
APPLYING BCMP MULTI-CLASS QUEUEING NETWORKS FOR THE

PERFORMANCE EVALUATION OF HIERARCHICAL AND MODULAR

SOFTWARE SYSTEMS

S.Balsamo
Università Ca’ Foscari di Venezia, Dipartimento di Informatica

Via Torino 155, Venezia
email: balsamo@dsi.unive.it

G. Dei Rossi
Università Ca’ Foscari di Venezia, Dipartimento di Informatica

Via Torino 155, Venezia
email: deirossi@dsi.unive.it

A. Marin
Università Ca’ Foscari di Venezia, Dipartimento di Informatica

Via Torino 155, Venezia
email: marin@dsi.unive.it

KEYWORDS

Performance evaluation, Software engineering, Queue-
ing networks, Product-form solutions, BCMP

ABSTRACT

Queueing networks with multiple classes of customers
play a fundamental role for evaluating the performance
of both software and hardware architectures. The main
strength of product-form models, in particular of BCMP
queueing networks, is that they combine a flexible for-
malism with efficient analysis techniques and solution
algorithms. In this paper we provide an algorithm that
starting from a high-level description of a system, and
from the definition of its components in terms of in-
teracting sub-systems, computes a multiple-class and
multiple-chain BCMP queueing network. We believe
that the strength of this approach is twofold. First, the
modeller deals with simplified models, which are defined
in a modular and hierarchical way. Hence, we can carry
on sensitivity analysis that may easily include structural
changes (and not only on the time parameters). Sec-
ond, maintaining the product-form property allows one
to derive the average system performance indices very
efficiently. The paper also discusses the application of
the algorithm for the performance evaluation of Web
Sites with modular architectures, such as those based
on Content Management Systems.

INTRODUCTION

Performance analysis of modular and hierarchical sys-
tems has always been an important topic for the per-
formance evaluation and software engineering research
communities (see, e.g., Smith (1990)). In particular, a

good approach to software design requires the defini-
tion of a modular and hierarchical architecture. From a
high-level point of view, the software may be seen as the
interaction of several black-box components. The defini-
tion of these sub-components follows the same approach
in a hierarchical fashion until the very low-level layer of
the architecture is reached. Performance evaluation of
such models is important since the earlier stages of de-
velopment as shown in Smith and Williams (2006). In
this context, the main problem consists in the definition
of efficient algorithms capable of deriving the required
performance indices efficiently.

The class of models we consider in this paper is the
well-known class of Markovian models. In particular
we focus on those models whose underlying stochastic
process is a Continuous Time Markov Chain (CTMC).
Particular attention will be devoted to BCMP queue-
ing networks introduced in Baskett et al. (1975), i.e., a
class of queueing networks with separable solution and
for which efficient analysis algorithms have been intro-
duced for instance in Buzen (1973), Resiser and Laven-
berg (1980), Bruell et al. (1984), Conway and Georganas
(1986), Conway et al. (1989). One of the main features
of BCMP queueing networks is the possibility of charac-
terising the customers of the system by assigning them a
class (temporary characterisation) and a chain (perma-
nent characterisation). Under a set of assumptions, the
class and the chain of a customer determines its prob-
abilistic routing among the queueing stations and the
service time distributions.

In this paper we propose a methodology, supported by
a novel algorithm, which aims to simplify the perfor-
mance evaluation of systems designed according to a
hierarchical and modular architecture. This method-
ology is based on the definition of a high level model



Figure 1: Sketch of the methodology proposed for per-
formance evaluation of modular and hierarchical sys-
tems.

of the system consisting of several components. Each
of these may be further specified in a hierarchical fash-
ion. Under some assumptions that will be detailed later,
we provide an algorithm which transforms this abstract
model into a BCMP queueing network. Figure 1 illus-
trates the steps of this analysis. Let us consider an
example. Modern Web Sites are often built on Con-
tent Management System (CMS) applications. CMSs
are flexible re-programmable software systems consist-
ing of a set of modules that are specialised in some task,
e.g., rendering the web page, forum or wiki manage-
ment, news and comments, user management. Modules
are programmed by communities of developers who of-
ten work autonomously and must respect the interface
given by the core system. Examples of modern CMSs
are Drupal, Joomla!, PostNuke, Typo3 just to mention
a few. Users who visit the web sites based on CMS
are usually not aware of such a modular architecture.
Nevertheless, a log analysis may reveal their behaviour
among the site modules and clustering techniques may
be adopted to distinguish user habits. We aim to pro-
vide a modelling approach that allows the system ad-
ministrator to predict the performance of its web portal
under different scenario from the knowledge of:

• the customer behaviours among the modules

• the resource requirements of each module

• the mapping of a required resource to a physical
device.

This kind of analysis is not trivial and a hierarchical
and modular approach should be adopted as observed
for instance in Smith (1990). On the other hand we
aim to provide a methodology that is compatible with
known exact analysis algorithms to avoid the need of
simulation or approximated technique as usually done
in Woodside et al. (1995).

The main contribution of this paper consists in provid-
ing a methodology supported by an original algorithm
that allows the modeller to specify the system in terms
of a multiple-class and multiple-chain queueing network
(QN) in which each station is itself a multiple-class and
multiple-chain QN. The peculiarity of this hierarchical
approach is that each station at a given level of ab-
straction is defined in isolation but, given two or more
stations, they may share one of their components at a
lower level of abstraction. In the example of the CMS
one may think that at the top level of the CMS one has
the routing of customers among the site modules (sta-
tions at the top level). Each module is then defined in
terms of usage of resources (e.g., database, CPU, etc.).
However, when these modules are combined one should
be able to specify whether a resource is shared among
different modules or the modules have distinct resources
available. Obviously, this may have great impact on the
overall performance of the system (e.g., are the DB and
the multimedia resources stored in the same hard disk?).
The goal of the algorithm that we introduce is to trans-
form a QN defined at a top level into one defined at a
lower level until the lowest level is reached. Once this is
done, under some assumptions that will be described in
the following sections, we obtain a product-form BCMP
QN that may be analysed by the well-know algorithms
for the computation of the average performance indices
in steady-state.
The paper is structured as follows. First, we briefly re-
call the theoretical background on multiple-class BCMP
queueing networks. Then, we describe the proposed
methodology and we define of the algorithm. The last
section provides an application example of the proposed
approach. Some final remarks conclude the paper.

THEORETICAL BACKGROUND

This section aims to briefly recall the fundamental theo-
rem on multiple-class product-form queueing networks,
i.e., the BCMP theorem (Baskett et al. (1975)). In-
formally, we can say that it states sufficient conditions
for a QN with multiple classes of customers to yield a
product-form solution. Its importance is not only theo-
retical because several algorithms have been defined to
compute the average performance indices in steady-state
efficiently (e.g., Buzen (1973), Resiser and Lavenberg
(1980), Conway and Georganas (1986)). This section
first briefly illustrates the BCMP theorem and then lists
the algorithms for the analysis with their computational
complexity.

The BCMP theorem

BCMP queueing networks consist of a set of queueing
centers and a (possibly infinite) set of customers. At a
given epoch, each customer in the network has a class
which may determine its routing probabilities or the ser-



vice time distribution at a given service station. When a
customer changes its class we talk about class switching.
Note that, in this paper, we use the concept of class in a
local sense as in Chandy and Sauer (1980) rather in the
global one used in Baskett et al. (1975). Classes form a
temporary partition of the customers while chains are
a permanent partition. Each class of customers be-
longs to a chain and routing may occur only within the
same chain. Some conditions on the probabilistic rout-
ing must be assumed in order to ensure the ergodicity of
the underlying process (see Balsamo and Marin (2007)
for a recent survey). A chain may be open or closed. In
the former case, customers arrive from the outside ac-
cording to a Poisson process with a given rate, while in
the latter the number of customers for that chain must
be specified. The network is called open if all its chains
are open, closed if they are all closed ormixed otherwise.
Queueing stations must belong to one of the following
types:

Type 1 : The queueing discipline is First Come First
Served (FCFS) and the service time distribution is
exponential and class-independent,

Type 2 : The queueing discipline is Processor Sharing
(PS),

Type 3 : The station has infinite servers (IS), hence
customers never waits in queue (Delay Stations),

Type 4 : The service discipline is Last Come First
Served with Preemptive Resume (LCFSPR).

Stations of type 2, 3 or 4 may have a Coxian distributed
service time that depends on the customer class. More-
over, the station service time may depend on the queue
length at a given epoch (some non-strict conditions
must be satisfied). This allows one to model impor-
tant features such as the effect of multiple servers in
the same station. Table 1 illustrates the notation we
adopt and that we now briefly summarise. We use
Ω = {S1, . . . , SM} to denote the set of M queueing sta-
tions of the network, and let Ri be the set of classes
served by station Si, with Ri elements that are usu-
ally denoted by letters r, s, . . .. Let C = {1, . . . , C}
be the set of labels for the C chains of the QN, then

R
(c)
i is the set of classes served by station Si and be-

longing to chain c (with R
(c)
i elements), 1 ≤ c ≤ C

and 1 ≤ i ≤ M . Clearly, ∪Cc=1R
(c)
i = Ri for all i.

The state-independent probabilistic routing is described
by the probability matrix P(c) for each chain c. Ele-

ments of P(c) are p
(c)
ri,sj ≥ 0, with 1 ≤ i, j ≤ M and

r ∈ R
(c)
i , s ∈ R

(c)
j and represent the probability of

a customer entering station Sj with class s after be-
ing served in station Si as class r. Label 0 represents
the outside (hence matrix P has 1 +

∑M

i=1 Ri rows and
columns). Sometimes, we have just one routing matrix
P and we desire to derive the partition in P(c), i.e.,

identify the chains in the QN. This can be reduced to
the problem of identifying the ergodic sub-components
in a Markov Chains and, since the structure of the net-
work is usually rather small, the problem is known to be
computationally tractable (see, e.g., Kant (1992), Bal-
samo and Marin (2007)). If c, 1 ≤ c ≤ C, is a closed
chain, then K(c) denotes the number of customers and

p
(c)
ri,0 = p

(c)
0,ri = 0 for all r ∈ R

(c)
i and i = 1, . . . ,M . If c is

open λ(c) is the total arrival rate and matrix P(c) is such

that element p
(c)
0,ri is the probability that a customer ar-

riving from the outside enters station i as class r and

element p
(c)
ri,0 is the probability for a customer to leave

the system after being served at station i with class r.

Before briefly stating the BCMP theorem, we recall the
definition of the QN traffic equations. For an open chain
c, the system of traffic equations are:

e
(c)
ri = λ

(c)
ri p

(c)
0,ri +

M
∑

j=1

∑

s∈R
(c)
j

e
(c)
sj p

(c)
sj,ri (1)

for all i = 1, . . . ,M and r ∈ R
(c)
i . If c is a closed chain,

the corresponding system of traffic equations is:

e
(c)
ri =

M
∑

j=1

∑

s∈R
(c)
j

e
(c)
sj p

(c)
sj,ri (2)

for all i = 1, . . . ,M and r ∈ R
(c)
i . In the latter case

the system is under-determined, and the solution is de-
fined up to an arbitrary non-null constant that has to be

chosen. Solutions e
(c)
ri of systems (1) and (2) represent

the (relative) visit ration to station i, class r of chain
c. Vector ei = (eri) with r ∈ Ri plays a pivotal role
for the network steady-state solution. We can now state
the salient result of the BCMP theorem given in Baskett
et al. (1975).

Theorem 1 (BCMP (salient results)) Let us con-
sider a multiple-class and multiple-chain QN, open,
closed or mixed, whose queueing stations are of type 1,
2, 3 or 4. Then, if the underlying stochastic process
is ergodic, the steady-state probabilities are in product-
form with respect to the queueing stations, i.e., let n =
(n1, . . . , nM ) be the vector representing the state of the
network, where component ni is the state of station Si,
then the following relation holds:

π(n) =
1

G

M
∏

i=1

gi(ni), (3)

where π is the steady-state distribution of the QN, and
gi(ni) is the steady-state distribution of station Si con-
sidered in isolation, with arrival rates ei, and G is a
normalising constant.



Ω Set of queueing stations of the network
λ(c) Arrival rate to open chain c

C Set of the chain labels
C Number of chains

e
(c)
ri (Relative) arrival rate to station Si, class r of chain c

K(c) Population of chain c

ei Solution for the traffic equation systems (1) or (2) of station Si

M Number of queueing stations
P(c) Routing probability matrix for chain c

p
(c)
ri,sj probability for a customer to enter station Sj , class s,

after being served at station Si, class r, where both the classes s and r belong to chain c

R
(c)
i Set of classes of chain c served by station Si

Ri Set of classes served by station Si

R
(c)
i Number of classes served by station Si belonging to class c

Ri Number of classes served by station Si

Table 1: Table of the notation.

Solution algorithms

Theorem 1 and the class of BCMP networks have been
widely applied for system performance analysis, because
several efficient solution algorithms have been defined
to compute the stationary state distribution π and a
set of average performance indices. Such algorithms
specifically apply to analyse closed or mixed networks,
where we have to compute the normalising constant G,
as stated by Theorem 1. Note that for open networks we

have G = 1, the solution e
(c)
ri of the traffic equations (1)

already gives the throughputs of each node Si for classes
r in chain c. Then one can easily derive the other av-
erage performance indices by classical queueing system
results.
Various solution algorithms have been defined for closed
and mixed BCMP networks. Some algorithms, such as
the Convolution Algorithm, directly compute the nor-
malising constant G in equation (3) and hence a set of
mean performance indices, such as the mean response
time, the average queue length, and the throughput of
each queueing station. Other algorithm, such as MVA
(Mean Value Analysis) avoid the computation of the
normalising constant G and iteratively (over the num-
ber of customers) directly compute a set of average per-
formance indices. For multiple-class and multiple-chain
BCMP networks some algorithms apply special recur-
sive scheme on the number of chains, and/or take ad-
vantage of the possible sparsity of the chains (e.g., chains
that contain few classes) to derive efficient solution. Al-
though it is out of the scope of this paper to describe
these well-known algorithms, we just cite them and re-
call their computational complexity. Several tools for
the analysis of queuing networks have been implemented
over the last decades. A recent work, called qnetworks
toolbox, is described in Marzolla (2010). Such an im-
plementation of several algorithms is given in terms of

library of functions for Octave, i.e., a programmable
environment for numerical computation. This allows
one to integrate easily the algorithms of qnetworks with
new ones, for instance that presented by Algorithm 1.
Hereafter, we consider a queueing network with multi-
ple chains but where each station has just one class per
chain (single-class, multiple-chain QN). One can show
that for each multiple-class and multiple-chain BCMP
QN it is possible to define another BCMP QN with
single-class and multiple-chain with the same average
performance indices (see, e.g., Kant (1992)). For the
sake of clarity, we consider the QN consisting of only
closed chains.
The Convolution Algorithm computes the normalising
constant from which the average performance indices
may be derived. The computational complexity, given
the solution of the traffic equations system (2), depends
on the type of stations in the QN. In particular each iter-
ation has a cost of O(CH) for load-independent stations

and of O(H2) for the others, whereH =
∏C

c=1(K
(c)+1).

If all the chains has the same population κ and no load-
dependent stations are present, then the computational
cost is O(MCκC).
The Mean Value Analysis algorithm (MVA) is based
on the Arrival theorem that provides an efficient recur-
sive scheme to compute the steady-state average per-
formance indices. For a QN without load-dependent
stations, and with identical chain populations, its com-
plexity is identical to that of the Convolution.
The Recursion by Chain Algorithm (RECAL), defined
in Conway and Georganas (1986), computes the nor-
malising constant and, in a similar fashion of Convolu-
tion, from this it derives the average performance in-
dices. It is particularly interesting because despite of
a greater complexity in the implementation, its com-
putational complexity grows in a polynomial way with
the number of chains, i.e., for high number of chains,



O(CM+1). RECAL has been improved from its original
definition in several ways and is now widely applied for
the solution of QNs with high number of chains.
Note that several other algorithms for the exact or ap-
proximate computation of the average performance in-
dices in multiple-chain BCMP QNs have been defined
in literature. A survey may be found in Balsamo and
Marin (2007).

FRAMEWORK DESCRIPTION AND ALGO-
RITHM DEFINITION

In this section we first illustrate how to describe a model
in our framework, and then we present the algorithm to
obtain the underlying BCMP QN. Once this is derived
one of the algorithms presented in the previous section
may be applied in order to obtain the desired perfor-
mance indices.

Model description

As we pointed out in the introduction we aim to provide
a framework for the specification of software and hard-
ware architectures which enhances the modularity and
hierarchical features. In this setting, we see a system, at
its highest level of abstraction, as consisting of a set of
components d1, d2, . . . , dℓ1 . The easiest way to interpret
the model specification is seeing these components as the
queueing stations of a multiple-class and multiple-chain
QN. Hence, probabilistic routing and customer charac-
terisations are allowed. Each of the components di, with
di = d1, . . . , dℓ1 , seen at the highest level of abstraction,
may be defined as:

• A BCMP queueing station

• A sub-model consisting of components d(i)1, . . . ,
d(i)ℓ2 . Note that it is not the case that d(i)k 6= dj
for all 1 ≤ j ≤ ℓ1 and 1 ≤ k ≤ ℓ2, i.e., a com-
ponent may use a resource which has already been
described at a higher level. These components in-
teract as stations of an open multiple-class and
multiple-chain QN. Each sub-model from the out-
side can be seen as a black box, with a set of access
points with some labels, i.e., the classes of the cus-
tomers arriving from the outside (input classes) and
the classes of the customers leaving the sub-model
(output classes). We require that the set of input
classes must be equal to the set of output classes of
each component.

This recursive definition is the basis of the algorithm
that follows.
We now introduce the concept of well-formed model.

Definition 1 (Well-formed models) Given a model
consisting of m components (in any level of abstraction)
then we define the binary relation ≻ as follows:

• d ≻ d′ if and only if d′ appear in the definition of d

and the binary relation > as follows:

• d ≻ d′ ⇒ d > d′ or

• d > d′ if there exists d′′ such that d ≻ d′′ and d′′ >

d′.

A model is well-formed if and only if relation > is a
strict partial order.

Roughly speaking, a well-formed model does not have
cycles in the definition of the components. However,
it is possible, at a given level of abstraction, to refer
to components specified at higher levels. Hereafter, we
consider only well-formed models.

Algorithm definition

In order to better understand our approach to modular
BCMP network design, we will first consider the algo-
rithm, then we show how it could be further optimized.
Let D be the set of the m components d1 . . . dm that
form the model, and Ri be the set of the n classes
ri,1 . . . ri,n for the component di. In each component,
we call EI (external input) the arrival streams from
the outside, and EO (external output) the departure
streams.
Binary relation d ≻ d′ given by Definition 1, means that
d contains d′, i.e., if d is not a simple QN station, then
d′ appears in the routing matrix of d.
Let Pd be the routing matrix of component d and let be
Pd′ , with d ≻ d′, the routing matrix of a subcomponent
of d′ of d, then we aim to unfold d′ in order to specify a
routing matrix for its subcomponents.
If di ≻ dj , let Adi,dj

: Ri → Rj be a partial function
that associates class names of component di with class
names of component dj . Notice that A is not necessar-
ily injective, i.e., two or more classes of the container
component can be mapped into the same class of the
contained component. Whenever it happens, we should
add a new class set to the submodel.
Ai,j functions must be given by the user of the algo-
rithm, and define how classes of a high level component
maps on classes of its subcomponents. This allows the
design of a low level component without knowledge of
its future use in a high level one.
In Algorithm 1 we show a method for routing matrix un-
folding. To keep the code simple, we use a single routing
matrix that combines every chain of the component, but
the algorithm preserves chains, i.e. (node,class) pairs
that are in different chains in high-level model descrip-
tion remain in different chains in the solution computed
by the algorithm.
Notice that here the insertion and replacement operators
for rows and columns have a loose semantics, i.e., when-
ever a row or a column with less elements is assigned to



Input: routing matrix Pd of component d, component
counter array Dc, functions Ai,j

Output: unfolded routing matrix P′
d of component d

if d is a station then /* base case */

foreach class r of d do
insert in P′ rows and a columns for EId, r and
EOd, r of P

end

else
foreach di|d ≻ di do

Dci ← Dci + 1
Let Rci be a class counter array
foreach class rk of di as named in d do

ri,j ← Ad,di
(rk)

Rci,j ← Rci,j + 1
if Rci,j > maxRci then

U = UnfoldComponents(Pdi
)

rename each class ri,j of di in U as
ri,j,Dci,Rci,j

insert in P′ rows and columns of U
end
replace column EIdi

, ri,j,Dci,Rci,j in P′ with
column di, rk of P
replace row EOdi

, ri,j,Dci,Rci,j in P′ with
row di, rk of P

end

end

end
return P ′

Algorithm 1: Algorithm UnfoldComponents to derive
a BCMP QN from a model specified at a higher level of
abstraction.

a greater one, all elements that are not indexed in the
smaller vector are set to 0.
The main idea of the algorithm is to distinguish the
use of the same component class in different incoming
and outgoing path, creating a new class whenever the
component or the class itself is reused more than once.
In order to achieve this, we use a global component usage
counter and a local one for class usage. The algorithm
then recursively expand the hierarchical model in a top-
down fashion, until it reaches a standard BCMP station,
i.e., a sub-model that has no components.

Comments on the algorithm. It is possible to show
that starting from a high-level model whose routing is
specified correctly, i.e., none of the classes become empty
or its population grows indefinitely with probability 1 in
the long run, we obtain a valid BCMP QN. Hence, un-
der stability assumptions, the steady-state distribution
and the average performance indices may be derived.
The strength of the algorithm is that parametric analy-
sis are simplified with respect to using the BCMP model
directly. In fact, it suffices to change the labels associ-
ated with some resources to generate a totally different

r1,1

r1,2

d1

Figure 2: A black-box model of a database-indexed file
archive CMS module.

routing. In the former example of the CMS, the adminis-
trator may be able to predict the performance measures
of its system in case of a new server quite easily by map-
ping which server modules will be run in the new server
at the highest level of abstraction.

The algorithm could be optimized, without changing its
behaviour, saving partial computations of the U matrix
before the execution of the innermost foreach cicle and
renaming, at each iteration, all classes accordingly.

Under the assumption that, on average, every compo-
nent has the same number of sub-components d, every
component that is not a BCMP queueing station has the
same number of classes r and the depth of the model,
i.e., the length of the longest chain d1 ≻ . . . ≻ dk, is
n, we estimate that, in the worst case, the algorithm
complexity is O(rdn).

Illustrating example

We now provide an example that aims to illustrate the
modelling methodology and the application of Algo-
rithm 1 to a case-study. For the sake of brevity we keep
the modelled system rather simple even if, obviously, the
algorithm usefulness is enhanced by larger systems.

System description. We consider just a single module of
a CMS, i.e., a database-indexed file archive. This is a
typical feature of many websites that provide download-
able resources (e.g., multimedia or documents). Sup-
pose that this module serves two classes of customers,
one which models the file upload, and the other the
file download. A download request passes through the
database and then accesses the disk. An upload request,
passes through the database and the accesses the disk
to be written. If the operation is succesfull then a mes-
sage for the database is generated to confirm the correct
operation.

Model definition. The black-box model of the CMS
module is shown in Figure 2. We can see the two in-
coming and outgoing classes of customers. Let this com-
ponent name be d1. Figure 3 represents the internal
structure of d1, where d2 is the database component
and d3 the disk component. Hence, we clearly have
d1 ≻ d2, d1 ≻ d3 and A1,2(r1,1) = r2,1, A1,2(r1,2) =
r2,1, A1,2(r1,3) = r2,2, A1,3(r1,1) = r3,1, A1,3(r1,2) =



r1,1r1,1r1,1

r1,2

r1,2

r1,2

r1,2
r1,3

r1,3

r2,1

r2,2

r3,1

r3,2

d2 d3

Figure 3: The internal definition of the module of Fig-
ure 2.

r2,1

r2,1

r2,2

r2,2

r4,1
r4,2

d4

Figure 4: Minimal DB module design.

r3,2. The routing matrix P1 is, ignoring impossible
(component,class) combinations, a 9× 9 square matrix.

Let us suppose, for the sake of brevity, that component
d2, as in Figure 4, is made of a single component, d4,
that is a multiple-class station, and that A2,4(r2,1) =
r4,1, A2,4(r2,2) = r4,2. Then we show how an application
of the algorithm to d1 transforms d2. Note that we limit
the observation to this part of the system for the sake of
readability, since the number of classes arising from this
simple example may be difficult to represent graphically.

The algorithm invokes recursively the UnfoldCompo-
nents function of Algorithm 1 until it finds a BCMP
queueing station, in this case d4, then, assuming it is
encountered for the first time, it renames its classes r4,1
and r4,2 in r4,1,1,1 and r4,2,1,1. At the end of the invoca-
tion of UnfoldComponents(Pd2

), the resulting routing
matrix is like in Table 2. Notice that rows EOr2,1 and
EOr2,2 are both zero, because they represents depar-
tures from the component, that have yet to be connected
to a higher level sub-model.

During the invocation of UnfoldComponents(Pd1
) both

A(r1,1) and A(r1,2) return r2,1, and therefore Rc2,1 is
incremented twice. The algorithm, then, inserts the el-
ements of Pd2

twice in P′, with different class names,
e.g., r4,1,2,1 and r2,1,1,2.

As previously stated, the usefulness of the algorithm be-
come more noticeable when the model is complex, e.g., if
the Database module, instead of being made of a single
queueing station, was described in terms of interacting
submodels, like a CPU, one or more disks, a caching
system, et cetera. All this subsystems may be also used
by other modules.

CONCLUSION

This paper addresses the problem of combining a modu-
lar and hierarchical modelling technique with an efficient
analysis method. The main theoretical contribution is
an algorithm which allows the transformation of mod-
els defined at a higher level of abstraction into models
defined at a lower one. A recursive application of this al-
gorithm produces, under a set of conditions, a product-
form multiple-class and multiple-chain BCMP QN. Al-
though to obtain this we must limit the formalism ex-
pressivity, e.g., fork and join constructs are not permit-
ted, our aim is to provide a methodology supported by
efficient algorithms for the exact analysis. Other more
expressive hierarchical approaches, such as those defined
in Woodside et al. (1995), may require approximate al-
gorithms for deriving the average performance indices
in equilibrium. Future works have several directions.
From a theoretical point of view, an extension of the
class of models tractable by such a formalism would be
important. Another important aspect is the integration
of this framework with well-known and recent advances
in web mining, particularly in log analysis. These tech-
niques provide a partition of application users accord-
ing to their behaviour. Although these techniques have
been traditionally applied to predict the customer inter-
ests (e.g., for proposing context aware advertisements)
we claim they may be very useful also for performance
evaluation purposes.

REFERENCES

Balsamo S. and Marin A., 2007. Queueing Networks
in Formal methods for performance evaluation, M.
Bernardo and J. Hillston (Eds), LNCS, Springer,
chap. 2. 34–82.

Baskett F.; Chandy K.M.; Muntz R.R.; and Palacios
F.G., 1975. Open, Closed, and Mixed Networks of
Queues with Different Classes of Customers. J ACM,
22, no. 2, 248–260.

Bruell S.C.; Balbo G.; and Afshari P.V., 1984. Mean
Value Analysis of Mixed, Multiple Class BCMP Net-
works with Load Dependent Service Stations. Perform
Eval Elsevier, 4, 241–260.

Buzen J.P., 1973. Computational algorithms for closed
queueing networks with exponential servers. Commun
ACM, 16, no. 9, 527–531.

Chandy K.M. and Sauer C.H., 1980. Computational
algorithms for product form queueing networks. Com-
mun ACM, 23, no. 10, 573–583.

Conway A.E.; de Souza e Silva E.; and Lavenberg S.S.,
1989. Mean Value Analysis by Chain of Product form
Queueing Networks. IEEE Trans Comput, 38, no. 3,
432–442.



P′ =





















EI, r2,1 EI, r2,2 EO, r2,1 EO, r2,2 d4, r4,1,1,1 d4, r4,2,1,1
EI, r2,1 0 0 0 0 1 0
EI, r2,2 0 0 0 0 0 1
EO, r2,1 0 0 0 0 0 0
EO, r2,2 0 0 0 0 0 0
d4, r4,1,1,1 0 0 1 0 0 0
d4, r4,2,1,1 0 0 0 1 0 0





















Table 2: Routing table P′ at the end of UnfoldComponents(Pd2
).

Conway A.E. and Georganas N.D., 1986. RECAL -
a new efficient algorithm for the exact analysis of
multiple-chain closed queuing networks. J ACM, 33,
no. 4, 768–791.

Kant K., 1992. Introduction to Computer System Per-
formance Evaluation. McGraw-Hill.

Marzolla M., 2010. The qnetworks Toolbox: A Software
Package for Queueing Networks Analysis. In Proc of
Int. Conf. ASMTA. Cardiff, UK, LNCS, vol. 6148,
102–116.

Resiser M. and Lavenberg S.S., 1980. Mean Value Anal-
ysis of Closed Multichain Queueing Network. J ACM,
27, no. 2, 313–320.

Smith C.U., 1990. Performance Engineering of Software
Systems. Addison-Wesley.

Smith C.U. and Williams L.G., 2006. Five steps to es-
tablish software performance engineering. In CMG
Conf. Reno, Nevada, USA, 507–516.

Woodside C.; Neilson J.; Petriu S.; and Mjumdar
S., 1995. The Stochastic rendezvous network model
for performance of synchronous client-server-like dis-
tributed software. IEEE Transaction on Computer,
44, 20–34.

BIOGRAPHY

SIMONETTA BALSAMO is a full professor of
Computer Science at the University Ca’ Foscari of
Venice, Italy. Her research interests include per-
formance and reliability modeling and analysis of
computer and communication systems, parallel and
distributed processing, distributed simulation, quanti-
tative analysis of software architectures and integration
of specification languages and performance models. She
has published several papers in international journals,
conference proceedings, books and special editions. has
servedd as general chair, program chair and program
committee member for several internatinal conferences,
is associated editor of Performance Evaluation Journal.

GIAN-LUCA DEI ROSSI received his M.Sc. degree
in Computer Science from the University of Venice in
2010. He is currently a Ph.D. student at the same
University. His research area is on stochastic models
and performance evaluation.

ANDREA MARIN received his degree in Computer
Science from the University of Venice in 2002, and the
Ph.D. in Computer Science from the same University in
2009. Most of his research is focused on the analysis
of compositionality of Markovian stochastic models, in
particular in stochastic Petri net domain. Some novel
results about product-form solutions have been derived
in this context. He now works as a post-doctoral re-
searcher at the University of Venice


