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Abstract. In this paper we consider a geometric viewpoint to analyze the behaviour of the Conjugate Gradient (CG) method, for
the solution of a symmetric linear system, when at current step a pivot breakdown possibly occurs (degenerate case). As well
known this can occur when the system matrix is indefinite or singular. In the latter case the CG gets stuck, since the steplength
along the current search direction cannot be computed. We show here that a simple geometric interpretation can be provided for
the degenerate case, as long as some basics on projective geometry in the Euclidean space are considered.

INTRODUCTION

The CG method is a very successful iterative procedure [1] for the solution of the linear system

Ay = b, A = AT . (1)

In particular, in optimization frameworks such linear systems arise within a large class of applications, ranging from
unconstrained to constrained problems, where convex and nonconvex functions are involved. As well known, the
CG generates the sequence of approximate solutions {yk} of (1), and may conversely experience a premature stop
in the indefinite case, whenever a pivot breakdown occurs. I.e., in case at step k the current search direction pk
satisfies pTk Apk = 0, then the steplength along pk cannot be computed and the CG halts. This implies that the current
approximate solution yk is possibly far from being a stationary point of the quadratic functional g(y) = 1/2yTAy−bTy,
associated with the linear system (1).

Here we want to briefly study the possible degeneracy of the CG from a geometric standpoint, when considering
either a singular or an indefinite nonsingular matrix A in (1). Observe that in case the matrix A is positive semidefinite,
then all the considerations reported in [2], [3] and [4] hold, including the fact that the sequence {yk} generated by the
CG will converge to the solution y∗ = A+b (where A+ is the Moore-Penrose generalized inverse of A), provided that
the vector b − Ay1 (initial residual) has a nonzero projection on all the eigenvectors associated with distinct positive
eigenvalues of A. In the latter case, though A is possibly singular, then the standard geometry associated with the CG
iterations in the positive definite case applies. Equivalently, at step k of the CG the Ritz-Galerkin condition

0 = (b − Ayk+1)T pk = 0 (2)

is fulfilled, implying that the hyperplane πk+1 of equation

πk+1 :
{
y ∈ Rn : (b − Ay)T pk = 0

}
(3)
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is considered, which is both tangent at yk+1 ∈ Rn to the hypersurfaceG given by

G :
{
y ∈ Rn :

1
2
yTAy − bTy −

(
1
2
yTk+1Ayk+1 − b

Tyk+1
)
= 0
}
, (4)

and has the normal vector
n =

b − Ayk+1
‖b − Ayk+1‖2

.

On the contrary, in case the matrix A is indefinite, we show that some concepts from projective geometry need
to be invoked, in order to more precisely address the behaviour of the CG. In this regard, following [5] (see also [6])
we recall that to any n-dimensional real vector y ∈ Rn we can associate the (n + 1)-tuple (ρx1, . . . , ρxn, ρx0) ∈ Rn+1 of
homogeneous coordinates, such that

yi =
ρxi

ρx0
, i = 1, . . . , n, (5)

where ρ � 0 and (x1, . . . , xn, x0) � 0. We highlight that homogeneous coordinates allow to use a simple algebra to
handle points at infinite. In particular, observe that the line

� : {y ∈ Rn : y = ȳ + αp, ȳ, p ∈ Rn, α ∈ R},

whose directional cosines are proportional to p = (p1, . . . , pn), from the point ȳ, has the unique point at infinite
(p1, . . . , pn, 0)T ∈ Rn+1 in homogeneous coordinates.

We remark that resorting to homogeneous coordinates, in place of Cartesian coordinates, often provides a
very powerful tool in computational methods. Examples of applications where homogeneous coordinates are widely
adopted to simplify the analysis are given by Robotics and 3D graphics. In particular in robotics, homogeneous co-
ordinates allow to use a single matrix in order to represent both affine and projective transformations. As regards
3D graphics, homogeneous coordinates allow to represent translations with matrices, so that massive matrix opera-
tions are easily performed. We recall that in this paper Ker(A) indicates the null space of matrix A; moreover, for
v = (v1, . . . , vn) ∈ Rn and v0 ∈ R, for the sake of brevity we indicate (v, v0)T ≡ (v1, . . . , vn, v0) ∈ Rn+1.

DEFINITIONS, BASICS ON POLARITY AND FIRST RESULTS

Given the symmetric linear system (1), we also consider as a reference the quadratic functional

g(y) =
1
2
yTAy − bTy + c, c ∈ R, (6)

and replacing (5) in (6) we obtain the functional f : Rn+1 → R in homogeneous coordinates defined, for x0 � 0, by

f (x1, . . . , xn, x0) = g
( x
x0
)
=
1
2

( x
x0
)T
A
( x
x0
)
− bT

( x
x0
)
+ c. (7)

Finally, the functional f (x1, . . . , xn, x0) can be associated with the quadratic hypersurface F given by

F :=
{
(x, x0)T ∈ Rn+1 : f (x, x0)(x0)2 = 0

}
=
{
(x, x0)T ∈ Rn+1 : xT Ax − 2(x0)bT x + 2c(x0)2 = 0

}
, (8)

where possibly the value x0 = 0 can be considered, corresponding to points at infinite of the hypersurface F .

Definition 1 Given the quadratic hypersurface (8), in homogeneous coordinates, given the point P = (x̄1, . . . , x̄n, x̄0) ∈
R
n+1, the equation

n∑
i=0

∂F (x1, . . . , xn, x0)
∂xi

x̄i = 0 (9)

represents an hyperplane, which is said to be the first polar (or polar hyperplane) of the point P with respect to
the hypersurface (8), in homogeneous coordinates. Moreover, the point P is the pole of (9). Finally, the pole of the
hyperplane at infinite x0 = 0, with respect to (8), is the center of F .
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We immediately realize that since F (x1, . . . , xn, x0) = 0 is a quadratic hypersurface (i.e. ∂F (x1, . . . , xn, x0)/∂xi
is linear) then we have from (9)

n∑
i=0

∂F (x1, . . . , xn, x0)
∂xi

· x̄i =
n∑
i=0

∂F (x1, . . . , xn, x0)
∂xi

∣∣∣∣∣∣
xi=x̄i
· xi = 0. (10)

In other words, the first polar of the point (x̄1, . . . , x̄n, x̄0), with respect to the quadratic hypersurface (8), coincides
with the first polar of the point (x1, . . . , xn, x0), with respect to the same quadratic hypersurface, in the homogeneous
coordinates (x̄1, . . . , x̄n, x̄0). As shown in [5], in case A is nonsingular the next result can be proved.

Proposition 2 [Equivalence of center] Consider the quadratic hypersurface F , with A nonsingular, c � 1/2bTA−1b,
and center (x∗, x0∗)T ∈ Rn+1. Then x0∗ = 1/(4c − 2bTA−1b) and the vector z∗ = (x∗/x0∗) is the unique solution of the
linear system (1).

The latter proposition reveals that, under the nonsingularity assumption (along with the technical condition
c � 1/2bTA−1b), there is a one-to-one correspondence between the solution of the linear system (1) and the pole
of the hyperplane at infinite x0 = 0 with respect to F . Moreover, in [5] we also proved that the CG iteratively
generates in Cartesian coordinates a sequence of points {yk} → y∗ such that y∗ = x∗/x0∗, without explicitly recurring
to homogeneous coordinates. Here we want to show that, when A is singular, the use of homogeneous coordinates is
mandatory in order to describe the geometry behind CG iterations. To the latter purpose the next generalization to
Proposition 2 is given.

Proposition 3 [Equivalence of center, A singular] Consider the quadratic hypersurface F , with A singular and
c � 1/2bT (A+b + v), for any v ∈ Ker(A). There exists the family of generalized centers (x∗(v), x0∗(v))T of F , for any
v ∈ Ker(A), such that x0∗(v) = 1/[4c− 2bT (A+b + v)] � 0, and the vector z∗(v) = x∗(v)/x0∗(v) is a solution of the linear
system (1).

Proof (sketch)
Since A is now singular, the one-to-one correspondence between points (i.e. poles) and hyperplanes (i.e. polar hyper-
planes) with respect to the quadratic hypersurfaceF is lost. Nevertheless, for any v ∈ Ker(A), applying the Definition
1 we can say that the hyperplane x0 = 0 is the polar hyperplane of (x∗(v), x0∗(v))T with respect to F if

⎛⎜⎜⎜⎜⎜⎜⎜⎝
2A −2b

−2bT 4c

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∗(v)

x0∗(v)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (11)

Since A is singular and by the hypotheses c � 1/2bT (A+b + v), for any v ∈ Ker(A), then the point of Rn z∗(v) =
x∗(v)/x0∗(v) = A+b + v is a solution of (11) with

1
x0∗(v)

= 4c − 2bT
[
A+b + v

]
� 0.

�

Further Geometric Considerations When a Pivot Breakdown Occurs

Clearly Proposition 3 reduces to Proposition 2 when A is nonsingular (i.e. Ker(A) = {0} and A+ = A−1), showing
that the correspondence between the center of the quadratic hypersurface F and the solution of (11) can be easily
generalized. In particular, as reported in the first section, in optimization frameworks when A is singular the CG is
often applied for the solution of (1), providing the result y∗ = A+b. Thus, according with Proposition 3, when A is
singular the CG equivalently provides in Rn a solution of (11) and indirectly computes one of the possible generalized
centers of the quadratic hypersurface F . Then, using both Propositions 2 and 3, along with relation (2), we are now
ready to better detail in homogeneous coordinates the case of a possible pivot breakdown of the CG.

Indeed, suppose that starting from the initial approximate solution y1 ∈ Rn of (1) the CG has already generated
the search directions p1, . . . , pk−1 (satisfying the well known conjugacy conditions pTi Ap j = 0, 1 ≤ i � j ≤ k − 1),
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along with the corresponding steplengths α1, . . . , αk−1, so that yk = y1 +
∑k−1
i=1 αi pi. Then, setting rk = b − Ayk, at step

k relation (2) imposes that the steplength αk satisfies the relation

[
b − A(yk + αk pk)

]T pk = rTk pk − αk pTk Apk = 0 ⇐⇒ αk =
rTk pk
pTk Apk

,

which might not be well posed in case A is indefinite or if A is positive semidefinite, being possibly pTk Apk = 0
and yk+1 = yk + αk pk a point at infinite. In the latter case the tangent hyperplane (3) to the quadratic hypersurface
(4) at yk+1 is not defined, though we can still address in homogeneous coordinates the polar hyperplane of F in (8).
Indeed, in homogeneous coordinates the vector pk ∈ Rn corresponds to the point at infinite (pk, 0)T ∈ Rn+1 of the line
�k+1 : {y ∈ Rn : y = yk + αpk, α ∈ R}, which is also a point satisfying the equation of F (being pTk Apk = 0). At the
latter point the polar hyperplane of F is defined. Thus, we can summarize that though at step k of the CG the pivot
breakdown pTk Apk = 0 occurs, then

• we can transform the quadratic functional g(y) in (6) (in Cartesian coordinates) into the quadratic hypersurface
F in (8) (in homogeneous coordinates);

• we can compute the polar hyperplane of the point (pk, 0)T ∈ F with respect to F , so that it represents a
generalization of the tangent hyperplane πk+1 (in (3)), at the point at infinite (pk, 0)T ∈ Rn+1.

Also observe that, as long as yk+1 ∈ Rn (i.e. yk+1 is a finite point in Cartesian coordinates), it is possible to represent
it in homogeneous coordinates as yk+1 = xk+1/x0k+1, with x

0
k+1 � 0, and compute both the tangent hyperplane πk+1 to

G at yk+1, and the polar hyperplane π̃k+1 of F at
(
xk+1, x0k+1

)T
. It is not difficult (see also [5]) and [7]) to verify that,

since polar hyperplanes in homogeneous coordinates represent generalizations of tangent hyperplanes in Cartesian
coordinates, then if yk+1 ∈ Rn (i.e. yk+1 is a finite point), the equivalent expression in Cartesian coordinates of π̃k+1
coincides with πk+1.
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