0,446 0,410 0,283 -0,258	 -0,252	 -0,170	 -0,106	 -0,068	 -0,047	 -0,035	 -0,028	 -0,024	 -0,021	 -0,019	
0,129 0,570 0,524 0,477 0,182 -0,276	 -0,217	 -0,134	 -0,081	 -0,052	 -0,037	 -0,028	 -0,022	 -0,019	 -0,017	 -0,016	
0,043 0,661 0,610 0,547 -0,024	 -0,263	 -0,176	 -0,101	 -0,060	 -0,039	 -0,028	 -0,022	 -0,018	 -0,016	 -0,014	 -0,014	
-0,043 0,751 0,698 0,603 -0,182	 -0,230	 -0,134	 -0,073	 -0,044	 -0,029	 -0,021	 -0,017	 -0,014	 -0,013	 -0,012	 -0,012	
-0,129 0,833 0,780 0,607 -0,241	 -0,184	 -0,095	 -0,051	 -0,031	 -0,021	 -0,016	 -0,013	 -0,012	 -0,011	 -0,010	 -0,010	
-0,214 0,899 0,846 0,445 -0,237	 -0,133	 -0,063	 -0,034	 -0,021	 -0,015	 -0,012	 -0,010	 -0,009	 -0,009	 -0,008	 -0,008	
-0,300 0,946 0,887 0,080 -0,194	 -0,086	 -0,038	 -0,021	 -0,014	 -0,011	 -0,009	 -0,008	 -0,007	 -0,007	 -0,007	 -0,007	
-0,386 0,974 0,900 -0,151	 -0,132	 -0,048	 -0,022	 -0,013	 -0,009	 -0,007	 -0,006	 -0,006	 -0,006	 -0,006	 -0,006	 -0,006	
-0,471 0,989 0,874 -0,189	 -0,071	 -0,023	 -0,011	 -0,007	 -0,006	 -0,005	 -0,005	 -0,004	 -0,004	 -0,004	 -0,005	 -0,005	
-0,557 0,996 0,757 -0,129	 -0,027	 -0,008	 -0,004	 -0,003	 -0,003	 -0,003	 -0,003	 -0,003	 -0,003	 -0,004	 -0,004	 -0,004	
-0,643 0,999 0,265 -0,045	 -0,004	 -0,000	 -0,000	 -0,001	 -0,001	 -0,002	 -0,002	 -0,002	 -0,003	 -0,003	 -0,003	 -0,003	
-0,729 1,000 -0,070	 0,004 0,006 0,004 0,002 0,001 0,000 -0,000	 -0,001	 -0,001	 -0,002	 -0,002	 -0,002	 -0,003	
-0,814 1,000 0,022 0,017 0,009 0,006 0,004 0,002 0,001 0,000 -0,000	 -0,001	 -0,001	 -0,002	 -0,002	 -0,002	
-0,900 1,000 0,046 0,018 0,010 0,007 0,004 0,003 0,002 0,001 0,000 -0,000	 -0,001	 -0,001	 -0,001	 -0,002	
μ!σ" 0,001 0,087 0,172 0,258 0,344 0,429 0,515 0,601 0,686 0,772 0,857 0,943 1,029 1,114 1,200
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Figure D.4: Differential Condition 3 for 𝑉𝑎𝑅!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇 	

 	
DC3	is	satisfied,	it	is > 0. 
 
 
 
 
Appendix	E.			

Case	3:		𝑅 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 = 𝐸𝑆!" 𝜎, 𝜇  		

															 𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑅!" 𝜎, 𝜇 	
																𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑅𝑅𝐴 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ γ = 2.	
																𝛼           = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 0.95	
 
Starting	from	the	definitions	of	Expected	Shortfall	of	a	Truncated	Normal:	
 

−𝐸𝑆!" =
1

1− 𝛼 ΔΦ!

𝑥𝑒
!(!!!)!

!!!

𝜎 2𝜋

!!"#!"

!!
𝑑𝑥	

we	have:	
	

 −𝐸𝑆!" =
1

1− 𝛼 ΔΦ!
𝜎𝜏 + 𝜇 𝜙 𝜏

!!"#!"!! !

!!
𝑑𝜏	

	

               =
1

1− 𝛼 ΔΦ!
𝜎 𝜏𝜙 𝜏

!!"#!"!! !

!!
𝑑𝜏 + 𝜇 𝜙 𝜏

!!"#!"!! !

!!
𝑑𝜏 	
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               =
1

1− 𝛼 ΔΦ!
𝜎 −𝜙 𝜏 !!

!!"#!"!! ! + 𝜇 Φ − 𝑉𝑎𝑅!" + 𝜇 /𝜎 −Φ ℎ!  

 

            =
1

1− 𝛼 ΔΦ!
𝜎 𝜙 ℎ! − 𝜙 − 𝑉𝑎𝑅!" + 𝜇 𝜎 + 𝜇 Φ − 𝑉𝑎𝑅!" + 𝜇 /𝜎 −Φ ℎ! 	

	

                =
1

1− 𝛼 ΔΦ!
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏 + 𝜇 Φ Φ!"# 𝑏 −Φ ℎ! 	

	

                =
1

1− 𝛼 ΔΦ!
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏 + 𝜇 b − Φ ℎ! 	

	

                =
1

1− 𝛼 ΔΦ!
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏 + 𝜇 𝛼Φ ℎ! + 1− 𝛼 Φ ℎ! − Φ ℎ! 	

	

                =
1

1− 𝛼 ΔΦ!
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏 + 𝜇 1− 𝛼 Φ ℎ! − Φ ℎ! 	

	

                =
1

1− 𝛼 ΔΦ!
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏 + 𝜇 1− 𝛼 ΔΦ! 	

	
and	finally:		
	

    𝐸𝑆!"  =  −𝜇 −
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏

1− 𝛼 ΔΦ!
	

	
	
Therefore,	the	transformation	becomes:	
	
	

𝐸𝑆!" 𝜎, 𝜇  =  −𝜇 −
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏

1− 𝛼 ΔΦ!
	

(E.1)	

                                                 𝑀𝐸!" 𝜎, 𝜇 =
𝑥𝑒

!(!!!)!
!!!

!!
!!

𝑑𝑥

𝑒
!(!!!)!

!!!
!!
!!

𝑑𝑥
	

	
Formulas	(E.1)	transform	the	set	 𝜎, 𝜇 	into	the	set		 𝐸𝑆!" 𝜎, 𝜇 ,  𝐸𝑅!" 𝜎, 𝜇 	as	it	is	possible	
to	see	from	the	following	representations:	
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Figure	E.1:	Transformation		 𝜎, 𝜇 → 𝐸𝑆!" 𝜎, 𝜇 ,  𝐸𝑅!! 𝜎, 𝜇  

	
Using	the	definitions	(D.2)	and	the	Theorem	of	derivative	of	the	inverse	functions	(D.4):	
	

𝑑Φ!"# 𝑏
𝑑𝑏 =

1
𝑑Φ 𝑐
𝑑𝑐

    𝑖𝑖𝑓    
𝑑Φ 𝑐
𝑑𝑐  ≠ 0	

	
we	can	compute	the	partial	derivatives	of:	

𝜕𝜙 Φ!"# 𝑏 𝜎, 𝜇
𝜕𝜎 =

𝜕𝜙 Φ!"# 𝑏
𝜕𝜎 =

1
2𝜋

𝜕 exp −Φ!"#
! 𝑏

2
𝜕𝜎 	

We	have:	
	

𝜕𝜙 Φ!"# 𝑏
𝜕𝜎 = −

1
2𝜋

𝑒𝑥𝑝 −Φ!"#
! 𝑏

2 ⋅ Φ!"# 𝑏 ⋅
1

𝑑Φ 𝑐
𝑑𝑐

⋅
𝜕b
𝜕𝜎	

 = −𝜙 Φ!"# 𝑏 ⋅ Φ!"# 𝑏 ⋅
1

𝑑Φ 𝑐
𝑑𝑐

⋅
𝜕b
𝜕𝜎	

By	the	definition	of	Φ:	
	

𝑑Φ 𝑐
𝑑𝑐 =

𝑑
𝑑𝑐  𝜙 𝜏

!

!∞
𝑑𝜏 = 𝜙 𝑐 = 𝜙 Φ!"# 𝑏 	

we	have:	
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𝜕𝜙 Φ!"# 𝑏
𝜕𝜎 = −𝜙 Φ!"# 𝑏 ⋅ Φ!"# 𝑏 ⋅

1
𝜙 Φ!"# 𝑏

⋅
𝜕b
𝜕𝜎 = −Φ!"# 𝑏 ⋅

𝜕b
𝜕𝜎	

	
Using	(D.3):	
	

𝐸. 2                      
𝜕𝜙 Φ!"# 𝑏

𝜕𝜎 =
Φ!"# 𝑏

𝜎 𝛼ℎ!ϕ ℎ! + 1− 𝛼 ℎ!ϕ ℎ! 	
	
and	with	the	same	rationale:	
	

(𝐸. 3)                     
𝜕𝜙 Φ!"# 𝑏

𝜕𝜇 =
Φ!"# 𝑏

𝜎 𝛼ϕ ℎ! + 1− 𝛼 ϕ ℎ! 	

	
We	rewrite	𝐸𝑆!" as:	

    𝐸𝑆!"  =  −𝜇 −
𝜎 𝜙 ℎ! − 𝜙 Φ!"# 𝑏

1− 𝛼 ΔΦ!
= −𝜇 −

𝜎 𝑒
!(!!!!)!

!!! − 𝑒
! !!"# ! !

!!!

1− 𝛼 𝑒!!
!
!

!!
!!

𝑑𝜏
	

	
and	using	(B.1)	we	compute	the	partial	derivatives	of	𝐸𝑆!":	
	

  
𝜕𝐸𝑆!"
𝜕𝜇 = −1−

𝜕
𝜕𝜇

𝜎! 𝑒
!(!!!!)!

!!! − 𝑒
! !!"# ! !

!!!

1− 𝛼 𝐼1 	

	

 = −1−
𝜎! 𝐼1  ℎ!𝜎 𝑒

!!!!
! − 2𝜋

𝜕𝜙 Φ!"# 𝑏
𝜕𝜇 −  𝑒

!!!!
! − 𝑒

! !!"# ! !

!!! 𝜏𝑒!!
!
!

!!
!!

𝑑𝜏

1− 𝛼 𝐼1 ! 	

	

= −1−
𝜎! 𝐼1  ℎ!𝜎 𝑒

!!!!
! − 2𝜋

𝜕𝜙 Φ!"# 𝑏
𝜕𝜇 −  𝑒

!!!!
! − 𝑒

! !!"# ! !

!!! 𝐼2

1− 𝛼 𝐼1 ! 	

	
	
Here,	we	can	use	(E.3)	instead	of		𝜕𝜙 Φ!"# 𝑏 𝜕𝜇.	
	
	

𝜕𝐸𝑆!"
𝜕𝜎 = −

𝜕
𝜕𝜎

𝜎! 𝑒
!(!!!!)!

!!! − 𝑒
! !!"# ! !

!!!

1− 𝛼 𝐼1 	
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= −
𝐼1 2𝜎  𝑒

!!!!
! − 𝑒

! !!"# ! !

!!! + 𝜎!  ℎ!
!

𝜎 𝑒
!!!!

! − 2𝜋
𝜕𝜙 Φ!"# 𝑏

𝜕𝜎 +⋯

1− 𝛼 𝐼1 ! 	

	

…− 𝜎!  𝑒
!!!!

! − 𝑒
! !!"# ! !

!!! 𝜏!𝑒!!
!
!

!!
!!

𝑑𝜏

1− 𝛼 𝐼1 ! 	

	

= −
𝜎  𝑒

!!!!
! − 𝑒

! !!"# ! !

!!! 2𝐼1− 𝜎𝐼3 + 𝜎𝐼1  ℎ!
!

𝜎 𝑒
!!!!

! − 2𝜋
𝜕𝜙 Φ!"# 𝑏

𝜕𝜎
1− 𝛼 𝐼1 ! 	

	
and	then	we	have	the	following	figures	and	tables:	
	

Figure E.2: Differential Condition 1 for 𝐸𝑆!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇 	

  
DC1	is	satisfied,	it	is > 0. 
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Figure E.3: Differential Condition 2 for 𝐸𝑆!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇  
	

  
	

Table E.1: Values of the Differential Condition 2 for 𝐸𝑆!" 𝜎, 𝜇 , 𝐸𝑅!" 𝜎, 𝜇  
 

	
	
Also	in	this	case	condition	DC2	is	not	satisfied,	see	Figure	E.3	and	Table	E.1,		and	we	can	
conclude	with	the	same	considerations	done	for	Differential	Condition	2	of	Appendix	D.	

	
	
	
	
	

0,300 0,414 0,388 0,373 0,346 -0,027	 -0,146	 -0,093	 -0,052	 -0,030	 -0,018	 -0,013	 -0,009	 -0,007	 -0,006	 -0,006	
0,214 0,487 0,457 0,439 0,374 -0,103	 -0,125	 -0,070	 -0,037	 -0,021	 -0,013	 -0,009	 -0,007	 -0,006	 -0,005	 -0,004	
0,129 0,571 0,537 0,514 0,337 -0,131	 -0,099	 -0,050	 -0,026	 -0,015	 -0,009	 -0,007	 -0,005	 -0,004	 -0,004	 -0,004	
0,043 0,661 0,625 0,595 0,180 -0,126	 -0,072	 -0,034	 -0,017	 -0,010	 -0,007	 -0,005	 -0,004	 -0,003	 -0,003	 -0,003	
-0,043 0,751 0,715 0,668 0,003 -0,103	 -0,048	 -0,021	 -0,011	 -0,006	 -0,004	 -0,003	 -0,003	 -0,002	 -0,002	 -0,002	
-0,129 0,834 0,799 0,707 -0,083	 -0,073	 -0,029	 -0,012	 -0,006	 -0,004	 -0,003	 -0,002	 -0,002	 -0,002	 -0,002	 -0,002	
-0,214 0,899 0,866 0,629 -0,095	 -0,044	 -0,015	 -0,006	 -0,003	 -0,002	 -0,002	 -0,001	 -0,001	 -0,001	 -0,001	 -0,001	
-0,300 0,946 0,911 0,321 -0,071	 -0,022	 -0,007	 -0,003	 -0,001	 -0,001	 -0,001	 -0,001	 -0,001	 -0,001	 -0,001	 -0,001	
-0,386 0,974 0,931 0,040 -0,038	 -0,008	 -0,002	 -0,000	 0,000 0,000 0,000 -0,000	 -0,000	 -0,000	 -0,000	 -0,001	
-0,471 0,989 0,924 -0,039	 -0,011	 0,000 0,001 0,001 0,001 0,001 0,001 0,000 0,000 -0,000	 -0,000	 -0,000	
-0,557 0,996 0,861 -0,020	 0,003 0,004 0,003 0,002 0,002 0,001 0,001 0,001 0,000 0,000 0,000 -0,000	
-0,643 0,999 0,507 0,008 0,008 0,005 0,004 0,003 0,002 0,002 0,001 0,001 0,001 0,000 0,000 0,000
-0,729 1,000 0,096 0,017 0,009 0,005 0,004 0,003 0,002 0,002 0,001 0,001 0,001 0,001 0,000 0,000
-0,814 1,000 0,058 0,015 0,008 0,005 0,004 0,003 0,002 0,002 0,001 0,001 0,001 0,001 0,001 0,000
-0,900 1,000 0,031 0,012 0,007 0,005 0,004 0,003 0,002 0,002 0,002 0,001 0,001 0,001 0,001 0,000
μ!σ" 0,001 0,087 0,172 0,258 0,344 0,429 0,515 0,601 0,686 0,772 0,857 0,943 1,029 1,114 1,200
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Figure E.4: Differential Condition 3 for 𝐸𝑆!" 𝜎, 𝜇 , 𝑀𝐸!" 𝜎, 𝜇 	
	

  
DC3	is	satisfied,	it	is > 0. 
 
 
 
Appendix	F	
Quadratic	Utility	Function	
	
Consider	the	following	general	Quadratic	Utility	Function	(QUF):	

	
𝐹. 1                                        𝑄𝑈𝐹 𝑊 ≡ 𝑄𝑈𝐹 =  𝑎 + 𝑏𝑊 − 𝑐𝑊!                 𝑏, 𝑐 > 0	

	
where	W	is	defined	as	in	(2.1).	

If	the	function	(4.1)	has	positive	first	derivative	and	negative	second	derivative,	it	represents	
a	risk-averse	person	with	insatiable	appetite,	that	is:	
	

𝑄𝑈𝐹! = 𝑏 − 2𝑐𝑊 > 0⟹𝑊 <
𝑏
2𝑐 ≡ 𝑊! 1+ 𝜇! 	

𝑄𝑈𝐹!! = −2𝑐 < 0         ⟹  𝑐 > 0	
 

                           𝐴𝑅𝐴 𝑄𝑈𝐹 = −
𝑄𝑈𝐹′′

𝑄𝑈𝐹′
= 

2𝑐
𝑏 − 2𝑐𝑊 > 0   , 𝑅𝑅𝐴 𝑄𝑈𝐹 = 

2𝑐𝑊
𝑏 − 2𝑐𝑊	
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In	the	Appendices	F,	G,	H	we	take	into	consideration	𝑟 ∽ 𝑁 𝜇,𝜎! .	
	
𝑊! 1+ 𝜇! 	is	the	maximum	value	allowed	for	W	such	that	(F.1)	maintains	its	characteristic	of	
Risk	aversion.	

 
 

Proposition	 F.1:	 With	 the	 definition	𝑏 = 2𝑐𝑊! 1+ 𝜇! ,	 the	 expected	 value	 of	 QUF	 in	 (4.1),	
𝐸 𝑄 𝜇! 𝜎, 𝜇 ,	 is	a	 function	of	Standard	Deviation	𝜎	and	Expected	Return	𝜇	represented	by	a	
paraboloid	in	the	space	 𝜎, 𝜇,𝐸 𝑄 𝜇! 𝜎, 𝜇  	with	downward	concavity,	whose	vertex	is	given	
by	the	point	 0, 𝜇! ,𝐸 𝑄  𝜇! 0, 𝜇! 	.	That	is:	

	
𝐸 𝑄 𝜇! 𝜎, 𝜇 =  𝑄𝑈𝐹 𝑊! + 𝑐𝑊!

!𝜇!! − 𝑐𝑊!
![𝜎! + 𝜇 − 𝜇! !] 

			

where	𝑄𝑈𝐹 𝑊! = 𝑎 + 𝑏𝑊! − 𝑐𝑊!
! = 𝑎 + 2𝑐𝑊! 1+ 𝜇! 𝑊! − 𝑐𝑊!

!	. 
 

Proof:		Consider	the	expected	value	of	the	Quadratic	Utility	Function	(F.1):	

	
                                   𝐸[𝑄 𝜇! ] =  𝐸[𝑎 + 𝑏𝑊 − 𝑐𝑊!]	

	
                                                       =  𝐸[𝑎 + 𝑏𝑊!(1+ 𝑟) − 𝑐𝑊!

!(1+ 𝑟)!]	
	

                                                       =  𝑎 + 𝑏𝑊!(1+ 𝐸[𝑟]) − 𝑐𝑊!
!(1+ 2𝐸 𝑟 + 𝐸 𝑟! )	

	
                                =  𝑎 + 𝑏𝑊! + 𝑏𝑊!𝜇 − 𝑐𝑊!

! − 2𝑐𝑊!
!𝜇 − 𝑐𝑊!

!(𝜎! + 𝜇!)	
                                                       =  𝑄𝑈𝐹 𝑊! +𝑊!𝜇(𝑏 − 2𝑐𝑊!) − 𝑐𝑊!

!(𝜎! + 𝜇!)	
	 	

Substituting	parameter	b	with	its	expression,	we	have:	

	
                       𝐸 𝑄 𝜇! =  𝑄𝑈𝐹 𝑊! +𝑊!𝜇 2𝑐𝑊! + 2𝑐𝜇!𝑊! − 2𝑐𝑊! − 𝑐𝑊!

! 𝜎! + 𝜇! 	
	

                                           =  𝑄𝑈𝐹 𝑊! + 2𝑐𝑊!
!𝜇𝜇! − 𝑐𝑊!

!(𝜎! + 𝜇!)	

 	
Adding	and	subtracting	the	same	quantity	𝑐𝑊!

!𝜇!! and	considering	the	𝐸 𝑄 𝜇! 	as	a	function	
of		𝜎		and	𝜇	we	obtain:	
	
(𝐹. 2)               𝐸 𝑄 𝜇! 𝜎, 𝜇 =  𝑄𝑈𝐹 𝑊! + 𝑐𝑊!

!𝜇!! − 𝑐𝑊!
! 𝜎! + 𝜇 − 𝜇! ! 	

                      	

The	expression	(F.2)	represents	a	paraboloid	in	the	space		 𝜎, 𝜇,𝐸 𝑄 𝜇! 𝜎, 𝜇  	with	
downward	concavity,	whose	vertex	is	the	point	 0, 𝜇! ,𝐸 𝑄 𝜇! 0, 𝜇! .	
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We	assume	for	simplicity 𝑊! = 1 : 
 

𝐸 𝑄 𝜇! 𝜎, 𝜇 = 𝜓 𝜎, 𝜇 =  𝑄𝑈𝐹 𝑊! + 𝑐𝜇!! − 𝑐[𝜎! + 𝜇 − 𝜇! !] 
 
And	we	have	

𝜕𝜓 𝜎, 𝜇
𝜕𝜇 = −2𝑐 𝜇 − 𝜇!    ,

𝜕𝜓 𝜎, 𝜇
𝜕𝜎 = −2𝑐𝜎 

 
that	will	be	used	for	to	compute	the	(4.6)	for	the	Quadratic	Utility	Function	case.	
	
 
 
Appendix	G	

Case	QUF	1:	𝑅 𝜎, 𝜇 = 𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑅𝑖𝑠𝑘 =  𝑉𝑎𝑅 𝜎, 𝜇 	
																         𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝜇	

																        𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑄𝑈𝐹  𝑤𝑖𝑡ℎ  𝜇! = 0.3, 𝑎 = 10, 𝑏 = 3, c = 15.	
																								𝛼           = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 0.95	

	
It	is	possible	to	analyze	the	behavior	of		𝑉𝑎𝑅 ≡ 𝑉𝑎𝑅 𝜎, 𝜇 ,	starting	from	the	transformation:	

 
𝐺. 1                               𝑅 𝜎, 𝜇 = 𝑉𝑎𝑅 𝜎, 𝜇 = −𝜇 + 𝜎Φ!! 𝛼  ,     𝑇 𝜎, 𝜇 = 𝜇  

 
The	(G.1)	transforms	the	set	 𝜎, 𝜇 	in	the	set	 𝑉𝑎𝑅 𝜎, 𝜇 , 𝜇 	as	is	possible	to	see:	
 

Figure	G.1:	Transformation	 𝜎, 𝜇 → 𝑉𝑎𝑅 𝜎, 𝜇 , 𝜇 	
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The	partial	derivatives,	using (G.1): 
 

𝜕𝜎!
𝜕𝜎 = Φ!! 𝛼 ;  

𝜕𝜎!
𝜕𝜇 = −1;    

𝜕𝜇!
𝜕𝜇 = 1;     

𝜕𝜇!
𝜕𝜎 = 0;   

	
By	(4.6),	DC1:		2𝑐𝜎 > 0 	is	true. 
 
By	(4.6),	DC2:	
	

−2𝑐Φ!! 𝛼 𝜇 − 𝜇! − −2𝑐𝜎 −1 > 0	
	
𝐺. 2                                   

𝜎
Φ!! 𝛼

< − 𝜇 − 𝜇! →
𝜎

Φ!! 𝛼
+ 𝜇 < 𝜇! 	

	
we	can	represent	the	DC2	in	closed	form:	
	

Figure	G.2:		Differential	Condition2	for	 𝑉𝑎𝑅 𝜎, 𝜇 , 𝜇 	

	
DC2	is	not	satisfied,	as	is	possible	to	see	by	Figure	G.1.	This	means	that	this	transformation,	
even	if	started	by	Risk	Averse	Utility	Function,	does	not	preserve	the	characteristic	of	the	
concavity	and	there	are	regions	in	the	domain	where:	
	

𝜕𝜓
𝜕𝑇 =

𝜕𝜓
𝜕𝜇 < 0	

	
that	is	not	typical	of	the	Risk	Averse	Utility	Function,	Theorem	2.1.	
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By	(G.2),	taking	in	consideration	that:	
	

𝑉𝑎𝑅 + 𝜇
Φ!! 𝛼

= 𝜎	

we	have:	
	

(𝐺. 3)                
𝑉𝑎𝑅 + 𝜇
Φ!! 𝛼 ! + 𝜇 < 𝜇!  →  𝜇 1+ Φ!! 𝛼 ! < −𝑉𝑎𝑅 + 𝜇! Φ!! 𝛼 !	

	
The	DC2	is	respected	only	below	the	straight	line	(G.3),	above	the	straight-line	the	iso-utility	
curves	have	negative	slope.	
	

Figure	G.3:	Iso-utility	curves	of		𝜓 𝜎, 𝜇 	in	2D	 𝑉𝑎𝑅 𝜎, 𝜇 , 𝜇 	

	
	

By		(4.6),	DC3:	Φ!! 𝛼 > 0	is	true.	
	
	
Appendix	H	

Case	QUF	2:	𝑅 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 =  𝐸𝑆 𝜎, 𝜇 	

																         𝑇 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝜇	
																        𝜓 𝜎, 𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑄𝑈𝐹  𝑤𝑖𝑡ℎ  𝜇! = 0.3, 𝑎 = 10, 𝑏 = 3, c = 15.	

																								𝛼           = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 0.95	
	
It	is	possible	to	analyze	the	behavior	of		𝐸𝑆 ≡ 𝐸𝑆 𝜎, 𝜇 ,	starting	from	the	transformation:	
	
𝐻. 1                         𝑅 𝜎, 𝜇 = 𝐸𝑆 𝜎, 𝜇 = −𝜇 +

𝜎
1− 𝛼𝜙 Φ!! 𝛼  ,      𝑇 𝜎, 𝜇 = 𝜇	

	
The	(H.1)	transforms	the	set	 𝜎, 𝜇 	in	the	set	 𝐸𝑆 𝜎, 𝜇 , 𝜇 	as	is	possible	to	see:	
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Figure	H.1:	Transformation	 𝜎, 𝜇 → 𝐸𝑆 𝜎, 𝜇 , 𝜇 	

	
By	(4.6),	DC1:		2𝑐𝜎 > 0	is	true.	
	
By	(4.6),	DC2: 

−2𝑐
𝜙 Φ!! 𝛼
1− 𝛼 𝜇 − 𝜇! − −2𝑐𝜎 −1 > 0	

	

𝐻. 2                                     
𝜎 1− 𝛼
𝜙 Φ!! 𝛼

< − 𝜇 − 𝜇! →
𝜎 1− 𝛼
𝜙 Φ!! 𝛼

+ 𝜇 < 𝜇!	

	
We	can	represent	the	DC2	in	closed	form:	
	

Figure	H.2:	Differential	Condition2	for	 𝐸𝑆 𝜎, 𝜇 , 𝜇 	

	



 46 

DC2	is	not	satisfied,	as	it	is	possible	to	see	by	Figure	H.2.	This	means	that	this	transformation,	
even	if	it	starts	with	the	Risk	Averse	Utility	Function,	does	not	preserve	the	characteristic	of	the	
concavity	and	there	are	regions	in	the	domain	where	
	

𝜕𝜓
𝜕𝑇 =

𝜕𝜓
𝜕𝜇 < 0	

	
that	is	not	typical	of	the	Risk	Averse	Utility	Function	(Theorem2.1).	
	
By	(H.2),	taking	into	consideration	that:	
	

𝐸𝑆 + 𝜇 1− 𝛼
𝜙 Φ!! 𝛼

= 𝜎 

we	have:	
	

𝐻. 3      
𝐸𝑆 + 𝜇 1− 𝛼 !

𝜙 Φ!! 𝛼 ! + 𝜇 < 𝜇!  →  𝜇 1− 𝛼 ! + 𝜙 Φ!! 𝛼 ! < −𝐸𝑆 + 𝜇!
𝜙 Φ!! 𝛼 !

1− 𝛼 ! 	

 
The	DC2	is	respected	only	below	the	straight	line	(H.3),	above	the	straight-line	the	iso-utility	
curves	have	negative	slope.	
	

Figure	H.3:	Iso-utility	curves	of		𝜓 𝜎, 𝜇 	in	2D	 𝐸𝑆 𝜎, 𝜇 , 𝜇 	

	
	

	


