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more similar to AGR than CER[Q] and only for a higher value of RRA is it possible to find substantial
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1. Introduction

A considerable amount of literature has been devoted to the way to measure the performances of
both investment and pension funds. While great attention has been paid to the aspect of the
fairness of the measures to rank the superior performances of the funds, less attention has been
given to the sensitivity of these measures to the risk.

The relevant paper by Ingersoll et al. (2007) shows the conditions under which a manipulation-
proof measure exists and what its characterizing properties are. This measure was called
Manipulation-Proof Performance Measure (MPPM). The article examines seven popular measures,
four based on ratios: Sharpe (1966), Sortino and van der Meer (1991), Leland (1999), and Sortino
et al. (1999)), and three based on regression intercepts: the CAPM alpha, Treynor and Mazuy
(1966), and Henriksson and Merton (1981)), concluding that it is not difficult to game these
measures meaningfully.

Ingersoll et al. (2007) claim that the existence of a set of performance measures which are
sufficiently manipulation-proof for practical use is important. They say that "this is particularly
relevant in the presence of transactions costs, which may offset whatever “performance” gains a
manager might hope to generate from trading for the purpose of manipulating the measure”.

They propose the following specific form of MPPM:

_ 1 1% .
0] (1_—’0)Atln (TZ[(l +Tt)/(1 +rft)] p>

where ryr and r; are the per-period (not annualized) interest rate and the rate of return on the
portfolio over period t. It is noticed that the popular Morningstar Risk Adjusted Rating (MRAR)
(Morningstar, 2009), which was introduced in July 2002, is a transformation of the proposed
MPPM.

If we consider the MRAR formula:

—At/y

ZT:[(1 +1)/(1+ rft)]‘yl -1

t=1

MRAR(y) =

A

we can easily see that MRAR(y) = e® — 1, wherey = p—1.
So the MRAR has the advantage of being a manipulation proof performance measure and also has
an empirical application in the calculation of Morningstar star rating by using! MRAR(2).

The performance measure MRAR is based on the utility function of constant relative risk aversion
(CRRA) form and states that the level of utility is the same between the certainty equivalent
geometric excess return (for a given value of y ) and the expected excess of the fund. We use the
notation CER[CRRA(y)] for the entire class of these measures.

In this article we show that the MPPM property is gained to the detriment of the dependence on the
Standard Deviation, developing ranking criteria that principally depend on the Annualized
Geometrical Return (AGR). The behavior of CER[CRRA] is more similar to AGR than that of CER of
the Quadratic Utility Function CER[Q]. Only for a higher value of Risk Aversion (RRA) parameter is it

! Morningstar (2009), p. 12.



possible to find substantial differences, even if in this case we find values of Standard Deviation that
have discontinuity points for the concavity.

Using a ranking criteria equal to the one introduced by Morningstar for a set of Funds, the paper
shows that, in a wide range for monthly Standard Deviation and Mean of the Returns, the ranking
done by CER[CRRA] is similar to the one induced by AGR, and that a CER[Q] has a behavior
essentially different.

It will be shown that Morningstar ranking may be considered a particular case of the CER[CRRA]
and thus all the considerations can be applied to the well-known Morningstar Rating methodology.

In this paper we consider Funds without derivatives products, which cannot lose more than the
initial capital, and our considerations are developed in a finite set of Funds.

Although we do not consider the use of derivatives, we nevertheless take into account the criticism
of the financial literature related to the assumption of normal or lognormal distributions for
portfolio returns. In fact, here we consider a normal truncated distribution characterized by the
asymmetry of returns in their range of variation.

The paper is organized as follows. Section 2 introduces the CER[CRRA(y)], where y + 1 is the RRA
parameter, in the case of returns distributed as a Truncated Normal variable and develops the
matters with the Differential Geometry in 3D. Section 3 explains how the Morningstar Rating can be
seen as a particular case of the CER[CRRA] and introduces AGR as first reference, while Section 4
introduces CER[Q] as second reference. Section 5 develops a measure of dependence on the
Standard Deviation, using the First Derivative of the Implicit Function (FDIF) of CER, showing that
CER[CRRA(y)] is similar to AGR and has changes of the concavity for high values of Standard
Deviation and y parameter. Section 6 illustrates a ranking using the Morningstar criteria, and
shows the similarity with both the ranking induced by CER[CRRA(y)] for low value of y and that one
induced by AGR in some range of Standard Deviation and Mean. On the contrary, CER[Q] has a
different behavior with respect to AGR, detecting that it depends on the first two moments of the
Truncated Normal distribution. Section 7 sets out the conclusions.

2. The Constant Relative Risk Aversion (CRRA) Utility Function.

Consider a general CRRA Utility Function:

- W_V/V; y * 0
(2.1) CRRA(y) =
log  y=0
where:
W =W,(1+R)

is Wealth with the initial amount W, and the (monthly) return R, y is a parameter that expresses an
investor’s sensitivity to risk, say the degree of his risk aversion.

The following Figure 2.1 shows the behavior of the CRRA with respect to different values of the y
parameter.



Figure 2.1: Constant Relative Risk Aversion Utility Functions
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y < —1 : the investor is risk loving rather than risk averse.

y = —1: means that the degree of risk aversion is zero: The investor is indifferent between a risk-
free choice and a risky choice as long as the arithmetic average expected return is the same.

y = 0: the investor is indifferent between a risk free choice and a risky choice as long as the
geometric average expected return is the same.

y > 0 :the investor is risk averse and calls a premium against his choice of a risky asset, the larger
is the value of y the greater the risk premium.

In this paper, we do not consider y < 0.

Assuming for simplicity W, = 1, the ARA (Absolute Risk Aversion) and RRA ( Relative Risk Aversion)
for the CRRA we have the expressions:

+1
ARA[CRRA(Y)] = L—R . RRA[CRRA()] =y + 1

For the scope of Funds’ rating, it is preferable to use the Certainty Equivalent Return, which does

not depend on the Funds’ money values and represents the riskless Return that provides the same

level of utility as the variable Return to the investor.

The (monthly) Certainty Equivalent Return Utility Function with parameter y and a generic
distribution D, denoted with CER,,[CRRA(y)p], by definition is:

1+ CER,,[CRRA(Y)p] = ELA+R)D Y y>0

oElIN(1+R)] y=0



It is reasonable to consider the annualized values CER[CRRA(y)p] of CER,,,[CRRA(y)p], defined by:

(2.2) CER[CRRA(y),] = (E[A+R)7]Y 7 =1  y>0

12E(In (1+R)]  _ 1

e y=0

Some considerations about the range of the return R are useful.

R = —1is a singularity point for the (2.1), when y > 0; it means that R > —1 is a condition that we
have to pose. Moreover, it is coherent to the fact that our analysis is concentrated on Funds that
cannot lose more than 100% of their initial value and excludes derivative products.

To have the maximum generality, consider R as a normal random variable R ~ N(u, 62) constrained
to assume values only values in the interval K = (ky,k,), with =1 <k; <0 <k, < o and
ky < u < k,. In this paper the computations are done for k; = —0.99, k, = oo.

The density function for the Truncated Normal (TN) distribution, f;5(R), is:
R— -(R-p)?
¢ ( o .U) _ e / 207

= R €K
R) = -(R-p)?
frn(R) oAy fkklz e /352 dR
0 R & K
where:
2
= o=t f %
= —, = — e 2dadt
¢ g VZT[ E VZT[ —
and
k,—u ki —u
hy= =——, = ———,Ad; = O(hy) — P(hy)

The quantity Ad®y represents the probability that R € K_

[s it possible to compute the expected value of CRRA(y) fory > 0:

—(x— 2
k, € ¥R /20'2
ki (1+x)Y
ks —(x—ﬂ)z/
Sl e

1

dx

(2.3) E[CRRA(Y)ry (o, 1) =
202 dx

that we consider as a function of (o, u)?

Using the expectation (2.3), the annual Certainty Equivalent Return
CER[CRRA(y)ry1(o, 1) becomes:
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k, € 202
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K, X - fk — o dx
(2.4) CER[CRRAWY)ry](o,p) = U jlfT;V_—()ydxl -1 =|— _((1):;;) -1
Ky ( x) fkkz e /552 dx
1
that for y = 0 becomes:
sz In(1+x)e . )2/202 dx
(2.5) CER[CRRA(0)7y](0,p) = e'2EIM (4RI _ 1 = oxp |12 —G? -1
fkkz e /202 dx
1

To graph CER[CRRA(y)rn](0, ) in the space [o7y (0, 1), ury (0, 1), CER[CRRA(y) rn](0, )], we use
the Differential Geometry and briefly we introduce the transformation between spaces.

We compute the Mean, u;y (0o, 1), and the Standard Deviation, a7y (o, 1) , of the Truncated Normal
variable R, that are functions of (g, u) and represent a transformation (g, u) = (o7y, Urn):

2

—(x-p)? —(x-p)?
kkz x%e /202 dx fkkz xe /202 dx
orny(o, 1) = - 2 ol e 2
e ~G-m)
fkklz e /202 dx fkklz e /202 dx
(2.6)
—(x-w)?
fkkz xe /202 dx
prn (o, 1) - —(—p)?
ka # / 2
Ky 202 dx

The condition we have to impose is that the transformation (o, u) = (o7y, dry) defined by (2.6) is
bijective, that is for every point (o, 1) there corresponds only one point (ary, try) and vice-versa. It
is well known that a necessary condition for bijective mappings is that the determinant of the
Jacobian matrix / must be different from zero:

aUTN(U;#) aUTN(U'#)

do ou
2.7 det (J) = det #0
(2.7) ) Oprn (o, 1) Oury(o, 1)

do ou

Using parametric representation with the parameters (o, i), it will be possible to graph the surface
defined by the three functions oy (o, 1), urn (o, ), CER[CRRA(y)rn] (0, 1) in the parametric space

lorn (o, 1), urn (o, 1), CER[CRRA(Y) rn](0, w)] where:

X axis = o7y (0, 1).

y axis = piry (0, ).
z axis = CER[CRRA(Y) ry1(o, 1)



The three functions ory(o,w), ury(o, 1), CER[CRRA(y)ry](o, ) depend on (o,u) defined in
[(GMin' O-Max)x(.uMinr .uMax)] in the Cartesian space (O-' .u)-

Using vectorial notation, the surface is defined by the vector r(o,u) in the space
lorn (o, 1), urn (o, 1), CER[CRRA(y) rn](0, )], where i, j, k are the relative unit vectors:

(2.8) r(o,1) = ory(0, Wi+ ury(o,1w)j + CER[CRRA(Y) ry](0, Wk

For regularity of the surface, the Jacobian Matrix /;:

dory (o, 1) dory (o, 1)
do du
3] ) 0 )
(2.9) J, = .UT1(\;(U ) prn (o, 1)
o du
dCER[CRRA(Y)ry](o,) OCER[CRRA(Y)ryn](o, 1)
do du

must have rank two; e.g. this condition is satisfied if (2.7) is true (as is proved in Appendix A).

Now we can graph with parametric representation the CER[CRRA(y)rn](o, 1) fory =0, 2,5, 10.
We consider a range:

[(Omin + Omax) X Wmin + Hmax)] = [(0.001 + 0.150)x(—0.100 + 0.100)]

that will be transformed by (2.6) in the range:

(2.10) [(UTN_Min - UTN_Max)X(IiTN_Min - #TN_Max)] = [(0.001 =+ 0.150)x(—0.100 + 0.100)]

This ostensible equality between the numeric values of the ranges is due to the narrow amplitude
of the ranges; if we use a wider range for [(ouin, Omax) X (Umin, Umax)], We reach a considerable
difference between the ranges, due to the non linearity of the transformation (see Appendix A).

(2.10) is a reasonable range, taking in account that it represents a monthly value. E.g., S&P500 had a
monthly volatility of 0.090 in a window of 12 months from 2006 until 2014, and 0.04 for average
monthly Return in the same window.

Figures 2.2.1+2.2.8 show the 3D representation and the Iso-utility curves for CER[CRRA(y)n] for
Yy =0,2,5,10.



Figure 2.2.1: 3D fory = 0

CERICRRAID) ;]

&
"

415 p =01

05).. {8

01

CERICRRA(D) ]
0001 £ 050156

Figure 2.2.3: 3D fory = 2
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Figure 2.2.2: Iso-utility curves fory = 0
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Figure 2.2.4: Iso-utility curves fory = 2
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Figure 2.2.5: 3D fory = 5 Figure 2.2.6: Iso-utility curves fory = 5
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Figure 2.2.7: 3D fory = 10 Figure 2.2.8: Iso-utility curves fory = 10
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We can note in Figure 2.2.7 that for oy values approximately greater than 0.12, CER[CRRA(10) 1y ]
has very flat values.

Consider now a generic pair (a-,yj) c [(opin * Oma) X WUnin = Uyax)),j =1,...,]. Due to the
bijective transformation (2.6) it corresponds to the pair (o7y j, tirn;) € [(0rn min + Orn max) X

(.UTN_Min - .UTN_Max)]-



Every pair (O'TNJ, IlTN,j) can represent a Fund, F;, which has the (monthly) Return {RTNJ-; j=
1,..,K } described by a Truncated Normal distribution.

We can graph every F; in the space [ory (0, 1), ury (0, ), CER[CRRA(Y) ry] (0, )] from a point with
coordinates [O‘TNJ-(O'-,MJ-),,MTNJ (a-,uj), CER [CRRA()/)TN,]-](G-,#]-)], and it is possible to measure the
dependency of CER[CRRA(}/)TNJ](G,MJ-) on ory; (a-, uj) (Section 5) followed by the induced
ranking ( Section 6).

3. The specific case of Morningstar Rating methodology.
We consider now the link between (2.2) and the Morningstar Rating.

Given a period of T months, the Morningstar Risk-Adjusted Return for a Fund F; {j =1, ...,/ }is
defined as follows?:

‘

-12
1T —
MRAR(Z)] = _?Zt=1(1 + ERt'j)_Z] - 1, Y = 2
(31) MRAR(); = By 12

T

\ [ t=1
where:
Y7 14+ Rf,

is the monthly geometric excess return. LR, ; is the monthly return including the commissions and
Rf; is the monthly return of the risk free rate. In this paper we consider Rf; = 0 and no
commissions, meaning that we can consider the monthly return R, ; instead of the ER, ;.

Morningstar considers the value y = 2 consistent with the risk aversion of the typical retail
customers and uses the values of MRAR(2); to rank the Funds.

MRAR(y); are the values of the Certainty Equivalent described in (2.2), fory = 2 and y = 0 using
the time series average of (1 + Rt,j)_2 and of In (1 + Rt,j) as an estimate of E [(1 + Rj)_z] and
E[ln (1 + Rj)] computed for a generic Fund F;.

Consider now J Funds {F] =1, ...,]}, each of which has a sequence of T (monthly) Returns
{RTN,tJ-; t=1,..,T; j=1, ...,]} with Truncated Normal distribution fry ;(R). For every F;, the
Returns Ryy . ; are independent and identically distributed with Expected Return pry; and
Standard Deviation o7y ;. It is possible to compute the sample Expected Return and the sample
Standard Deviation by using:

2 Morningstar (2009), pp. 11-12.
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—1\'T -1 \T 2)1/2
UrnTj =T D=1 Rrnej Orwrj = {(T -1) Zt:l[RTN,t,j - .uTN,T,j] } .

It is well known that llmT_,oo ‘uTN'T'j = ‘uTN,j and llmT_>oo O-TN,T,]' = O-TN,]"

. . 1
The empirical pdfis: fryr;(R) = ;zgl 5(R — RTN,t,j)
where 6(R - RTN,tJ-) is the Delta Dirac function centered in Rry ¢ ;.

By the Glivenko-Cantelli Theorem we have:
T

1
lim T 5(R - RTN,t,j) = fTN,j(R)

T—oo
t=1

Consider now the (3.1), again in the hypothesis of R distributed as a Truncated Normal, for T — oo :

12

_12
AR P
im |= T ap oz “l=|mz 1ap . V|
T—o0 T t=1 (1+RTN,t,j)2 T_>OOT t=1 (1+RTN,t,j)2

12

k r 2
| 1
= |:fk %EI}’?OTZS(X—RTNIJ)de] -1
1 t=1
% frg ) 2
2 Ax
= l] —fTNJ > dXI -1
K, (1+x)

that is, we find the expression (2.4) computed for y = 2 and for the Fund F.

Thus, with the hypothesis of R distributed as a Truncated Normal, we will consider
CER [CRRA(Z)TNJ](O'~, uj) as the %imMRAR(Z)j. With the same rationale, CER [CRRA(O)TNJ](O'-, uj)

is the Tlim MRAR(0);.

Note that MRAR(0); is the Annualized Geometric Return computed for the Fund Fj, denoted by
AGR;: in this way we assume that, measuring satisfaction using CER[CRRA(0)ry] is the same as if

we measured satisfaction based on the AGR for large T. This is coherent with the fact that

maximizing the AGR is equivalent to maximizing the expected value of log-utility function, that is
the (2.1) fory = 0.

Consequently, the well-known Morningstar Risk, MRisk, defined by:
MRisk; = MRAR(0); — MRAR(2);
can also be computed in the Truncated Normal hypothesis as:

MRiskry j(0j,1;) = MRiskry j = CER[CRRA(0)ry ;](0j, ;) — CER[CRRA(2) 7y ;|(0j, 1))

11



In the hypothesis done for the distribution of R; ;, CER [CRRA(Z)TNJ](O'-, ,uj) is a good
representation of MRAR(2); behavior.

4. Quadratic Utility Function
Consider the following general Quadratic Utility Function (QUF):

(4.1 QUF(W) = QUF = a+ bW — cW? b,c>0

where W is defined as in (2.1).

If the function (4.1) has positive first derivative and negative second derivative, it represents a risk-
averse person with insatiable appetite, that is:

b
QUF' =b —2cW > 0= W < —— = Wy (1 + uy)
QUF" =-2c<0 = ¢ >0

@2 aralour) = -2 2 4 prafour] = —2W
' QUF] = QUF' b —2cW ’ ¢ b —=2cW

Without stating a hypothesis on the distribution of the (monthly) return R, we define the expected
return E[R], the standard deviation SD[R] = E[(R — E[R])?] and uy = max{E[R] |W < W,(1 +

ty )3
Wy (1 + uypy) is the maximum value allowed for W such that (4.1) maintain its characteristic of Risk
aversion.

Proposition 4.1: With the definition b = 2cWy(1 + uy), the expected value of QUF in (4.1),
E[Q(uy)](SD[R],E[R)), is a function of both Standard Deviation SD|R] and Expected Return E[R]
represented by a paraboloid in the space (SD[R], E[R], E[Q(uy)](SD[R], E[R]) ) with downward
concavity, whose vertex is given by the point (0, tty;, E[Q( pty)1(0, ptar)) - That is:

E[Q(um)I(SDIRLE[R]) = QUF (W) + cWiuiy — cWg[SDIR]? + (E[R] — pua)?]

where QUF (W,) = a + bWy — cW¢ = a + 2cWy (1 + )Wy — cWE .

The Certainty Equivalent Return for the Quadratic Utility Function centered in p,; ,CER[Q (uy)], has
the following annualized expression:

(43) CERIQunI(SDIRY,EIR]) = CERIQ(uan)] = (1 + uyy —/SDIRTE + GETR] — g ?)  — 1

12



CER[Q(upn)](SD[R], E[R]) represent a squeezed cone in the space
(SD[R],E[R], EIQ(upm)]I(SDIR], E[R]) ), whose vertex is given by the point

(0: v, CER[Q(1p)](0, MM))-

Proof: Appendix B. []

For the ARA and RRA computed for QUF with u,, parameter we have:

1 1+ E[R]

WGy —ERD " RRAWQGI] =7

(4.4) ARA[Q(uwm)] =

This expression implies that (absolute and relative) risk aversion increases with increments of
expected return.

The economic literature claims this aspect of the monotone increasing implied by the quadratic
utility function is unrealistic. In spite of this problem, QUF plays an important role in portfolio
analysis because it is perfectly consistent with the mean-variance analysis3. Furthermore, the
quadratic function is very useful because it can be seen, according to the Taylor expansion, as the
second-order approximation of any utility function*.

Until now, the distribution for Return involved in CER[Q (u,,)] has not been defined. To compare its
behavior with the CER[CRRA(y)ry], we also apply the (4.3) to a Return with a Truncated Normal
distribution denoted with CER[Q (tp) 7n -

For CER[Q(um)rn] we choose uy = 0.15 greater than ury ,, = 0.10, see (2.10), due to the fact
that for puy =ty max the First Derivative of the Implicit Function, defined in Section 5, becomes
infinite and that for ), < ury max the concavity of the (4.3) has not the risk averse properties.

Figure 4.1.1 shows the three dimensional graphs representing the CER[Q (¢y) rn]-and Figure 4.1.2
shows the iso-utility curves that we can obtain from the equality CER[Q (uy)rn] = K, where K is a
constant.

3 Very often investors take their decisions on the basis of both Expected Returns and Standard Deviations parameters.

* For example, Quadratic Utility function provides an excellent approximation of Logarithmic Utility function, which exhibits
decreasing absolute and constant relative risk aversion. Using historical security return data, Pulley (1983) shows that the
approximations are very good, and in many cases the optimal portfolios, computed with the maximization of the expected
logarithmic utility, are virtually identical compared with those obtained maximizing appropriate mean-variance formulations.

13



Figure 4.1.1: 3D CER[Q (up) rn] for uy = 0.15  Figure 4.1.2: Iso-utility curves for u, = 0.15
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Again, the CER[Q(uy)rn] is computed for a set of Funds F;, and consequently its value is
CER [Q(#M)TN,j](U'; Hj)-

5. A measure of the dependence on o7y : First Derivative of the Implicit Function.

As stated above, the first aim of this paper is to show that CER[CRRA(y)ry] has a lack of
dependence on opy . For this purpose, we compare the dependence with that of the
CER[CRRA(0)ry]. It will be observed that this dependence is very similar for low values of y. To
better underline this point, we also compare the dependence of the CER[CRRA(0);y] with
CER[Q(up)rn], noticing the different result.

As an analytic measure of the dependence by oy, we compute the First Derivative of the Implicit
Function (FDIF) u;y defined by the level curve of the CER[CRRA(y)](o,u) in the space
lorn (o, ), ury (o, 1), CER[CRRA(y)rn](o, )]. The FDIF has a parametric representation with the
parameters (o, 1), and is drawn in the space mentioned above.

OCER[CRRA(Y)]rn
1) n(CERICRRAMIn)©) |~ dopy
' dory ~ OCER[CRRA(Y)Irn
ury

In Appendix C the generic expression for the FDIF is computed, through the transformation

(o, 1) = (orn, irn)-
In Appendix D it is shown that (5.1) is equal to:
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dpry OCER[CRRA(Y) i ] _ dCER[CRRA(Y)rn] Oprn

.2) durn{CERICRRA(Y) w13 (o, 1) _ 00 ou do ou
' dory dory OCER[CRRA(y)rn]  OCER[CRRA(y)rn] 001y
do du do du

and that it is also possible to find all the partial derivatives involved in (5.2).
In Appendix E we find all the elements to compute:

dury OCER[CRRA(0)ry]  OCER[CRRA(0)ry] dpiry

(5.3) durn{CER[CRRA(O)ry]}(o,1) 0o ou do ou
' dory ~ dopy OCER[CRRA(0)7y]  OCER[CRRA(0)ry] dory
do du do du

Finally, in Appendix F:
Oury OCER[Q (up) ry ] . OCER[Q(up)rnl Oury

(5.4) durn{CER[Q(up) rn]} (o, 1) _ do du do du
. dory dory OCER[Q (uy) 7a] _ ICER[Q(um)rn] 907N
do u do du

The expressions above allow to graphs the FDIF defined by CER[CRRA(y) ru]:

Figure 5.1.1: FDIF fory = 0 Figure 5.1.2: FDIF fory = 2
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Figure 5.1.3: FDIF fory = 5 Figure 5.1.4: FDIF fory = 10
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and by CER[Q(0.15) 7y ]:

Figure 5.2: FDIF defined by CER[Q(0.15) 7]
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Note that all four Figures 5.1 have quite a linear dependence, obviously until different values of ary;
this will be quantified in the following Tables 5.1 +5.4.
Finally, as a measure of the dependence by oy, we define:
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_(5.2)-(53)

0, =
AICC(, 00)(o, ) = 3
(5.5)
(5.4) — (5.3)

0 N A

that are drawn below.
Figure 5.3.1: A%[CC(2,0)] Figure 5.3.2: A%[CC(5,0)]
A%CCEROY ATCC(E,0))

O1sp =01 0001505015 01=p =01 0001=0=0.15

Figure 5.3.3: A%[CC(10,0)] Figure 5.3.4: A%[QC(0.15,0)]
A%[CC10,0] A%[QC(0.15,0]]

O1=p =01 0001 =e=015 O1=p =01 0001 =o=015
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We divide the range (2.10) in 81 cross points, for each of which we compute the values of (5.5) that
it is possible to see in the following tables; the values for o,y are indicated in the last row and the
values for uyy are indicated in the first column.

Table 5.1: A%[CC(2,0)]ory, trn

V&1 A%[CC(Z,O)]

0.100 2.000 2.003 2.011 2.025 2.046 2.075 2.115 2.172 2.260
0.075 2.000 2.003 2.010 2.024 2.043 2.070 2.108 2.159 2.237
0.050 2.000 2.003 2.010 2.022 2.041 2.066 2.101 2.148 2.217
0.025 2.000 2.002 2.009 2.021 2.039 2.063 2.095 2.139 2.200
0.000 2.000 2.002 2.009 2.020 2.037 2.059 2.089 2.130 2.186
-0.025 2.000 2.002 2.008 2.019 2.035 2.056 2.084 2.122 2.173
-0.050 2.000 2.002 2.008 2.018 2.033 2.053 2.080 2.115 2.162
-0.075 2.000 2.002 2.008 2.017 2.031 2.050 2.075 2.108 2.152
-0.100 2.000 2.002 2.007 2.017 2.030 2.048 2.072 2.103 2.143

om 0.001 0.020 0.038 0.057 0.076 0.094 0.113 0.131 0.150

Table 5.2: A%[CC(5,0)](orn, trn)

KU A%[CC(S,O)]

0.100 5.000 5.014 5.056 5.129 5.241 5.408 5.667 7.228 25.594
0.075 5.000 5.014 5.053 5.121 5.226 5.381 5.615 6.425 22.939
0.050 5.000 5.013 5.050 5.115 5.213 5.357 5.570 6.062 18.572
0.025 5.000 5.012 5.047 5.108 5.201 5.335 5.531 5.886 13.833
0.000 5.000 5.012 5.045 5.103 5.190 5.315 5.496 5.786 10.176
-0.025 5.000 5.011 5.043 5.098 5.180 5.297 5.465 5.718 7.972
-0.050 5.000 5.011 5.041 5.093 5.170 5.281 5.437 5.665 6.826
-0.075 5.000 5.010 5.039 5.088 5.162 5.266 5.411 5.620 6.270
-0.100 5.000 5.010 5.037 5.084 5.154 5.252 5.388 5.581 5.998

omw 0.001 0.020 0.038 0.057 0.076 0.094 0.113 0.131 0.150

Table 5.3: A%[CC(10,0)](orn, trn)

(SR A%[CC(l0,0)]

0.100 10.000 10.053 10.209 10.494 10.969 13.805 58.843 42.247 31.411
0.075 10.000 10.050 10.197 10.465 10.904 11.900 62.393 44.880 33.436
0.050 10.000 10.047 10.187 10.438 10.846 11.548 65.970 47.585 35.516
0.025 10.000 10.045 10.177 10.413 10.794 11.413 69.301 50.362 37.651
0.000 10.000 10.043 10.168 10.391 10.747 11.313 71.037 53.211 39.840
-0.025 10.000 10.041 10.159 10.370 10.704 11.227 65.503 56.131 42.083
-0.050 10.000 10.039 10.151 10.351 10.665 11.151 43.478 59.123 44.382
-0.075 10.000 10.037 10.144 10.334 10.629 11.081 21.226 62.183 46.736
-0.100 10.000 10.035 10.138 10.317 10.597 11.019 13.539 65.303 49.145

omw 0.001 0.020 0.038 0.057 0.076 0.094 0.113 0.131 0.150
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Table 5.4: A%[QC (tpy, 0)1(orn, trn)

(SR A%[QC(O,IS,O)]

0.100 6.200 6.193 6.174 6.142 6.096 6.037 5.962 5.870 5.757
0.075 7.222 7.215 7.194 7.159 7.110 7.046 6.966 6.867 6.747
0.050 8.500 8.492 8.469 8.431 8.378 8.308 8.220 8.112 7.982
0.025 10.143 10.134 10.108 10.066 10.007 9.929 9.832 9.713 9.570
0.000 12.333 12.323 12.294 12.246 12.179 12.090 11.980 11.846 11.684
-0.025 15.400 15.388 15.354 15.298 15.219 15.116 14.987 14.831 14.644
-0.050 20.000 19.985 19.944 19.876 19.779 19.654 19.497 19.308 19.081
-0.075 27.667 27.648 27.594 27.505 27.380 27.216 27.013 26.767 26.474
-0.100 43.000 42.972 42.893 42.763 42.579 42.341 42.044 41.685 41.258

omw 0.001 0.020 0.038 0.057 0.076 0.094 0.113 0.131 0.150

Looking at Table 5.1, wherey = 2, we see that A%[CC(2,0)] has high but flat values for all the
values of ury and for a wide range of oy, until o7 = 0.131. Obviously we expect high values, but it
is unexpected that they remain flat for a wide range. E.g., for the row corresponding to ury =
—0.100, the values change from 2.000 for oy = 0.001 to 2.103 for oy = 0.131.

It means that, in the region where the difference is so flat, the dependence by oy is almost equal
between CER[CRRA(2)y] and CER[CRRA(0);y], and thus their capability to carry out a ranking is
influenced almost in the same manner by gry.

In short, using CER[CRRA(2)ry] for ranking, we will have similar results as if we
use CER[CRRA(0)y].

The above considerations lead to the conclusion that also the ranking done by Morningstar suffers
from the same drawbacks.

For y = 5 the dependence by gy is greater, but it remains quite constant even if in a narrower
range than for y = 2. Note that there is an increase in the value and obviously in the shape as can be
seen in Figure 5.3.2 for oy = 0.12.

For y = 10 the increase is more evident, but after o7y ~ 0.12 the values of A%[CC (10, 0)] decrease
when o7y increases. This appears as an anomaly that can be detected also by looking at Figures
2.2.7 and 5.1.4. This change of concavity indicates that, for a value of oy greater than 0.12, the
sensitivity to oy does not change.

It may be a source of misunderstandings that this value exists for gry; it seems a cut-off value. In
order to explore this aspect, we consider the values of CER[CRRA(10) ] for o7 > 0.150:

19



Figure 54.1: CER[CRRA(10);y]  Figure 5.4.2: FDIF CER[CRRA(10)y]
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In this case CER[CRRA(10);y] becomes flat, and its FDIF decreases while o,y increases: after the
value oy = 0.12, the sensitivity to oy remains constant.

For the CER[Q (uy)7n] case, A%[QC (uy, 0)] is shown to be a continuous value variable, meaning
that this Utility Function, even though it depends on the first two moments, has a gradual
dependence on the o7, without steps.

6. The Ranking’s Dependence on Standard Deviation

It is possible to compare the risk-adjusted Funds using CER for all cases mentioned above. An
alternative to utility theory is simply to select the Fund that has the highest AGR; it is well known
that maximizing the AGR is equivalent to maximizing the expected value of log-utility function, that
is, the (2.1) fory = 0.

We divide the range (2.10):

[(orn min = Orn max) X (trn min = Brw max)] = [(0.001 + 0.1500)%(~0.100 + 0.100)]

into 9 grids:
[(UTN_Min(i) - UTN_Max(i))X(#TN_Min(i) - .uTN_Max(i))]ri c[1,..9]

and each of the grids contains 169 (=13*13) equally spaced cross points; every point represents a
Fund, with its values of (O’TNJ,MTNJ-) for which will be computed the values of CER[CRRA()/)TNJ-]

and CER[Q (ur) 7w j]-

We use the same ranking criteria used by Morningstar. The Funds are scored by the following bell
curve:
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Figure 6.1: Morningstar’s bell curve
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The Funds are sorted using the values of the CER[CRRA(y)ry] or CER[Q (uy)7y] and the rating is
assigned as follows:

5 stars to the first 10.0%,

4 stars to the next 22.5%

3 stars to the next 35.0%

2 stars to the next 22.5%

1 star to the last 10.0%.

We compare a ranking based on CER[CRRA(y)ry], fory =2,5,10 and based on CER[Q (ttp) rn]
with a ranking induced by CER[CRRA(0)ry]. The lack of dependence on o7y for lower y suggests

that the ranking may be quite similar, at least in the region pointed out in Section 5 where
CER[CRRA(y)ry] has alack of dependence on ary.

So we have simulated the behavior and the capability to supply a Rating by CER[CRRA(y) ] and
CER[Q(up)rn] for every grid separately, to point out the grids where a ranking done using
CER[CRRA(y)ry] may be equivalent to that of CER[CRRA(0)ry] and if there is a difference with
respect to the ranking done with CER[Q (tty) 7 ]-

We count how many changes of Rating we have for every grid, in absolute and in percentage values.
For example, in the first row of the following table, we have for grid 2 [(0.052 + 0.099)x(—0.100 +
—0.037)] the value 16 in column A Rating: this means that only 16 of the 169 Funds, for the grid 2
have a different rank from the ones defined by CER[CRRA(0)y], and we have 8 Funds with a
difference of +1 star and 8 with -1 star.

For grid 1 we have 0: this means that, if we have all the 169 Funds concentrated in this grid, it is
equivalent to ranking with CER[CRRA(2)y] or with CER[CRRA(0) ry].
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Table 6.1: Number of Funds that have changed Rating fory = 2

grid Omw_min | Ommvax | Mvowvin | Aen_wax -3 -2 -1 0 1 2 3 A Rating
1 0.001 | 0.048 | -0.100 | -0.037 0 0 0 169 0 0 0 0
2 0.052 | 0.099 | -0.100 | -0.037 0 0 8 153 8 0 0 16
3 0.103 | 0.150 | -0.100 | -0.037 0 0 19 131 19 0 0 38
4 0.001 | 0.048 | -0.032 | 0.032 0 0 0 169 0 0 0 0
5 0.052 | 0.099 | -0.032 | 0.032 0 0 8 153 8 0 0 16
6 0.103 | 0.150 | -0.032 | 0.032 0 0 17 135 17 0 0 34
7 0.001 | 0.048 | 0.037 | 0.100 0 0 0 169 0 0 0 0
8 0.052 | 0.099 | 0.037 | 0.100 0 0 7 155 7 0 0 14
9 0.103 | 0.150 | 0.037 | 0.100 0 0 17 135 17 0 0 34

Total 0.001 | 0.150 | -0.100 | 0.100 0 0 76 1369 76 0 0 152

Table 6.2: Number of Funds that have changed Rating fory = 5

gnd Ommin | Omax [ rnvmin [ JATN_max -3 -2 -1 0 1 2 3 A Rating
1 0.001 | 0.048 | -0.100 | -0.037 0 0 3 163 3 0 0 6
2 0.052 | 0.099 | -0.100 | -0.037 0 0 23 123 23 0 0 46
3 0.103 | 0.150 | -0.100 | -0.037 0 7 32 86 42 2 0 83
4 0.001 | 0.048 | -0.032 | 0.032 0 0 2 165 2 0 0 4
5 0.052 | 0.099 | -0.032 | 0.032 0 0 21 127 21 0 0 42
6 0.103 | 0.150 | -0.032 | 0.032 0 1 36 95 36 1 0 74
7 0.001 | 0.048 | 0.037 | 0.100 0 0 2 165 2 0 0 4
8 0.052 | 0.099 | 0.037 | 0.100 0 0 19 131 19 0 0 38
9 0.103 | 0.150 | 0.037 | 0.100 0 1 33 100 35 0 0 69

Total 0.001 | 0.150 | -0.100 | 0.100 0 9 171 1155 183 3 0 366

Table 6.3: Number of Funds that have changed Rating fory = 10

grld Ommin | Om_max | JLin_min JAN_max -3 -2 -1 0 1 2 3 A Rating
1 0.001 | 0.048 | -0.100 | -0.037 0 0 13 143 13 0 0 26
2 0.052 | 0.099 | -0.100 | -0.037 0 3 35 91 39 1 0 78
3 0.103 | 0.150 | -0.100 | -0.037 4 19 38 48 38 16 6 121
4 0.001 | 0.048 | -0.032 | 0.032 0 0 12 145 12 0 0 24
5 0.052 | 0.099 | -0.032 | 0.032 0 1 36 94 38 0 0 75
6 0.103 | 0.150 | -0.032 | 0.032 4 20 35 49 38 20 3 120
7 0.001 | 0.048 | 0.037 | 0.100 0 0 9 151 9 0 0 18
8 0.052 | 0.099 | 0.037 | 0.100 0 1 35 96 37 0 0 73
9 0.103 | 0.150 | 0.037 | 0.100 5 19 33 49 43 17 3 120

Total 0.001 | 0.150 | -0.100 | 0.100 13 63 246 866 267 54 12 655
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Table 6.4: Number of Funds that have changed Rating for pu,, = 0.15

grid Omw_min | Ommvax | Mvowvin | Aen_wax -3 -2 -1 0 1 2 3 A Rating
1 0.001 | 0.048 | -0.100 | -0.037 0 0 1 167 1 0 0 2
2 0.052 | 0.099 | -0.100| -0.037 0 0 16 137 16 0 0 32
3 0.103 | 0.150 | -0.100| -0.037 0 0 25 119 25 0 0 50
4 0.001 | 0.048 | -0.032| 0.032 0 0 4 161 4 0 0 8
5 0.052 | 0.099 | -0.032| 0.032 0 0 22 125 22 0 0 44
6 0.103 | 0.150 | -0.032| 0.032 0 1 35 96 37 0 0 73
7 0.001 | 0.048 | 0.037 | 0.100 0 0 11 147 11 0 0 22
8 0.052 | 0.099 | 0.037 | 0.100 0 3 34 92 40 0 0 77
9 0.103 | 0.150 | 0.037 | 0.100 0 9 38 71 46 5 0 98

Total 0.001 | 0.150 | -0.100| 0.100 0 13 186 1115 202 5 0 406

The following 4 tables replicate the previous in percentages.

For example, in the following table we have for grid 2 the value 0.095: this means that only 9.5% of
the Funds in grid 2 [[0.052-+ 0.099) X (-0.100 + -0.037)] have different ranks from the one defined
by CER[CRRA(0)y], and we have 4.7% Funds with a difference of +1 star and 4.7% with -1 star.

Table 6.5: % of Funds that have changed Rating fory = 2

grid Om_min | Ommax | Hrvmin [ Arn_max -3 -2 -1 0 1 2 3 A% Rating
1 0.001 | 0.048 | -0.100 | -0.037 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 0.000
0.052 | 0.099 | -0.100| -0.037| 0.000 | 0.000 | 0.047 | 0.905 | 0.047 | 0.000 | 0.000 0.095
0.103 | 0.150 | -0.100| -0.037| 0.000 | 0.000 | 0.122 | 0.775 | 0.112 | 0.000 | 0.000 0.225
0.001 | 0.048 | -0.032| 0.032 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 0.000
0.052 | 0.099 | -0.032| 0.032 | 0.000 | 0.000 | 0.047 | 0.905 | 0.047 | 0.000 | 0.000 0.095
0.103 | 0.150 | -0.032| 0.032 | 0.000 | 0.000 | 0.101 | 0.799 | 0.101 | 0.000 | 0.000 0.201
0.001 | 0.048 | 0.037 | 0.100 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 0.000
0.052 | 0.099 | 0.037 | 0.100 | 0.000 | 0.000 | 0.041 | 0.917 | 0.041 | 0.000 | 0.000 0.083
9 0.103 | 0.150 | 0.037 | 0.100 | 0.000 | 0.000 | 0.101 | 0.799 | 0.101 | 0.000 | 0.000 0.201
Total 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.000 | 0.050 | 0.900 | 0.050 | 0.000 | 0.000 0.100

X|IN|O|n|h~lw|N

Table 6.6: % of Funds that have changed Rating fory = 5

grid Om_min | Ommax | Mrvmin [ ATn_max -3 -2 -1 0 1 2 3 A% Rating
1 0.001 | 0.048 | -0.100| -0.037| 0.000 | 0.000 | 0.018 | 0.964 | 0.018 | 0.000 | 0.000 0.036
0.052 | 0.099 | -0.100| -0.037| 0.000 | 0.000 | 0.136 | 0.728 | 0.136 | 0.000 | 0.000 0.272
0.103 | 0.150 | -0.100| -0.037| 0.000 | 0.041 | 0.189 | 0.509 | 0.249 | 0.012 | 0.000 0.491
0.001 | 0.048 | -0.032| 0.032 | 0.000 | 0.000 | 0.012 | 0.976 | 0.012 | 0.000 | 0.000 0.024
0.052 | 0.099 | -0.032| 0.032 | 0.000 | 0.000 | 0.124 | 0.751 | 0.124 | 0.000 | 0.000 0.249
0.103 | 0.150 | -0.032| 0.032 | 0.000 | 0.006 | 0.213 | 0.562 | 0.213 | 0.006 | 0.000 0.438
0.001 | 0.048 | 0.037 | 0.100 | 0.000 | 0.000 | 0.012 | 0.976 | 0.012 | 0.000 | 0.000 0.024
0.052 | 0.099 | 0.037 | 0.100 | 0.000 | 0.000 | 0.122 | 0.775 | 0.112 | 0.000 | 0.000 0.225
9 0.103 | 0.150 | 0.037 | 0.100 | 0.000 | 0.006 | 0.195 | 0.592 | 0.207 | 0.000 | 0.000 0.408
Total 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.006 | 0.122 | 0.759 | 0.120 | 0.002 | 0.000 0.241

[ecB NI o)} O, | NNy OVH N \§)
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Table 6.7: % of Funds that have changed Rating for y = 10

grid Om_min | Ommax | Mrvwin | Lrn_max -3 -2 -1 0 1 2 3 A% Rating
1 0.001 | 0.048 | -0.100 | -0.037| 0.000 | 0.000 | 0.077 | 0.846 | 0.077 | 0.000 | 0.000 0.154
2 0.052 | 0.099 | -0.100| -0.037| 0.000 | 0.018 | 0.207 | 0.538 | 0.231 | 0.006 | 0.000 0.462
3 0.103 | 0.150 | -0.100| -0.037| 0.024 | 0.112 | 0.225 | 0.284 | 0.225 | 0.095 | 0.036 0.716
4 0.001 | 0.048 | -0.032 | 0.032 | 0.000 | 0.000 | 0.071 | 0.858 | 0.071 | 0.000 | 0.000 0.142
5 0.052 | 0.099 | -0.032 | 0.032 | 0.000 | 0.006 | 0.213 | 0.556 | 0.225 | 0.000 | 0.000 0.444
6 0.103 | 0.150 | -0.032 | 0.032 | 0.024 | 0.118 | 0.207 | 0.290 | 0.225 | 0.118 | 0.018 0.710
7 0.001 | 0.048 | 0.037 | 0.100 | 0.000 | 0.000 | 0.053 | 0.893 | 0.053 | 0.000 | 0.000 0.107
8 0.052 | 0.099 | 0.037 | 0.100 | 0.000 | 0.006 | 0.207 | 0.568 | 0.219 | 0.000 | 0.000 0.432
9 0.103 | 0.150 | 0.037 | 0.100 | 0.030 | 0.112 | 0.195 | 0.290 | 0.254 | 0.101 | 0.018 0.710

Total 0.001 | 0.150 | -0.100| 0.100 | 0.009 | 0.041 | 0.162 | 0.569 | 0.176 | 0.036 | 0.008 0.431

Table 6.8: % of Funds that have changed Rating for u,, = 0.15

grld Ommin [ Ommax [ Mrvmin | AN max -3 -2 -1 0 1 2 3 A% Rating
1 0.001 | 0.048 | -0.100| -0.037 | 0.000 | 0.000 | 0.006 | 0.988 | 0.006 | 0.000 | 0.000 0.012
2 0.052 | 0.099 | -0.100| -0.037| 0.000 | 0.000 | 0.095 | 0.811 | 0.095 | 0.000 | 0.000 0.189
3 0.103 | 0.150 | -0.100| -0.037 | 0.000 | 0.000 | 0.148 | 0.704 | 0.148 | 0.000 | 0.000 0.296
4 0.001 | 0.048 | -0.032| 0.032 | 0.000 | 0.000 | 0.024 | 0.953 | 0.024 | 0.000 | 0.000 0.047
5 0.052 | 0.099 | -0.032| 0.032 | 0.000 | 0.000 | 0.130 | 0.740 | 0.130 | 0.000 | 0.000 0.260
6 0.103 | 0.150 | -0.032 | 0.032 | 0.000 | 0.006 | 0.207 | 0.568 | 0.219 | 0.000 | 0.000 0.432
7 0.001 | 0.048 | 0.037 | 0.100 | 0.000 | 0.000 | 0.065 | 0.870 | 0.065 | 0.000 | 0.000 0.130
8 0.052 | 0.099 | 0.037 | 0.100 | 0.000 | 0.018 | 0.201 | 0.544 | 0.237 | 0.000 | 0.000 0.456
9 0.103 | 0.150 | 0.037 | 0.100 | 0.000 | 0.053 | 0.225 | 0.420 | 0.272 | 0.030 | 0.000 0.580

Total 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.009 | 0.122 | 0.733 | 0.133 | 0.003 | 0.000 0.267

The following Figures represent more intuitively Tables 6.5+6.8; every grid is represented as a
parallelepiped, whose height is A% Rating that is visible in the last column of the Tables.

Total % of change of Rating for Grid:

Figure 6.2.1: y = 2
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Figure 6.2.2: y =5
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Figure 6.2.3: y = 10 Figure 6.2.4: uy;, = 0.15

CER[ZRRA(IO) | Total % of Channe of Fating = 43 1 % CEFYCHO 15]) ™ | Total % of Changs of Rating = 267 %
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We can conclude that there are grids where the ranking of CER[CRRA(y)ry] is equal to the ranking
of CER[CRRA(0),y]. Especially fory = 2, Figure 6.2.1 and Table 6.5, for 0.001 < oy < 0.048,
grids 1, 4, 7, show zero changes of rating.

Also for y = 5 in the same grids we have at most 3.6% change of Rating, which is a very low level.
For y = 10 we have a different situation, in the same grids the percentages of change of rating lie
between 10.7% and 15.4% (Table 6.7). For the grids with greater o7y the sensitivity increases
greatly and the percentages of change of rating increase to 71.6% in grid 3 of Table 6.7.

The situation slightly improves if we consider a rating done with 1521 (=13*13*3*3) funds
distributed in only one grid in a range (2.10).

Table 6.9: Number of Funds that have changed Rating in one grid

Om.min | Ommax [ Mrvmin | An_max -3 -2 -1 0 1 2 3 A Rating
Y=2 0.001 | 0.150 | -0.100| 0.100 0 0 97 1327 97 0 0 194
Y=5 0.001 | 0.150 | -0.100| 0.100 0 1 224 1070 226 0 0 451
Y=10 0.001 | 0.150 | -0.100| 0.100 37 116 203 658 466 41 0 863
um =0,15| 0.001 | 0.150 | -0.100| 0.100 0 13 215 1052 241 0 0 469
Table 6.10: % of Funds that have changed Rating in one grid
Ommin | O mvax | Mnomin | JATN_max -3 -2 -1 0 1 2 3 A% Rating
Y=2 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.000 | 0.064 | 0.872 | 0.064 | 0.000 | 0.000 0.128
Y=5 0.001 | 0.150 | -0.100| 0.100 | 0.000 ( 0.001 | 0.147 | 0.703 | 0.149 | 0.000 | 0.000 0.297
Y=10 0.001 | 0.150 | -0.100| 0.100 | 0.024 | 0.076 | 0.133 | 0.433 | 0.306 | 0.027 | 0.000 0.567
um=0,15( 0.001 | 0.150 | -0.100 | 0.100 | 0.000 | 0.009 | 0.141 | 0.692 | 0.158 | 0.000 | 0.000 0.308
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Figure 6.3.1: y = 2 Figure 6.3.2:y =5

Total % of Change of Rating = 12,7548 % CER[CRRAS) TN] Total % of Change of Rating = 28.6515 %
Range : 01= p ., =01 0001 = o =015

Total Number of Funds = 1521
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CERICRRA(2) |

Range :-01< p o, =01 0.001 = o 015
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Y

Ry oy Oy
Figure 6.3.3: y = 10 Figure 6.3.4: uy; = 0.15
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Total Mumber of Change of Rating = 883 Total Number of Change Of Rating = 485

[ by Hn O

If we increase the number of Funds, to approximate the continuous behavior of the change of
rating, the situation does not change as can be seen in the following tables.
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Table 6.11: % of Funds that have changed Rating in one grid fory = 2

Funds' N. [ Ommin | Ommax | Hrvemin | Lin_max -3 -2 -1 0 1 2 3 A% Rating
1521 0.001 | 0.150 | -0.100 | 0.100 | 0.000 | 0.000 | 0.064 | 0.872 | 0.064 | 0.000 | 0.000 | 0.128
2401 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.000 | 0.060 | 0.880 | 0.060 | 0.000 | 0.000 | 0.120
3481 0.001 | 0.150 | -0.100 | 0.100 | 0.000 | 0.000 | 0.060 | 0.879 | 0.060 | 0.000 | 0.000 | 0.121
4761 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.000 | 0.060 | 0.880 | 0.060 | 0.000 | 0.000 | 0.120
6241 0.001 | 0.150 | -0.100 | 0.100 | 0.000 | 0.000 | 0.061 | 0.879 | 0.061 | 0.000 | 0.000 | 0.121

Table 6.12: % of Funds that have changed Rating in one grid fory = 5

Funds' N. [ Omvin | Ommax | Hrnmin | Lo -3 -2 -1 0 1 2 3 A% Rating
1521 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.001 | 0.147 | 0.703 | 0.149 | 0.000 | 0.000 | 0.297
2401 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.000 | 0.144 | 0.711 | 0.145 | 0.000 | 0.000 [ 0.289
3481 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.001 | 0.146 | 0.706 | 0.147 | 0.000 | 0.000 | 0.294
4761 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.000 | 0.144 | 0.711 | 0.145 | 0.000 | 0.000 [ 0.289
6241 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.000 | 0.145 | 0.708 | 0.146 | 0.000 | 0.000 [ 0.292

Table 6.13: % of Funds that have changed Rating in one grid fory = 10

Funds' N. | Om.min | Omvax | Hinomin | ATn_miax -3 -2 -1 0 1 2 3 A% Rating
1521 0.001 | 0.150 | -0.100| 0.100 | 0.024 | 0.076 | 0.133 | 0.433 | 0.306 | 0.027 | 0.000 [ 0.567
2401 0.001 | 0.150 | -0.100| 0.100 | 0.023 | 0.076 | 0.132 | 0.441 | 0.299 | 0.028 | 0.000 [ 0.559
3481 0.001 | 0.150 | -0.100| 0.100 | 0.023 | 0.076 | 0.133 | 0.441 | 0.299 | 0.028 | 0.000 [ 0.559
4761 0.001 | 0.150 | -0.100| 0.100 | 0.024 | 0.075 | 0.132 | 0.443 | 0.298 | 0.028 | 0.000 | 0.557
6241 0.001 | 0.150 | -0.100| 0.100 | 0.024 | 0.075 | 0.132 | 0.443 | 0.299 | 0.027 | 0.000 [ 0.557

Table 6.14: % of Funds that have changed Rating in one grid for p, = 0.15

Funds' N. [ Ommin [ Omimax | Mivvin | Lin_vax -3 -2 -1 0 1 2 3 |A% Rating
1521 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.009 | 0.141 | 0.692 | 0.158 | 0.000 | 0.000 | 0.308
2401 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.007 | 0.143 | 0.693 | 0.157 | 0.000 | 0.000 | 0.307
3481 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.007 | 0.144 | 0.692 | 0.157 | 0.000 | 0.000 | 0.308
4761 0.001 | 0.150 | -0.100 | 0.100 | 0.000 | 0.007 | 0.142 | 0.695 | 0.156 | 0.000 | 0.000 [ 0.305
6241 0.001 | 0.150 | -0.100| 0.100 | 0.000 | 0.007 | 0.142 | 0.694 | 0.156 | 0.000 | 0.000 | 0.306

We conclude that CRRA, even if it is one of the most used utility functions, weakly depends on
Standard Deviation, ary, for low levels of y. Due to the fact that every risk definition is linked with
Standard Deviation, CRRA seems inadequate to rank Funds at least for low values of y and surely for

y = 2.

Moreover, for y = 10, CRRA has a cut-off value for o7y, as we have pointed out at the end of Section
5; this cut-off decreases when y increases.
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7. Conclusions

This paper analyzes the behaviour of the CER[CRRA], with a comparison between AGR and CER[Q].
The dependence on Standard Deviation is analytically detected by the FDIF, which is possible to
calculate using a parametric representation of the CER of the involved utility function. It is shown
that the dependence on Standard Deviation is weak for low levels of y and for higher levels of y it is
possible to find anomalous behavior, in the sense that the concavity of the CER[CRRA] changes sign
and the dependence on Standard Deviation decreases when Standard Deviation increases. The
behaviour of the CER[CRRA] is similar to the one detected by AGR, and it is easy to see that the
CER[Q], even if the QUF depends only on the first two moments, has a behaviour more regular and,
especially, dependent on Standard Deviation. We chose the analytic approach, with the assumption
that the distribution of the Return is a Truncated Normal; this is motivated by the wide generality
of the Normal and the consideration that the Return cannot be lower than -1.

As a particular case, we analyse the behavior of the Morningstar ranking methodology, showing
that its dependence on the Risk is irrelevant> and that the ranking done is similar to the ranking
done using AGR.

Even if Standard Deviation is not a coherent measure of risk, it is a basis for every consideration
about the Risk, and is relevant to measuring the dependence by Standard Deviation for an
instrument, CER[CRRA], which is a candidate for measuring the Funds using any definition of risk®.

Considerations that are based on Standard Deviation or on any definition of risk ultimately involve
the capability of doing a ranking, and it is reasonable to expect that a ranking done using
CER[CRRA] should be different from one done using AGR. It has been demonstrated that this
difference is weak for low values of y and becomes relevant only for high levels of y. In addition,
increasing the number of Funds to simulate a continuous domain maintains the results unchanged.
On the contrary, CER[Q] induces a ranking that is different by the one induced using AGR.

Following these considerations, it seems that CER[CRRA] has a reduced capability to rank the
Funds.
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Appendix A. Transformation [o, u] - [o7 (o, w), ur(o, wl.

By the definitions of Standard Deviation and the Mean, for the Truncated Normal variable we have:

—(x-p)? —(x-p)? z
fkkz x%e /202 dx fkkz xe /202 dx
(o) = |— ol
orn\0, K, _(x_”)z/ , K, _(x_u)z/ ,
fkl e 202 dx fkl e 202 dx
(A1)
~(r-w?
k2 e /202 dx
ury (o, 1) == (x—p)?
“a-n
fkklz e /207 dx

The (A.1) transforms the set [o, u] in the set [o7y (0, w), ury (o, w)] as it is possible to see in the
following Figure A.1:

Figure A.1: Transformation o, u] = [ory (0, 1), ury (o, W]

Transformation [op] —= [uTN(a, ) ,|.LTH|:U, Bl

Set [0, ] Set [op (o, p ) poylo pll
01=p =01 0001 =o=015

u.nn4ﬂ..§--'§"'1 .3 :
o2 f. i

This ostensible equality between the numeric values of the ranges is due to the narrow amplitude

of the ranges; if we use a wider range for [(Gyin, Opax) X Unin, Umax)], then we do not reach this
equality between the ranges, due to the non linearity of the transformation (Figures A.3, A.4).
With the definitions:
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hy
Ilzaf e_T/ZdT,
h

1

Ry 5
12 = f e’ /2 dt
h

1

ha 2 hz
l14=o0 (u+ot)e” /2 dr, I5=

hq hy

ha 2 ha
17=0| (u+o1)e” /2 dr, 18 =

hq hy

we compute the following partial derivatives:

Ourn(o,pu) 1116 — 1314

2
(u+ ot)te”" /2 dr, 16=

2
(4 + o1)?te™" /2 dz,19 =

hy )
13 =f r2e~" 2 dr
h

1
hz

2
(1t + or)t2e™" /2 dr,
h‘l
h;

2
(u + o1)?t2e™" /2 dr,
hl

Oury(o,u) 1115 — 1214

do 112 ' ou 112
(A2)
dory (o, 1) 1 [1119 — 1317 our(o, )]
do ~2 ory(o,p)| 112 =2 prn (o, ) do
dory (o, 1) 1 [1118 — 1217 our(o, )]
on Zomp| iz AHm@m T

Now it is possible to verify (2.7), here reported for brevity:

aUTN(U' #) aUTN(U: Ii)

det] = det do o

Opry (o, 1)  Oury(o, )

#0

do au

Figure A.2: det] # 0

det] =0
01=p =01

0001 =o=015
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For wider range, we can note the non linearity of the transformation:

Figure A.3: Transformation Figure A.4: det] #+ 0

det) <=0
Dl=p =071 00N =o=045

Trarsformation [ap] = (e (o, plpgyle, pll

Sat o ] &t :|:|TH|:'<:-_:,L'|.|LTHf|::-_p.]'| o et
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1 BT
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oouG)
XTI R

ooz
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Appendix B. Proof of Proposition 4.1

Proposition 4.1: With the definition b = 2cWy(1 + uy), the expected value of QUF in (4.1),
E[Q(uy)](SD[R],E[R]), is a function of Standard Deviation SD|R] and Expected Return E|[R]
represented by a paraboloid in the space (SD[R], E[R], E[Q(uy)](SD[R], E[R]) )with downward
concavity, whose vertex is given by the point (0, tty;, E[Q( pty)1(0, par)) . That is:

E[Q(um)I(SDIRLE[R]) = QUF (W) + cWiuiy — cWg[SDIRT? + (E[R] — pua)?]

where QUF (W,) = a + bWy — cW¢ = a + 2cWy (1 + )Wy — cWE .

The Certainty Equivalent Return for the Quadratic Utility Function centered in p,; ,CER[Q (uy)], has
the following annualized expressions:

(43)  CERIQ(uy)I(SPIR], E[R]) = CERIQ(uy)] = (1 + y — /SDIRT? + (E[RT - #M)Z)lz -1

CER[Q(upn)](SD[R], E[R]) represents a squeezed cone in the space
(SD[R],E[R], EIQ(upm)](SD[R], E[R]) ), whose vertex is given by the point
(0: v, CER[Q(1p)]1(0, MM))-

Proof: Consider the expected value of the Quadratic Utility Function(4.1):

E[Q(um)] = Ela+ bW — cW?]
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= E[a + bWy(1+R) — cWZ(1 + R)?]
= a+ bW,(1 + E[R]) — cWg (1 + 2E[R] + E[R?])
= a+ bW, + bW E[R] — cWZ — 2cWZE[R] — ctWZ(SD[R]? + E[R]?)

= QUF(W,) + W,E[R](b — 2cW,) — cWZ(SD[R]? + E[R]?)

Substituting the parameter b with its expression, we have:

E[Q(um)] = QUF(Wy) + WoE[R](2cW, + 2cupWo — 2cWy) — cWi (SD[R]? + E[R]?)
= QUF(W,) + 2cWZE[R]uy — cWE(SD[R]? + E[R]?)

Adding and subtracting the same quantity cWZu2and considering the E[Q (u,,)] as a function of
SD[R] and E[R] we obtain:

E[Q(um)](SDIR], E[R]) = QUF (W) + cW¢'niy — cWF[SD[R]? + (E[R] — p)?]

(B.1) = QUF(Wo) + cWg{uy — cW[SD[R]? + (E[R] — um)?]}

The expression (B.1) represents a paraboloid in the space (SD[R], E[R], E[Q (uy)](SD[R], E[R]) )
with downward concavity, whose vertex is the point (0, pa, E[Q (1a1)1(0, ) ).

By the definition of the Certainty Equivalent Return:

QUF(Wy(1 + CER,[Q(us)])) = E[Q(us)1(SDIR], E[R])

where CER,,[Q(u;)] means (monthly) Certainty Equivalent Return for the Quadratic Utility
Function with center in py,.

We have:
a+ 2cWo(1 + tp) (1 + CER, [Q (un)]) — cWo (1 + CER, [Q (un)])? =

= QUF(Wy) + cW¢{uzy — [0% + (u — un)*1}
and solving for CER,,[Q (u,,)] the result is:

CERm[Q(uy)1(SDIR], E[R]) = CER[Q(uw)] = pyr — /SDIRI? + (E[R] — pay)?

because the other solution, with positive sign in front of the square root, has no economic sense.

The annualized expression is:

(B.2) CERIQ(unI(SDIR] EIR]) = CERIQ(ua)] = (1 + s — /SDIRTZ + (E[R] — #M)z)lz -1
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CER[Q(um)](SDIR],E[R]) represents a rotating squeezed cone in the space
(SD[R],E[R],E[Q(upm)](SD[R], E[R]) ) with downward concavity, whose vertex is given by the

point (0' v, CER[Q(1p)](0, .UM))-

Until now it has not been defined a distribution for Return involved in CER[Q (u,,)]; to compare its
behavior with the CER[CRRA(y)ry], we apply also the (4.3) to a Return with a Truncated Normal
distribution and will call it CER[Q (ttp) 7n 1

The Figure B.1 shows three dimensional graphs representing the CER[Q (i) rn]- The figure is
defined on the half-plane (o7, gry) with oy > 0 and pury < Uy, and only in this plane it maintains
the concavity coherent with its Risk aversion characteristic.

The Figure B.2 shows the iso-utility curves that can be obtained from the equality CER[Q (tp) 7n] =
K, where K is a constant; we have a sheaf of circumferences on the plane (o7y, ury) with centre

The parameter u,, is sufficient to identify CER[Q (up)rn] and RRA[Q (up) 7n]-

Figure B.1: 3D CER[Q(up)7n]1 = for uy, = 0.15  Figure B.2: Iso-utility curves for u, = 0.15

CERQ(D.15) 14y ] Iso-utility curves: CERIQ(0.15) 1 ]
01=sp =015 00 =e=015 01=sp =015 00 <e=015
o 018

-0.05 F

-0.1

L L L L L L L
0.02 0.04 006 008 0.1 012 014

Hrn oy ary

Appendix C
Consider (2.6) here reported for brevity, defining the Standard Deviation oy (o, 1) and the Mean
ury (o, u) of the Truncated Normal variable are:

2

—(x-p)? —(x-p)?
fkkz x%e /202 dx fkkz xe /202 dx
_ 1 |’k
orw (0 1) = Kk, ~(-m? K, ~(-w?
S e 202 dx J e 202 dx
1 1

(2.6)
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:uTN(O-' .u) = k, _(x_#)z/
fkl e 202 dx

We know by the Appendix A that the transformation (o,u) = (ory, Ury) defined by (2.6) is
bijective, it means that for every point (o, ) correspond only one point (ary, 4ry) and vice versa.

This means that the determinant of the Jacobian matrix / must be different from zero:

aUTN(U' .U) aUTN(U' .U)

do ou
2.7 det] = det #0
(2.7) J Oury(o,u) Oury(o,p)

do ou

Consider the following parametric representation of a surface:
X axis = oy (0, @).
y axis = ury (o, ).

z axis = Generic Function =y (o, ).

The three functions opy(o,u), ury(o, ), Y(o,u) are defined in the Cartesian subspace
[(GMin' O-Max)x(.uMinr .uMax)] of the space (O-' .u)-

Using the vector notation, the surface is defined by the vector r(o,u) in the space
lorn (0, ), urn (o, 1), ¥ (o, W], with:

(c.1) r(o,u) = ory(o, Wi+ ury(o,wj + (o, Wk
where i, j, k are the relative unit vectors.

For regularity of the surface, the Jacobian Matrix /;:

dory(o,u)  dory(o,p)

do aﬂ
(€.2) Jy = a#n;gf, ) auné;a, iy
al/)(O', ,Ll) al/) (O’, ,U.)
do aﬂ

must have rank two; e.g. this condition is satisfied if (2.7) is true.

The condition (2.7), saying that the transformation (o, u) = (o7y, Ury) is bijective, means that the
inverse transformation o (o7y, ury) , U(ory, Ury) exists locally.

It is possible to write:

Y(o,u) = l/J(U(UTN' trn) , u(ory, HTN))
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Computing the partial derivatives:

al/’(U(UTN;#TN) ;.U(UTN,#TN)) 0y do 0y odu
= +—=
dory do dory Oudopy

(C.3)
alp(U(UTN'HTN) :#(GTN'HTN)) 0y do 0y ou
= + -
Oty do Opury  Op Oury

By the Theorem of the Inverse Function:

1

do(orn, urn) 00 (or, trn) dory(o,u) dory(o, 1)
dory Oury _ do ou
ou(orn, urn)  Oulorn, Urn) ury(o, 1)  Oury(o, 1)
dory Oty do ou

that has a solution for (2.7), we can write:

do (o7, urn)  90(or, Hrn) LaMTN _LaO-TN
dory OUrn | det] ou det] du

ou(orn, rn)  Oulorn, Urn) _ 1 dury 1 dory
Aoy Oury det] Odo det] do

and substituting in (C.3):

P _ 1 a_lpa#TN_ 1 a_lpa.UTN = —det] 0y _ aHTNa_¢_a_¢a#TN
dory detJdo Ou  det]du do dory do du 0do du
i 1 a¢aaTN+ 1 dydory = det 0  dopy 0y 0y dory
Ory  det] da 0p  det] op 0o Yo" 80 o 90 o
P _ 1 <a.UTNa_1/J_a_1/Ja#TN>
dory detJ]\ do du 0do du

oY 1 <60TN oy aJyP E)JTN>

dury _detJ\ o ou do ou

Finally, the First Derivative of the Implicit Function in the space [ory (o, 1), urn (o, ), Y (o, w)] is:

Y Oury 0 _ 0y Oury
durn{}(o, ) dory _ 0o Ou 9o ou

dory B oY~ dory oY 0y dary
JUrn do ou Odo Jdu

(C.4)

This is a generic expression, that will be used substituting instead of (o, 1) the expressions for
CER[CRRA(y)ry] and CER[Q (up)ry] that is computed in Appendix D, E and F.
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The expression (C.4) can be seen in the geometrical way.
The orthogonal unit vector of the surfaces is done by:

or(o, 1) ar(a D)
do

N(o,w) =N ||ar(6 L 1) ar(o' M)”
where:
i J
or(o,u) or(o,u) dory(o, 1)  Oury(o, ) (31,[)(0, )
(€.3) do X 0 - do do do
3 dory(o, ) Oury(o,p) 0Y(o,p)

Developing (C.5) and omitting the dependence on (g, ) we can write:

or or rdury0y 0y a.uTN] . [aUTN Y oy aUTN] . [aUTN ury Oty aUTN]
— i— + - k
do ou 0do Jdu

— X — -
do du do oy 0do Jdu do Jdu do du

The tangent vector T is derived by N with a counterclockwise rotation and, due to the rotation, the
values of the component along the oy and pury axes exchange their absolute values between them;
furthermore, the component along pu;y axis changes also its sign; thus the projection of T on the
plane (o7y, Ury) defines an angle whose tangent is done by:

Ourn 0 _ 0y Oury
do ou 0do Jdu

dory 0Y 0P dory

do ou 0do du

that is (C.4).

Appendix D. First Derivative of the Implicit Function for CER[CRRA(Y)rn] -

Consider the expression (2.4), here reported for brevity:
12

—(x—u)z/ v
k, € 202

——dx
CERICRRAQ)gw](0, 1) = CER[CRRA() ] = | LX) 1

—(x-p)?
fkkz e /202 dx
1

As first step, we compute the first derivatives respect g, 1 of the integrals in the numerator and
denominator:
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—(x—11)? —(x-p)?
Y iy S
k

9}, Arxr 7 o2 (1+x)7

1

—(x—1)2 —(x—p)?
9 (ke (x—) /202 ke (x— ) e (x=) /202
f —f dx
k

— — dx =
ou Jy, (1+x) ) o2 (1+x)
kz _(F—_ 12 kz _ 2 _(&_;N2
o (%= WY dx:f (Gl A
do J, X o3
1 1
kz _(E_1\2 k2 _ _(E_1\2
a 6w / dx=f (x Zu)e €/ ”
ou ky kq o
and it follows that:
_12+y
—(x—u)z/ Y —(x—u)z/
sz e 202 dx sz e 202 dx
OCER[CRRA()rw] _ 12| “(A +x)¥ 0 Mk (A +x)
9 - —(x-p)2 0 -(x-p?
o Y fkkf e /202 dx g fkk: e /202 dx
_12+y
—(x—u)z/ Y
sz e—wdx
_ 12|k, (1 + x)y N
- - —(v—11)2
Y [l e T g
‘ —(x—u)z/ —(x—#)z/ 2 )
ko -(x-p)? ko (X _ #)2 e 207 k, € 202 ko (x — .u)z —(-)
[fkl € /202 dx] [flﬁ E dA+x)y |~ fkl 1+ x) dx [fkl o3 ¢ /202 dx]
2
ks _(x_ﬂ)z/ ) ]
[ka e 202 dx
\ ),
_12+y
—(x—u)z/ Y —(x—u)z/
sz e (27 dx sz e ‘2 dx
OCER[CRRA()rn] _ 120k (T + )7 O [ A+
d - ~Ge—)? d ~(e-w)? a
z Pl e x| e o
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‘

_12+y

—(x—u)z/ Y
ky, € 202

1200 "+

S — *
—(x—p)?
14 fkklz e /202 dx

—(x—w)? —(x—u)?
—‘u)e xu)/ZO'Z k, € x“/ZGZ

—(X—M)Z/ ko (x
2 2 _ 0=
¢ 27 dx] [fkl 2 (d+xy Jis T [fkl 02
2
ks —(x_ﬂ)z/ 5 ]
[ka e 202 dx
with the definitions:
x—p e g
T= , 110=0 ———dr,
o hy 1+ u+o1)Y

h; e —1:2/2 h; e _T2/2
111 =f T———drt, 112 zf 20— dt
hy 1+ u+o1)Y ny 1+ u+o1)Y

and using the definitions already done in Appendix A we have:

12+y
ICER[CRRA()ry] 12 <110>‘—y <11112 - 11013>
do oy \nn 112
(D.1)
_12+y
ICER[CRRA()ry] 12 <110> v <11111 - 11012>
ou oy \nn 112
Specifying ury{CER[CRRA(y)rn]} as the Implicit Function defined by CER[CRRA(y)n], by (C.4)
we have:
OCER[CRRA(Y) ]
(D.2) durn{CER[CRRA(Y)rn1} (o, 1) _ dor
' dory OCER[CRRA(Y) rn]
our

dpry OCER[CRRA(Y) i ] _ dCER[CRRA(Y)rn] Oprn

_ do du do ou
~ 0oy OCER[CRRA(y)rn]  OCER[CRRA(Y)rn] 007y
do du do u
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[t is possible to compute (D.2) substituting the partial derivatives with its expressions computed in
(A.2) and (D.1).

Appendix E. First derivative of the Implicit Function for CER[CRRA(0)y].

Consider the expression (2.5) here reported for brevity:

—(x—p)?
fkkz In(1+ x)e /202 dx
CER[CRRA(0)7y] = et2EIn(U+R] _ 1 = exp|12—2 s -1
hie e

with the definitions:

hy L,
T = , 113=0f ln(1+,u+ar)er/2d‘[,
h

1
h;

ha .2
114=f tin(1+u+ot)e “/2 dx, 115=f
h h

1 1

2 -t%/
“iIn(1+u+ot)e ’2drt

and using the same procedure and notations of the Appendix D we have:

OCER[CRRA(0)n] 11115 — 11313 113
= 12< )exp( )

Py e 2
(E.1)

OCER[CRRA(0)n] 11114 — [1312 113
= 12< )exp( —)
ou 117 11

Specifying ury{CER[CRRA(0)x]} as the Implicit Function defined by CER[CRRA(0) 5], by (C.4)
we have:

OCER[CRRA(0)ry]
(5.2) o (CERICRRA® 0.0~ Gory
' dory OCER[CRRA(0)y]
ury
Oury 0CER[CRRA(0)ry]  OCER[CRRA(0)ry] Oprn
_ do du do ou
~ 0oy OCER[CRRA(0)ry]  OCER[CRRA(0)ry] dory
do du do du

It is possible to compute (E.2) substituting the partial derivatives with its expressions computed in
(A.2) and (E.1).
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Appendix F . First derivative of the Implicit Function for CER[Q (tty)rn] -

Consider the expression (4.3) here reported for brevity and applied to a Truncated Normal case:

CER[Q(um)rn](o 1) = (1 + Uy — \/GTZ"N + (urny — #M)2> -1

We have:
11
OCER[Q(um)rn] _ 12 [1 + iy — oiy + (urw — uM)Z] .
0o 2\/072"N + (Ury — ty)?
dory Olry
2 [UTG —60 + (Ury — ) —60 ]
(F.1) .
OCER[Q(um)rn] _ 12 [1 + iy — oFn + (re — MM)Z] .
o 2\/072"N + (Ury — tm)?
do ou
2 [UTN a;N + (Ury — M) a;N]

Specifying urn{CER[Q (1y) 7]} as the Implicit Function defined by CER[Q (iy)7n], by (C.4) we
have:

9CER[Q(upm)Tn]
(F.2) durn{CER[Q(up)rn13(o, 1) _ dory
' dory ICER[Q(4m)Tn]
OUrn
Opry OCER[Q (upy) i ] . ICER[Q(um) 7] Opirn
_ do ou do ou
B dory 0CER[Q (uy) rn] _ ICER[Q(uy)rn] 007y
do du do u

and with (A.2) and (F.1) it is possible to compute (F.2).

Appendix G. The case of the Italian Pension Funds.

The opportunity to study the CRRA(y) utility Function arose with the aim to rank the Italian
Pension Funds. Obviously the Italian Pension Fund have returns that cannot be lower than 1.
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We applied the Morningstar approach(3.1) and this produced a ranking not so far from that one
induced by the AGR (that Morningstar call MRAR(0)). Then, we compared this result with the one
supplied by CER[Q (uy)s] where S means applied to the samples. We think that it would be difficult
to explain to the investors that the evaluation of their Funds is not linked to their Standard
Deviation.

Consider ] Funds {FJ ;= 1,...,]} each with a sequence of T (monthly) Returns {F~;{Rt,j ;=
1,.../;t= 1,...T}j= 1,...,]}; their distribution is unknown and we rank the Funds with
CER[Q(up)s), with Expected Return and the Standard Deviation:

E[Rl;; =T 'Y, R.;, SDIR]y; = {(T — DY R, - E[R]T,,-]Z}l/2

We indicate with p;, the maximum value of the sequence of the Expected, i.e. yy;, > max{E [Rlrj,j =
1 ]} and we chose b = 2cW,(1 + uy). The rationale of this latter choice is that the maximum of
CER[Q(uym)s] will be reached at the point (0,uy, CER[Q(uy)sl(0,14y)) on the space
(SD[R],E[R], CER[Q(up)s1(SD[R], E[R]) ). It means that, within the set of Funds, the investor has
the maximum satisfaction in the following ideal state: Standard Deviation = 0 and maximum value
of the Expected Return among all that are available. We chose p;, = 0.081, a value that guarantee
that a Fund with positive E[R]r; have always a rating higher than one with a negative yield
(Corradin and Sartore, 2016).

We computed a ranking with CER[Q(0.081)¢] and MRAR(2). The discrepancies between them could
be shown also in the field of Morningstar applications. Lisi and Caporin (2012), with an empirical
analysis, put in evidence that the Morningstar rating system is mainly influenced by profitability,
and only marginally by risk. Here, we give a new application with the computation of the two
mentioned approaches, CER[Q(0.081)s] and MRAR(2), performed on the actual sample given by the
monthly return values of the Italian Pension Funds. The sample of 41 Funds, collects all the Funds
with not less than 10 years of activity from July 2004 until June 2014.

The Morningstar Risk (MRisk) is computed with the relation:
MRisk = MRAR(0) — MRAR(2)

In this case the comparison is done with the Annualized Standard Deviation = v125D [R]T,j
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Figure G.1: Annualized Standard Deviation vs MRisk
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We can see that there is a large discrepancy in the measurement scale even though the behavior
looks very similar, in fact the correlation coefficient between the two measures is 0.96322.

MRisk is largely lower with respect to the Standard Deviation measure.

We can compare graphically the CER[Q(0.081)s], MRAR(2) and MRAR(0) versus MRAR(0), MRisk,
Standard Deviation.

Figure G.2: Comparison CER[Q(0.081)s]|, MRAR(2) and MRAR(0) vs MRAR(0)
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Figures G.2 shows big downturns for CER[Q(0.081)s] when MRAR(2) has very weak downturns at
the same points. This different behavior is attributable to the different sensitivity of the two
measures regarding the Standard Deviation.

It is graphically evident that MRAR(2) Rating has a smoother behavior and almost the same
increasing trend of MRAR(0).

Similarly, we can see the following graphs:
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Figure G.3: Comparison CER[Q(0.081)s], MRAR(2) and MRAR(0) vs MRisk
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Figure G.4: Comparison CER[Q(0.081)s|MRAR(2) and MRAR(0) vs Standard Deviation
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Again, both the Figures G.3 and G.4 show that for high values of Standard Deviation or MRisk,
MRAR(2) is clearly less sensitive comparing with CER[Q(0.081)s]. Furthermore, there is graphical
evidence that the MRAR(2) does not decrease for high levels of Standard Deviations or MRisk, and
this confirm the consideration done in Section 5.

This different behavior translates directly into the rating scale. In Figures G.5, G.6 and G.7 we
compare the rating of the Italian Pension Funds induced by the CER[Q(0.081)s], MRAR(2) and
MRAR(0) as a function of MRAR(0) , MRisk and Standard Deviation respectively.
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Figure G.5: Comparison Rating CER[Q(iy)s], MRAR(2) and MRAR(0) vs MRAR(0)
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Figure G.6: Comparison Rating CER[Q(0.081)¢], MRAR(2) and MRAR(0) vs MRisk
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Figure G.7: Comparison RatingCER[Q(0.081)], MRAR(2) and MRAR(0) vs Standard Deviation
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Also in the Figures G.5, G.6, G.7 there is graphical evidence that the MRAR(Z2) Rating does not
decrease for high levels of Standard Deviation or MRisk and seems to have a behavior similar to
MRAR(0) Rating.

Beyond the graphical evidence, we can look at the correlation coefficients between the different
measures.

Table G.1: Correlations

Std. Deviation MRisk CER[Q(0.081)s| MRAR(2) MRAR(0) |CER[Q(0.081)s| MRAR(2) MRAR(0)
Rating Rating Rating
1.00000 0.96328 -0.68220 0.23650 0.48952 -0.53636 0.24051 0.45739
1.00000 -0.79404 0.09928 0.37176 -0.61770 0.11856 0.34633
1.00000 0.52572 0.26882 0.89602 0.46714 0.24727
1.00000 0.96065 0.59657 0.93118 0.89283
1.00000 0.38414 0.90183 0.92963
1.00000 0.54000 0.34000
1.00000 0.90000
1.00000

In Table G.1 we can notice the strong dependence of MRAR(Z) and MRAR(2) Rating to the MRAR(0),
along with their scarce sensitivity to the risk. On the contrary, CER[Q(0.081)¢] and CER[Q(0.081)]
Rating exhibit negative correlation coefficients with both Standard Deviation and MRisk, as
expected, instead of positive values of MRAR(2) and MRAR(2) Rating.

Another proof that we have done is to compute the Rating using MRAR(0) and to measure the
differences between the Rating done with MRAR(2) and CER[Q(0.081)¢]. Also this matter proves

that the Ranking done with MRAR(2) has scarce sensibility to the risk, indeed it depends on the
AGR.

Indeed, in our job we have analyzed 41 Funds with more than 10 years samples; 23 changing of
Ranking between MRAR(2) and CER[Q(0.081)¢] and only 10 between MRAR(2) and MRAR(0). This

further justify the impression that the Ranking done by MRAR(Z2) has a weak dependence on the
Standard Deviation.
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