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Distribution Dynamics in the US.

A Spatial Perspective

Margherita Gerolimetto and Stefano Magrini

Abstract

It is quite common in cross-sectional convergence analyses that data exhibit strong spatial
dependence. While the literature adopting the regression approach is now fully aware that
neglecting this feature may lead to inaccurate results and has therefore suggested a number
of statistical tools for addressing the issue, research is only at a very initial stage within
the distribution dynamics approach. In particular, in the continuous state-space framework,
a few authors opted for spatial pre-filtering the data in order to guarantee the statistical
properties of the estimates. In this paper we follow an alternative route that starts from
the idea that spatial dependence is not just noise but can be a substantive element of the
data generating process. In particular, we develop a tool that, building on a mean-bias
adjustment procedure established in the literature, explicitly allows for spatial dependence
in distribution dynamics analysis thus eliminating the need for pre-filtering. Using this tool,
we then reconsider the evidence on convergence across US states.
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1 Introduction

Economic analyses are increasingly focusing on issues related to the spatial dimension of

the problem under investigation. The importance of taking spatial dependence into account

has clearly emerged since the seminal contributions by Paelink and Klaassen (1979), Bartels

and Ketelapper (1979) and Bennett (1979) which have stimulated a vast literature o↵ering

various tools to detect and treat spatial e↵ects in empirical analyses.

The spatial dimension is certainly a relevant characteristic when studying regional per

capita income convergence, as in the present paper. However, while in the literature on

convergence through the regression approach there is full awareness that neglecting spatial

dependence may lead to biased and ine�cient estimates (e.g. Rey and Montouri, 1999),

this issue has so far received much less attention within the literature that adopts, as we do

here, the distribution dynamics approach. Typically, within the latter approach the issue

is tackled by adopting a spatial filtering technique before proceeding with the estimates.

For example, Basile (2010) fits a spatial autoregressive model and employs residuals for

subsequent analysis while Fischer and Stumpner (2008) and Maza et al. (2010) employ a

filtering approach based on the local spatial autocorrelation statistic Gi developed by Getis

and Ord (1992). A strict assumption however underlies this way of approaching the issue:

spatial dependence is seen as a nuisance element that should be eliminated in order to avoid

the risk of losing the statistical properties of the estimates (Anselin, 2002 and 2009).

Di↵erently from this view, we think that spatial dependence is often likely to be a

substantive element of the process under study and this, in particular, should be the case

when studying economic convergence across regional units. Just to give an example, not

only it is well known that the level of per capita income in a US state is correlated to the level

observed in neighboring states but, as shown by Rey (2001), also the mobility of the states

within the cross-sectional distribution of per capita income is significantly a↵ected by the

relative position of geographical neighbors within the same distribution. In such instances,
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spatial dependence appears to embody valuable information on convergence dynamics and

adopting a spatial filtering technique represents a controversial strategy (Magrini, 2004) as

it may yield misleading results.

With this concerns in mind, in this paper we propose a technique that explicitly allows

for spatial dependence in distribution dynamics analysis thus eliminating the need for pre-

filtering. In simple terms, the distribution dynamics approach analyses the evolution of a

variable’s distribution by means of a stochastic kernel, e↵ectively a conditional density func-

tion, which is commonly estimated using the kernel density estimator. However, Hyndman

et al., (1996) suggest that this estimator might have poor bias properties and develop an

adjustment procedure based on the estimate of a conditional mean function characterized

by better bias properties. Here, we exploit this idea further and enrich the estimate of the

conditional density through an estimate of the mean function that, in addition to Hyndman

et al.s’ original suggestion, allows for spatial dependence. To achieve this aim, we develop a

two-step nonparametric regression estimator that moves from the standard local linear esti-

mator. More in details, we draw on the work by Martins-Filho and Yao (2009) who establish

a set of su�cient conditions for the asymptotic normality of the local linear estimator and

propose a two step procedure for nonparametric regression with spatially dependent data

that does not require a priori parametric assumptions on spatial dependence. Information

on its structure is in fact drawn from a nonparametric estimate of the errors spatial covari-

ance matrix. The finite sample performance of this estimator, called Spatial Nonparametric

estimator, is then assessed via an extensive Monte Carlo experiment.

Using the Spatial Nonparametric estimator to adjust the mean-bias (Hyndman et al.,

1996), we are able to analyze convergence with the distribution dynamics without prefilter-

ing. Through this novel version of distribution dynamics approach, we then reconsider the

evidence on convergence across regional economies in the US and also shed some light on

the consequences of neglecting spatial dependence. In particular, we employ a dataset on

real per capita personal income net of current transfer receipts for 48 conterminous states
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containing quarterly data from the 1st quarter of 1969 to the 3rd quarter of 2012.

The paper is structured as follows. In the second Section we recall the distribution

dynamics approach. In the third Section we introduce our Spatial Nonparametric estimator.

The fourth Section presents the application on per capita personal income data.

2 Distribution dynamics

Distribution dynamics (Quah, 1993 a and b, 1996 a and b, 1997) represents a relatively recent

approach to the analysis of convergence whose distinctive feature is to examine directly the

evolution of the cross-sectional distribution of per capita income1.

In simple terms, consider a group of n economies and indicate with Yi,t per capita

income of economy i at time t (relative to the group average). Next, we denote with F (Yt)

the distribution of Yt and, assuming it admits a density, indicate this density with f(Yt).

Finally, assume that the dynamics of F (Yt), or equivalently of f(Yt), can be modelled as a

first order process. As a result, the density prevailing at time t+ s is given by

f (Yt+s) =
Z 1

�1
f (Yt+s|Yt) f (Yt) dYt (1)

where the stochastic kernel f(Yt+s|Yt) maps the density at time t into the density at time

t + s. This element is the corner-stone of the approach as its (nonparametric) estimate

provides information both on the change in the external shape of the distribution and, more

importantly, on the movement of the economies from one part of the distribution to another

between time t and time t+ s.

E↵ectively, the stochastic kernel in equation (1) is a conditional density function, a

nonparametric estimate of which can be obtained by dividing the estimate of the joint

probability density function f(Yt, Yt+s) by the estimate of the marginal probability density

1 For discussions about the merits of the approach relative to alternative ones and, in particular, to
�-convergence see, among others, Durlauf and Quah, 1999; Islam, 2003; Magrini, 2004 and 2009; Durlauf et
al., 2005.
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function f(Yt):

f̂ (Yt+s|Yt) =
f̂ (Yt, Yt+s)

f̂ (Yt)
(2)

Originally, the most commonly adopted method to obtain such an estimate was the kernel

density estimator. However, Hyndman et al. (1996) suggest that this popular estimator

might have poor bias properties. To clarify this, denote by {(Y1,t, Y1,t+s), . . .,(Yj,t, Yj,t+s),

. . ., (Yn,t, Yn,t+s)} a sample of length n. Indicate the conditional mean with m(Yt) =

E(Yt+s|Yt) so that:

Yj,t+s|Yj,t = M(Yj,t) + ✏j j = 1, ..., n (3)

where the ✏j are zero mean and independent, although not necessarily identically distributed.

The kernel estimator of the density of Yt+s conditional on Yt is:

f̂(Yt+s|Yt) =
n
X

j=1

wj(Yt)Kb (Yt+s � Yj,t+s) (4)

where

wj(Yt) =
Ka (Yt � Yj,t)

Pn
j=1Ka (Yt � Yj,t)

(5)

a and b are bandwidth parameters controlling the smoothness in, respectively, the Yt di-

mension and the Yt+s dimension, Kb(u) = b

�1
K(ub ) is a scaled kernel function and K(·) is

assumed to be a real value, integrable and non negative even function.2 Note that the mean

of the conditional density estimator in (4) is in fact an estimator of the conditional mean

function M(Yt):

M̂(Yt) =
Z

Yt+sf̂(Yt+s|Yt)dYt+s =
n
X

j=1

wj(Yt)Yj,t+s (6)

In addition, as highlighted by Hyndman et al. (1996), note that the estimator in (6) is

equivalent to the local constant (or Nadaraya-Watson) regression estimator. This is known

to be biased on the boundary of the Yt space and also in the interior, especially when the

2 For further details about the properties of the kernel function, see, for example, Azzalini and Bowman
(1997).
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mean function is characterized by an evident curvature or simply the scatter plot of the

design points is irregular. Calling this bias in the estimated mean as the mean-bias of a

conditional density estimators, it follows that the kernel estimator of a conditional density

shown in (4) can have a large mean-bias.

As an alternative, Hyndman et al. (1996) then propose a new class of conditional density

estimators, defined as:

f̂

⇤(Yt+s|Yt) =
n
X

j=1

wj(Yt)Kb

⇣

Yt+s � Y

⇤
j,t+s(Yt)

⌘

(7)

where Y

⇤
j,t+s(Yt) = M̂(Yt) + ej �

Pn
i=1wi(Yt)ei, and ei = Yi,t+s � M̂(Yi,t), i = 1, ..., n.

By construction, the mean-bias of the estimator in (7) is equal to a previously esti-

mated M̂(Yt). Clearly, this means that when M̂(Yt) is the Nadaraya-Watson smoother, the

estimator reverts to the traditional kernel density estimator in (4). More importantly, it

also suggests that a lower mean-bias con be obtained by employing a smoother with better

bias properties than kernel smoothing. One such smoother is, for instance, the local linear

estimator (Loader, 1999).

It is important to emphasize that the asymptotic properties of the smoother employed to

estimate the mean function M(Yt) = E(Yt+s|Yt) are based on the assumption that the error

terms in (3) are zero mean and uncorrelated. However, as we anticipated in the introduction,

it is highly unlikely that data in empirical analyses of cross-sectional convergence comply

with this hypothesis as, in contrast, they normally feature spatial dependence.

To tackle this issue without resorting to prefiltering, we hence develop a two step pro-

cedure for nonparametric regression with spatially dependent data that does not require a

priori parametric assumptions on spatial dependence since information on its structure is

drawn from a nonparametric estimate of the errors spatial covariance matrix. This proce-

dure is described in the next session.
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3 A spatial nonparametric regression estimator

3.1 Modeling spatial dependence

As clarified in the previous section, since we are analyzing economic convergence across spa-

tial units, the mean function estimate required in the adjustment procedure by Hyndman

et al. (1996) is in fact an autoregression of a variable characterized by spatial dependence

of a substantive, rather than nuisance, nature. In this context, we can therefore model

the data generating process (DGP) according to a general parametrization known as mixed

regressive-spatial regressive model (Florax and Folmer, 1992). Before introducing its for-

malization, we remark that for the sake of generality we switch to the conventional notation

in regression framework and indicate with Y the dependent variable (in the convergence

context, Yt+s) and with X the independent one (again, in the convergence context, Yt). The

mixed regressive-spatial regressive model we start from therefore is

Y = ⇢WyY +X� +WxX�+ ✏ (8)

where Y = {Y1, Y2, ..., Yn} and X = {X1, X2, ..., Xn} are n ⇥ 1 vectors,3 ✏ ⇠ N(0,�2
In) is

a n ⇥ 1 vector of innovations, �1 < ⇢ < 1, �1 < � < 1, � is a parameter and Wy and Wx

are n⇥n spatial weights matrices whose wij elements are non negative when i 6= j and zero

otherwise.

Now rewrite (8) as follows

Y = (I � ⇢Wy)
�1(X� +WxX�) + (I � ⇢Wy)

�1
✏ (9)

and hence
Y = M(X) + u

u = ⇢Wyu+ ✏

(10)

where M(X) = (I � ⇢Wy)�1(X� +WxX�). Three remarks are now in order. Firstly, the

error term in (9) is non-spherical due to spatial dependence. Secondly, formalizations (9)

3 The analysis that follows can be easily generalized to the case in which X is a n⇥ p matrix and � a
p⇥ 1 vector, with p � 2.
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and (10) clarify that spatial dependence is a substantive element as it enters directly in

the function M(·). Thirdly, although model (8) we started from is linear, reformulations

(9) and (10) are nonlinear in their parameters. This means that, unless one knows the

entire spatial dependence structure (Wy and Wx) and the multiplicative coe�cients � and

⇢, nonparametric methods should be preferably employed.

An even stronger indication favoring the use of nonparametric methods arises when the

assumption of linearity in model (8) is relaxed, in which case the mixed regressive-spatial

regressive becomes:

Y = ⇢WyY +m(X) + g(WxX) + ✏ (11)

thus yielding

Y = (I � ⇢Wy)
�1(m(X) + g(WxX)) + (I � ⇢Wy)

�1
✏ (12)

where the function to be estimated becomes M(X) = (I � ⇢Wy)�1(m(X) + g(WxX)) thus

coming back again to equation (10). Reformulating the mixed regressive-spatial regressive

as in (10) shows that the DGP is, in fact, a very general function M(X) in which on top

of the nonlinearity in its parameters noted above, there is also a nonlinear relationship in

the functional form that links X to Y . For these reasons, we introduce a nonparametric

estimator that is designed to generalize existing nonparametric regression estimators by

allowing for spatial dependence.

3.2 Nonparametric regression with dependent errors

Nonparametric regression has now become quite a standard statistical tool when the func-

tional form is possibly of an unknown type. Indeed, given a generic model such as

Y = M(X) + ✏

where ✏ is the i.i.d. error term and M(X) is a smooth function, linearity of M(X) can not be

always safely assumed. Under these circumstances, the parametric literature typically o↵ers

non linear least squares estimates, but these require to conjecture a specific functional form
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with respect to which the minimization problem has to be solved. When making assumptions

on the functional form of M(·) is not possible or not recommended, nonparametric methods

represent a valuable solution.

In general, the estimate of a nonparametric regression can be obtained by means of

some smoothing methods. One of the most commonly adopted estimation technique is the

Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964):

M̂(X) =

Pn
j=1K(X�Xj

h )Yj
Pn

j=1K(X�Xj

h )
(13)

where h is the bandwidth, the parameter that controls the degree of smoothness. The

Nadaraya-Watson estimator is in fact a special case of local polynomial regression that

applies when the degree of the smoothing polynomial is 0 and for this reason the Nadaraya-

Watson is also know as the Local Constant Estimator (LCE). When the degree of the

smoothing polynomial is 1 instead of 0, the smoother becomes the local linear estimator

(LLE):

M̂(X) =

Pn
j=1K(X�Xj

h )Yj
Pn

j=1K(X�Xj

h )
+ (X � X̄w)

Pn
j=1K(X�Xj

h )(Xj � X̄w)Yj
Pn

j=1K(X�Xj

h )(Xj � X̄w)2
(14)

where

X̄w =

Pn
j=1K(X�Xj

h )Xj
Pn

j=1K(X�Xj

h )

Similarly to the parametric regression environment, nonparametric regression estimators

generally assume i.i.d. error terms. In case of lack of independence, Robinson (2008, 2011)

derives consistency and asymptotic distribution theory for the local constant regression es-

timator in relation to various kinds of spatial data. Other authors (for example, Xiao et al.,

2003; Lin and Carroll, 2000; Ruckstuhl et al., 2000; Wang, 2003) study possible extensions

of the nonparametric regression to a non i.i.d. errors setting, where errors can be correlated

and heteroschedastic. In all cases, however, a parametric structure for the dependence must

be assumed beforehand and this might represent a serious limitation since, as highlighted
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by Martins-Filho and Yao (2009), most asymptotic results for the LCE in case of dependent

errors are unfortunately contingent on the assumptions made on the covariance structure

and it is not possible to generalize their application to di↵erent parametric structures. Stim-

ulated by this lack of generality, attention within the nonparametric literature has focussed

on estimators that, by incorporating the information contained in the error covariance struc-

ture, outperform, both asymptotically and in finite samples, traditional nonparametric ones.

In particular, Martins-Filho and Yao (2009) develop a two-step procedure whose asymptotic

validity is proved under rather general covariance structures.

More formally, Martins-Filho and Yao consider the following nonparametric regression:

Y = M(X) + u (15)

where the error term u is such that E(ui) = 0, 8i = 1, ..., n, and E(ui, uj) = !ij(✓0),

✓0 2 R

p, p < 1 and demonstrate (Martins-Filho and Yao, 2009; Theorem 2) the asymptotic

normality and convergence rate of the traditional LLE of model (15). In addition, they

observe that this estimator, M̂ , does not exploit the information contained in the error

term correlation structure. Therefore, to improve its performance, they suggest a two-

step procedure that incorporates this information in order to yield spherical error terms.

More in detail, let ⌦(✓0) denote the n ⇥ n matrix with elements !ij and P (✓0) be a n ⇥ n

matrix such that ⌦(✓0) = P (✓0)P (✓0)0. Now, by defining the new regressand as Z =

P (✓0)�1
Y + (In � P (✓0)�1)M(X), Martins-Filho and Yao replace the original regression

with the following

Z = M(X) + ✏ (16)

where the error terms ✏ = P (✓0)�1
u are now spherical by construction. The new estimator,

M̌(X), is simply the LLE of (16). With an additional assumption constraining the nature

of the stochastic process u to be a linear transformation of i.i.d. processes, the authors show

M̌(X) to represent an improvement over M̂(X) in terms of e�ciency (Martins-Filho and

Yao, 2009; Theorem 3). To guarantee the bias from the first stage estimator to be smaller
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than the leading bias coming from the second stage, as is usual in the literature on two-stage

nonparametric regression, undersmoothing in the first stage is required.

Since Z is not observed (it depends on the unknown M(X) and P (✓0)), Martins-Filho

and Yao propose a feasible version of the M̌(X) estimator. This estimator, Ṁ(X), is based

on an observed regressand

Ż = P (✓̂)�1
Y +

⇣

In � P (✓̂�1)
⌘

M̂(X)

where a pilot local linear estimate M̂(X) is used in place of M(X) and P (✓̂) in place of

P (✓0). The authors also provide an asymptotic result4 that guarantees that, as long as a

consistent estimate ✓̂ is plugged into P (✓0), the feasible estimator Ṁ(X) is asymptotically

equivalent to M̌(X).

3.3 A new nonparametric regression estimator for spatially dependent

data

Building on the theoretical background of the two-step nonparametric regression estimator

by Martins-Filho and Yao, we can now introduce our proposal of a spatial nonparametric

regression estimator (SNP).

Since spatial dependence has not been included among the forms of dependence consid-

ered by Martins-Filho and Yao, here further assumptions need to be made on the form of the

spatial covariance matrix of the error term. In particular, apart from adopting assumptions

A1-A6 characterising the original framework developed by these authors (Martins-Filho and

Yao, 2009; page 311 and 313), we: i. suppose the error term to possess a spatial covariance

matrix such that the weighted average of the main diagonal elements converge as n ! 1

and ii. impose spatial mixing conditions, as in Jenish and Prucha (2009).5

A peculiar feature of our procedure is that the spatial covariance matrix is estimated

nonparametrically starting from a direct representation of spatial dependence. The logic

4 Martins-Filho and Yao (2009), Theorem 4
5 Note that Cli↵-Ord models (Cli↵ and Ord, 1973) trivially meet these assumptions.
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underlying the estimate of the covariance matrix of the error term is that, unless the form

of dependence is of interest itself, it is better not to parametrize it. From this viewpoint,

Robinson (1987) estimates the residuals variance, conceived as an unknown function of

the explanatory variables, by a nearest neighbors nonparametric regression and proves that

asymptotic properties of the estimated residuals variance (as well as that of other parameters

involved in the multiple regression) are guaranteed if k the number of nearest neighbors,

increases slowly with the sample size. In developing our estimator, we follow Robinson’s logic

relatively to a multivariate regression with non spherical errors and estimate consistently the

spatial covariance matrix through a nonparametric methodology, called spline correlogram,

whose details are presented in the next subsection.

3.3.1 Nonparametric estimation of the spatial covariance matrix

A commonly adopted approach to express the elements of a generic spatial covariance matrix

⌦ is through a direct representation of the dependence as some function of the distance

separating sites si and sj . In such an instance, the spatial autocovariance function is defined

by

�(si, sj) = �

2
f(dij ,�) (17)

and the spatial autocorrelation function by

⇢(si, sj) = f(dij ,�) (18)

where dij is the distance between sites i,j and f(·) is a decaying function such that @f
@dij

< 0,

|f(dij ,�)|  1 with � being an appropriate vector of parameters. Within this framework,

the spatial covariance matrix ⌦ is positive definite and composed by elements !ij , obtained

through function �(si, sj) in observed distances across sites. These features of matrix ⌦

follow directly from the stationarity and isotropy assumptions underpinning the existence

of a spatial covariance function.6

6 These assuptions are certainly met when ⌦ represents the spatial covariance matrix of homoskedastic
errors of a Cli↵-Ord type model.
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Bjørnstad and Falck (2001) propose a nonparametric estimate of the spatial covariance

matrix moving from a continuous nonparametric positive semidefinite estimator of f(dij ,�)

in (18), called spline correlogram. In particular, they build on the seminal work of Hall and

Patil (1994) who, in turn, develop a kernel estimator of the spatial autocorrelation function

⇢(si, sj):

⇢̃(si, sj) =

Pn
i=1

Pn
j=1K(dij/a)(⇢̂ij)

Pn
i=1

Pn
j=1K(dij/a)

(19)

where K is a kernel function, a is a bandwidth and ⇢̂ij is the sample correlation

⇢̂ij =
(zi � z̄)(zj � z̄)

1/n
Pn

l=1(zl � z̄)2
(20)

in which z̄ = 1/n
Pn

l=1 zl is the sample mean. Hall and Patil (1994) demonstrate that the

estimator in (19) can be tuned (by tuning a) so that ⇢̃(d) ! 0 for any smooth functional

form of ⇢(d).

Starting from the estimator in (19), Bjørnstad and Falck (2001) opt for a cubic B-spline

as a smoother7. Given N pairs (Xi, Yi), i = 1, ..., N , the smoothing spline solves the fitting

problem by selecting the function f that minimizes the penalized residual sum of squares

(RSS)

RSS(f(X), ⌧) =
N
X

i=1

{Yi � f(Xi)}2 + ⌧

Z

n

f

00
(t)

o2
dt (21)

where ⌧ is a fixed smoothing parameter (Hastie et al., 2009). In the above expression,

the first term measures closeness to the data, the second term penalizes curvature in the

function; ⌧ represents a trade-o↵ between the two, varying from very rough fits (⌧ = 0) to

very smooth fits (⌧ = 1). The asymptotic kernel, equivalent to a cubic B-spline is:

K(d/a) =
1

2
exp

✓

� |d/a|p
2

◆

sin

✓

� |d/a|p
2

+
⇡

4

◆

(22)

where, once more, d denotes a generic measure of distance. The advantage in using the

B-spline is in that this smoother adapts better to irregularly spaced data and produces a

7 Silverman (1984) points out that the smoothing spline is essentially a local kernel average with a
variable bandwidth.
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consistent estimate of the covariance function (Hyndman and Wand, 1997). It has been

shown that fixing the degree of smoothing using cross validation (see Green and Silverman,

1994, and Hastie et al., 2009, for more details) and assuming a true covariance function

⇢(si, sj) that is C2-di↵erentiable (i.e. with continuous 1st and 2nd derivatives) guarantees

results with asymptotic properties.

In addition, since the estimator ⇢̃(si, sj) must be not only consistent but also posi-

tive semidefinite, and this is not necessarily guaranteed by the estimator in equation (19),

Bjørnstad and Falck resort to a Fourier-filter method (Hall et al., 1994). The latter works as

follows: firstly the Fourier transform of ⇢̃(si, sj) is calculated, then all negative excursions of

the transformed function are set to zero and, finally, a nonparametric positive semidefinite

estimate of the spatial correlation function is obtained by backtransformation.

3.3.2 The SNP estimator in practice

The SNP estimator finds a natural application in estimating the very general model (10),

previously introduced. Operatively, the SNP estimator of M(X) is computed through the

following steps:

0. Pilot fit : estimate M(X) with a local polynomial smoother, where the bandwidth h

is chosen following an optimal rule. As for the degree of the polynomial, we we fix it

to 1. The output is û = Y � M̂(X).

1. Nonparametric covariance matrix estimation: using the spline correlogram, obtain V̂ ,

the estimated spatial covariance matrix of û.

2. Final fit : feed the procedure with the information obtained from the estimate of the

spatial covariance matrix V̂ by running a modified regression where Y is replaced by

Z = m̂(X) + L

�1
û and L is obtained by taking the Cholevsky decomposition of V̂ .
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3.3.3 Monte Carlo study

Finally, we conduct a Monte Carlo experiment8 to show, via simulations, the finite sample

performance of our procedure in comparison with a traditional nonparametric method that

does not take the presence of spatial dependence into account. The purpose therefore

is to investigate the e↵ective improvement in regression estimation results when spatial

dependence is not neglected.

The Monte Carlo experiment is carried out considering several nonlinear specifications

for model (10)
Y = M(X) + u

u = ⇢Wyu+ ✏

In particular, we consider the following specifications that correspond to complex functional

forms, capable of incorporating the nonlinearity due to the factor (I � ⇢Wy)�1:

• A M(X) = sin(5⇡X)

• B M(X) = 2 + sin(7.1(X � 3.2))

• C M(X) = 1� 48X + 218X2 � 315X3 + 145x4

• D M(X) = 10exp(�10X)

• E M(X) = (�1 + 2X) + 0.95exp(�40(�1 + 2X)2)

• F M(X) = 1/(1 + exp(�6 + 12X))

• G M(x) =

(

exp(X � 0.33) if X < 0.33
exp(�2(X � 0.33)) if X � 0.33

the shapes of which are depicted in Figure 1.

The simulated data set length is N = 50, 100, 200 and the number of Monte Carlo

replications per experiment is 1000. The regressor is drawn from a uniform distribution,

8 The core of the code has been written in Matlab (Matlab 7.7.0, R2008b), but it incomporates some
R (R Development Core Team, 2010) functions. Connectivity between Matlab and R is ensured via the
MatlabRlink toolbox and StatConnDCOM (Baier and Neuwirth, 2007).
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X ⇠ U(0, 1), while the disturbance term is generated as a vector of normally distributed

random variables, ✏ ⇠ N(0,�2), where � is set to obtain three alternative levels for the

pseudo-R2 (0.2, 0.5, 0.8). In addition, units are assumed to belong to a circular world and,

similar to Kelejian and Prucha (1999 and 2007) and Kapoor et al. (2007), the spatial weights

matrix W is such that each observation is directly related to the six units immediately

surrounding it (three on each side) it in the ordering. Specifically, the matrix is such that

all nonzero elements are equal and, following common practice, the matrix is row-normalized.

Finally, ⇢ takes on three alternative values (0.3, 0.5, 0.8) corresponding to low, intermediate

and strong spatial dependence, giving us a total of 189 (7⇥ 3⇥ 3⇥ 3) experiments.

We employ two estimation methods: the traditional local linear estimator (NP) and

the procedure proposed in the previous Section (SNP), implemented with a local linear

estimator. For all simulations we use the gaussian kernel with bandwidths that minimize the

cross-validation criterion.9 The starting value for the smoothing parameter in the estimate

of the spline correlogram is 0.1.10

An estimator’s performance is measured by calculating the median across replications of

the Mean Integrated Squared Error (MISE) obtained in each replication. A direct compar-

ison of the relative performance of the two estimators is then carried out through the ratio

between the median MISE of SNP with respect to the median MISE on NP. The results of

the complete set of experiments are reported in Table 1.

Overall, the performance of SNP is quite good as median ratios are in almost all cases

below 1, with no appreciable di↵erences across the di↵erent functional forms. Median ratios

are close to 1 for low levels of spatial dependence (� = 0.3) and for the smallest sample size

(N = 50) while they display significant reductions as the strength of spatial dependence

and the size of the sample increase. In particular, SNP procedure visibly outperforms the

9 To guarantee the required degree of undersmoothing, the bandwith in the pilot estimate of the SNP
estimator is h = N (�1/10)g where g is optimal bandwith obtained via the cross-validatory criterion.

10 Operatively, the estimate of the spatial autocorrelation function is obtained through two subsequent
smoothings and the corresponding smoothing parameters are chosen, respectively, by the user and then by
generalized cross-validation minimization
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traditional local linear estimator when ⇢ reaches 0.8 and N = 200, obtaining median values

of the MISE that are approximately 25 percent smaller in several cases.

4 Empirical analysis

We can now apply the ideas developed in the previous sections to explain observed patterns

of convergence among US states between 1971:Q1 and 2010:Q4. As shown in Magrini et

al. (2015) and Gerolimetto and Magrini (2014), when regional disparities follow a distinct

cyclical pattern in the short-run, results from convergence analysis could be a↵ected by

sizeable distortions if the analyzed period includes incomplete cycles. In order to avoid this

bias, we resort to the approach in Gerolimetto and Magrini (2014) and begin the analysis by

extracting the trend from each of the 48 quarterly per capita personal income series using

the Hodrick-Prescott filter (Hodrick and Prescott, 1997). The choice of �HP , the parameter

that controls the degree of smoothness of the estimated trend, is made following the logic

spelt out in Gerolimetto and Magrini (2014) and is set equal to 10000.

Once the trends have been estimated, we fix two points in time, t and t+s, and study

convergence dynamics over this specific time period by applying the distribution dynamics

approach to data on the extracted trends. For each considered time period, we estimate the

stochastic kernel and, when possible, we calculate the corresponding ergodic distribution

i.e., a limiting distribution whose external shape does not change over time while allowing

for intra-distribution movements according to the stochastic kernel. In particular, following

Johnson (2005), we calculate the ergodic distribution that corresponds to a given stochastic

kernel by solving

f1 (Y ) =
Z 1

�1
f (Yt+s|Yt) f1 (Y ) dY (23)

Then, we compare stochastic kernels and corresponding ergodic distributions estimated us-

ing both the traditional local linear estimator (NP), and our estimator (SNP) in the mean’s

function adjustment procedure.11 To get an idea of the speed with which the distributions

11 When using SNP, the spatial correlogram is estimated using a matrix of orthodromic distances between
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evolve and reach a stationary shape we resort to the concept of asymptotic half-life of the

chain (Shorrocks, 1978), that is the amount of time taken to cover half the distance to

the ergodic distribution. In addition, we report Moran’s I index of spatial dependence (and

corresponding p-value based on the randomization assumption and using a 10-nearest neigh-

bors, row-standardized matrix) on observed and filtered data as well as on the residuals of

the regression for the mean function estimation, and two dispersion measures (coe�cient

of variation and interquantile range) for initial, final and ergodic distributions. Finally, we

also study the way the cross-sections distribution evolves towards the steady-state with the

specific aim of figuring out which units contribute the most to the shape of the tails of the

ergodic distribution. In particular, based on SNP estimates, we plot the conditional distri-

bution for each state’s initial per capita personal income level after a number of iterations

corresponding to the half-life of the chain. Then, we identify the conditional distributions

(and hence the states) for which either the third quartile is smaller than 1 or the first quar-

tile is larger than one. In such a way, we are able to recognize which states are more likely

to end up in one of the tails during the transition towards the ergodic distribution.

Drawing directly from the results in Gerolimetto and Magrini (2014), we initially concen-

trate on two sub-periods stretching, respectively, between 1971:Q1 and 1980:Q4 and between

1981:Q1 and 2010:Q4. As far as the first sub-period is concerned, Figure 2 displays a clear

result of persistence, which is common to both estimators despite the presence of strong

spatial correlation not only in the data but also in the residuals from the NP regression

(Table 2, columns 1-2). In other words, in this sub-period, allowing for spatial dependence

does not alter the end result in any significant way.

A somewhat di↵erent outcome instead emerges from the analysis of the second sub-

period as, both the plots in Figure 3 and of the columns 3-4 of Table 2, suggest that the

estimates obtained using SNP appear characterized by a weaker tendency towards diver-

gence compared to NP. To ascertain the significance of the di↵erences in the two ergodic

state capitals.
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distributions, we carry out the Cramér-von Mises test for the equality of two continuous

distributions. As shown in Table 4, the null hypotheses that the two samples are from

the same continuous distribution is rejected at all significance levels. Hence, allowing for

spatial dependence significantly modifies the estimation results over this sub-period and, in

particular, the estimates through SNP depict a weaker tendency towards divergence than

what originally suggested using NP.

Given these statistically significant di↵erences, it appears important to split the second

sub-period into smaller ones to investigate whether the di↵erence in outcome is confined to

specific decades. Starting from the 1981:Q1 and 1990:Q4 sub-period, it is interesting to note

that the ergodic distribution cannot be calculated according to (23) when NP is employed.

The shape of the estimated stochastic kernel (Figure 4, right column), however, clearly sug-

gests a strong tendency towards divergence given the pronounced counter-clockwise twist of

the conditional probability in correspondence of values above 1.20. A rather di↵erent result

is found when SNP is employed: not only the ergodic distribution can now be calculated

but its shape and the statistics reported in Table 2, columns 5-6, suggest that this period

is characterised by a tendency towards persistence. However, it is also interesting to note

that, compared to the initial distribution, the ergodic exhibits a heavier left tail and a lighter

right one.

When the 1991:Q1 and 2000:Q4 sub-period is considered, the external shape of the initial

and final distributions is remarkably similar as the corresponding plots almost overlaps.

There are however intra-distribution movements and these lead to ergodic distributions

that suggest a clear tendency towards divergence. Two aspects of this process are worth

emphasizing. First of all, this divergence process is very slow as witnessed by the high

half-life values (Table 3); for instance, the half-life of the estimate obtained via SNP reaches

the value of 8.5, a 5-fold increase with respect to the value corresponding to the period

1981:Q1-1990:Q4. Secondly, although all estimates suggest a process of divergence (Figure

5 and Table 2, columns 7-8), the tendency towards divergence appears stronger when SNP
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is employed. Interestingly, the shape of the estimated stochastic kernel and that of the

ergodic distribution obtained using SNP suggest that this decade is characterised by a

process of club-convergence. In fact, there appears to be a di↵erence in the strength of

the diverging process highlighted by the two estimators since the null hypothesis is only

marginally accepted as shown in Table 4.

The last sub-period (2001:Q1 and 2010:Q4) seems to delineate a strong tendency towards

divergence both when NP and SNP are employed in the mean bias adjustment procedure

(Figure 6 and Table 2, columns 9-10). In particular, the tests for the equality of the distri-

butions suggest no statistically significant di↵erences between the two ergodic distributions

(Table 4).

Finally, Table 5 illustrates the transitional dynamics. 12 In the first sub-period (1971:Q1-

1980:Q4), we note that Alabama, Arkansas, Kentucky, Louisiana, Mississippi, South Car-

olina and West Virginia are more likely to remain in the lower left tail of the distribution

while California, Connecticut, Delaware, Illinois, Maryland, Nevada, New Jersey, New Mex-

ico and New York are instead more likely to stay in the upper right tail.

In the second sub-period (1981:Q1-1990:Q4), only units on the lower left tail of the

distribution can be identified; these are Alabama, Arkansas, Kentucky, Maine, Mississippi,

South Carolina, Tennessee and West Virginia. These is clearly consistent with the shift of

the probability mass towards the left tail noted in the corresponding ergodic distribution

noted in the right column of Figure 4.

Contrary to the previous case, in the third sub-period (1991:Q1-2000:Q4), only units

on the upper right tail of the distribution can be identified (Connecticut, Maryland, Mas-

sachusetts, New Jersey and New York). In addition, for the states of Maryland, Mas-

sachusetts and New York, the mode of the conditional distribution is higher than the level

of per capita income that these states have at the beginning of the sub-period. In other

words, these states are likely to diverge from the rest of the distribution and are likely to

12The transitional dynamics of each state in each sub-period are depicted in Figures A1-A8 in the Appendix.
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contribute relevantly to the overall divergence result conveyed by the shape of the ergodic

distribution in Figure 5.

Finally, a similar picture emerges in the last sub-period (2001:Q1-2010:Q4), in which

Colorado, Connecticut, Maryland, Massachusetts and New Jersey are likely to remain in

the upper right tail of the distribution but only two of them (Connecticut and New Jersey)

show a strongly diverging pattern.

5 Conclusions

In this paper we studied the evolution of per capita personal income inequalities among

US states using data from the 1st quarter of 1969 to the 4th quarter of 2012. Specifically,

we employed a distribution dynamics approach in which the conditional mean is estimated

via a nonparametric estimator that allows for spatial dependence (SNP) and compared its

results with those obtained from a conventional nonparametric estimator (NP).

Comparing estimated conditional densities and ergodic distributions we found particu-

larly interesting di↵erences in the results obtained over the three decades running between

1981:Q1 and 2010:Q4. With reference to the first decade (1981:Q1 and 1990:Q4), by em-

ploying the SNP estimator we found clear evidence of persistence, contrary to findings of

strong divergence obtained using NP. In the second decade (1991:Q1 and 2000:Q4), the

SNP estimator allowed us to detect a stronger tendency towards divergence, possibly lead-

ing to club convergence. Instead, both estimators allowed to detect statistically significant

evidence of divergence during the last decade (2001:Q1 and 2010:Q4).

From a more general viewpoint, we emphasize one important conclusion that stems from

this analysis: not only we confirm that neglecting spatial dependence might substantially

a↵ect the results, but we also suggest that the direction in which spatial dependence alters

the results is not easily predictable.
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Figures and Tables

Figure 1: Monte Carlo experiment: functional forms
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Figure 2: 1971:Q1-1980:Q4
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Notes: Estimates of the stochastic kernel use a nearest-neighbor bandwidth in the initial year dimension (span = 0.3),
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and a Gaussian kernel. The (fixed) bandwidth
for both NP and SNP estimates is chosen using cross validation. The starting value for the smoothing parameter in
the estimate of the spline correlogram is 1; the final value is determined via cross-validation minimization. HP-filtered
data are obtained setting �HP = 10000. In contour and HDR plots, the dashed line represents the main diagonal, the
asterisk the modes. In the comparison between distributions, the dashed line represents the initial year, the dotted
line represents the final year, the continuous line represents the ergodic.

28



Figure 3: 1981:Q1-2010:Q4

NP SNP 
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data are obtained setting �HP = 10000. In contour and HDR plots, the dashed line represents the main diagonal, the
asterisk the modes. In the comparison between distributions, the dashed line represents the initial year, the dotted
line represents the final year, the continuous line represents the ergodic.
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Figure 4: 1981:Q1-1990:Q4
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line represents the final year, the continuous line represents the ergodic.
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Figure 5: 1991:Q1-2000:Q4

NP SNP 
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Notes: Estimates of the stochastic kernel use a nearest-neighbor bandwidth in the initial year dimension (span = 0.3),
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and a Gaussian kernel. The (fixed) bandwidth
for both NP and SNP estimates is chosen using cross validation. The starting value for the smoothing parameter in
the estimate of the spline correlogram is 1; the final value is determined via cross-validation minimization. HP-filtered
data are obtained setting �HP = 10000. In contour and HDR plots, the dashed line represents the main diagonal, the
asterisk the modes. In the comparison between distributions, the dashed line represents the initial year, the dotted
line represents the final year, the continuous line represents the ergodic.
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Figure 6: 2001:Q1-2010:Q4

NP SNP 
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Notes: Estimates of the stochastic kernel use a nearest-neighbor bandwidth in the initial year dimension (span = 0.3),
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and a Gaussian kernel. The (fixed) bandwidth
for both NP and SNP estimates is chosen using cross validation. The starting value for the smoothing parameter in
the estimate of the spline correlogram is 1; the final value is determined via cross-validation minimization. HP-filtered
data are obtained setting �HP = 10000. In contour and HDR plots, the dashed line represents the main diagonal, the
asterisk the modes. In the comparison between distributions, the dashed line represents the initial year, the dotted
line represents the final year, the continuous line represents the ergodic.
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Table 1: Monte Carlo results

A B C

pseudo-R2
N 0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8

0.2 50 0.98 0.97 0.95 0.98 0.99 0.94 1.02 1.00 0.95
0.2 100 0.98 0.94 0.89 1.02 0.98 0.88 0.98 0.94 0.87
0.2 200 0.97 0.93 0.79 0.98 0.93 0.79 0.97 0.90 0.83
0.5 50 1.00 0.98 0.94 1.00 0.98 0.89 1.02 1.01 0.92
0.5 100 0.99 0.93 0.81 1.01 0.95 0.81 0.99 0.96 0.82
0.5 200 0.98 0.93 0.75 0.98 0.92 0.73 0.97 0.91 0.79
0.8 50 1.00 0.98 0.89 1.00 0.97 0.90 1.02 0.99 0.89
0.8 100 1.00 0.95 0.81 0.99 0.96 0.78 1.01 0.96 0.82
0.8 200 0.98 0.92 0.73 0.98 0.93 0.77 0.98 0.93 0.76

D E F

pseudo-R2
N 0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8

0.2 50 1.02 1.00 0.94 0.99 0.97 0.92 1.01 0.96 0.95
0.2 100 1.01 0.95 0.88 0.98 0.96 0.88 0.99 0.97 0.84
0.2 200 0.98 0.96 0.85 0.99 0.96 0.79 0.98 0.94 0.79
0.5 50 1.01 0.98 0.94 1.00 0.97 0.90 1.02 0.98 0.97
0.5 100 1.02 0.95 0.88 1.00 0.95 0.89 1.01 0.97 0.87
0.5 200 0.99 0.92 0.78 0.99 0.92 0.86 0.99 0.94 0.82
0.8 50 1.01 0.98 0.94 1.00 0.98 0.92 1.00 0.98 0.98
0.8 100 0.99 0.97 0.82 1.00 0.97 0.84 1.01 0.96 0.89
0.8 200 0.99 0.93 0.74 0.98 0.92 0.77 0.99 0.94 0.78

G

pseudo-R2
N 0.3 0.5 0.8

0.2 50 0.99 0.98 0.89
0.2 100 0.99 0.96 0.87
0.2 200 0.98 0.96 0.82
0.5 50 1.00 0.98 0.92
0.5 100 0.98 0.94 0.88
0.5 200 0.99 0.92 0.80
0.8 50 1.01 0.97 0.91
0.8 100 1.00 0.95 0.87
0.8 200 0.98 0.94 0.77

NOTE: Ratio (SNP over NP) of the median across replications of the MISE
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Table 3: Estimated half-life values

ergodic via SNP ergodic via NP
1971:Q1-1900Q4 3.5484 3.2583
1981:Q1-2010Q4 2.9073 4.7256
1981:Q1-1990Q4 1.7255 –
1991:Q1-2000Q4 8.4571 7.0202
2001:Q1-2010Q4 4.5453 4.9808

Table 4: Cramér-von Mises test between distributions (test p-levels)

ergodic SNP vs ergodic NP ergodic SNP vs initial
1971:Q1-1980Q4 0.9950 0.9736
1981:Q1-2010Q4 0 0
1981:Q1-1990Q4 – 0.0252
1991:Q1-2000Q4 0.1198 0
2001:Q1-2010Q4 0.7545 0
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Table 5: Transitional dynamics

3rd quartile <1 1st quartile >1
1971:Q1-1980:Q4

Alabama (0.7687) 0.8512
Arkansas (0.7305) 0.8404
California (1.2337) 1.1239
Connecticut (1.3236) 1.1482
Delaware (1.2392) 1.1266
Illinois (1.2179) 1.1185
Kentucky (0.8159) 0.8728
Louisiana (0.798) 0.8647
Maryland (1.2203) 1.1185
Mississippi (0.6785) 0.8296
Nevada (1.3006) 1.1428
New Jersey (1.2597) 1.1320
New Mexico (1.2351) 1.1239
New York (1.2351) 1.1239
South Carolina (0.808) 0.8701
West Virginia (0.7702) 0.8539

1981:Q1-1990:Q4
Alabama (0.7985) 0.8590
Arkansas (0.7641) 0.8459
Kentucky (0.8237) 0.8656
Maine (0.8381) 0.8754
Mississippi (0.6992) 0.7999
South Carolina (0.8098) 0.8623
Tennessee (0.8546) 0.8853
West Virginia (0.7707) 0.8492

1991:Q1-2000:Q4
Connecticut (1.4759) 1.3531
Maryland (1.2891) 1.3367
Massachusetts (1.2654) 1.3301
New Jersey (1.3599) 1.3465
New York (1.2399) 1.3202

2001:Q1-2010:Q4
Colorado (1.217) 1.2093
Connecticut (1.4788) 1.3786
Maryland (1.2577) 1.2702
Massachusetts (1.3152) 1.3244
New Jersey (1.3507) 1.3447
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Appendix

Figure A1: Transitional dynamics: 1971:Q1-1980:Q4 (a)
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Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita income
after a number of iterations corresponding to the half-life
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Figure A2: Transitional dynamics: 1971:Q1-1980:Q4 (b)
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Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita personal
income after a number of iterations corresponding to the half-life
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Figure A3: Transitional dynamics: 1981:Q1-1990:Q4 (a)
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Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita personal
income after a number of iterations corresponding to the half-life
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Figure A4: Transitional dynamics: 1981:Q1-1990:Q4 (b)
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Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita personal
income after a number of iterations corresponding to the half-life
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Figure A5: Transitional dynamics: 1991:Q1-2000:Q4 (a)
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Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita personal
income after a number of iterations corresponding to the half-life
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Figure A6: Transitional dynamics: 1991:Q1-2000:Q4 (b)
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Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita persoanl
income after a number of iterations corresponding to the half-life
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Figure A7: Transitional dynamics: 2001:Q1-2010:Q4 (a)

 

  

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Alabama

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Arizona

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Arkansas

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
California

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Colorado

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Connecticut

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Delaware

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Florida

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Georgia

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Idaho

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Illinois

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Indiana

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Iowa

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Kansas

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Kentucky

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Louisiana

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Maine

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Maryland

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Massachusetts

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Michigan

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Minnesota

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Mississippi

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Missouri

0.8 1 1.2 1.4 1.6
0

0.002

0.004

0.006

0.008

0.01
Montana

Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita personal
income after a number of iterations corresponding to the half-life
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Figure A8: Transitional dynamics: 2001:Q1-2010:Q4 (b)
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Notes: Plots of the conditional density distributions for each state’s initial level of (HP-filtered) per capita personal
income after a number of iterations corresponding to the half-life
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