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1 Introduction

For the class of undiscounted convex models of optimal growth, it has been known since Gale
(1967) that existence of optimal (in the sense of overtaking) solutions cannot be proved in
general if the “golden rule” capital stock is not unique. Soon, however, it turned out that
uniqueness is not su�cient for the existence of an optimal solution. Brock (1970), indeed,
proved existence under this condition, but used the weaker optimality criterion know as
maximality (or weak overtaking optimality) and presented an example of a maximal steady
state that is not optimal. Peleg (1973) then pointed out that the same example can be used
to prove non-existence of optimal paths, implying that, without additional assumptions, it
is not possible to strength Brock’s existence theorem.

To the best of our knowledge there are only three published examples of non-existence:
the Brock-Peleg one, the one reported in Khan & Piazza (2010) and finally the one provided
in a paper by Fabbri et al. (2015). Of these examples, the first two relate to di↵erent two-
sector one capital good discrete models, whereas only the last one is in continuous time
and, in addition, with an infinite-dimensional state space. So while it has been already
established that in discrete time non-existence is possible even with a one-dimensional state
space, it is not clear which is the minimum dimension for non-existence in continuous time.
We here report a new example showing that the minimum dimension is 2. In other words,
our example confirms the conjecture advanced in Brock & Haurie (1976) p. 345:

We have not yet constructed an example where the steady state x̄ is unique but
no overtaking optimal program exists from some x0 while a weakly overtaking
optimal program exists from our x0. Such an example will take some work to
construct because it seems that the state space will have to be two dimensional
whereas in discrete time as shown in Brock (1970) we can get by with a one-
dimensional output space.

2 The Model

We consider the (n+1)-sector single-technique case of the discrete capital model introduced
in Bruno (1967). In the system, there are n + 1 commodities: n pure capital goods and a
pure consumption good. The services of a primary factor of production, labor, are combined
with the services of the stocks of capital to produce the n + 1 commodities. Technology is
of the discrete type, and only n+ 1 processes, one for each good, are available.1

A unit of the j-th capital good needs to be produced a
ij

units of the i-th capital good
and `

j

units of labour, whereas one unit of the consumption good needs ↵
i

units of the i-th
capital good and `

c

units of labour, so that the technology is described by a vector and a
matrix of capital coe�cients

A = [a
ij

]
i,j=1,..n , ↵ =

⇥

↵1 ↵2 ... ↵
n

⇤

T

.

and a vector ` and a scalar `
c

of labor input coe�cients

1In Bruno (1967) the rate of discount is assumed to be strictly positive. Moreover, although choice of
technique is allowed, a complete analysis is provided only for the homogeneous capital case.
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` =
⇥

`1 `2 ... `
n

⇤

T

, `
c

.

Let
k(t) =

⇥

k1(t) k2(t) ... k
n

(t)
⇤

T

represent the stock of capital goods at a given time t � 0, and

x(t) =
⇥

x1(t) x2(t) ... x
n

(t)
⇤

T

, x
c

(t)

be the intensities of activation of the production processes at that time (chosen by the social
planner). Assuming that the flow of new capitals is accumulated and that capitals decay at
a constant depreciation rate � > 0 (the same for all capital goods), and that the initial state
of the system is k0 � 0, then the state equation is given by the n-dimensional system

(

k̇(t) = ��k(t) + x(t), t � 0

k(0) = k0.
(1)

Assume that the labour flow available at every t is constant and normalized to 1, and
assume that every unit of capital good instantaneously provides one unit of production
services. Then the production is subject to the following set of constraints, holding for all
t � 0:

Ax(t) + x
c

(t)↵  k(t), (2)

h`, x(t)i+ x
c

(t)`
c

 1, (3)

x(t) � 0, x
c

(t) � 0. (4)

Assuming a linear utility and a positive discount factor ⇢ � 0, the problem is that of
maximizing

J(x, x
c

, k0) =

Z +1

0
e�⇢tx

c

(t) dt (5)

over the set of admissible controls

X (k0) = {(x, x
c

) 2 L1
loc

(0,+1;Rn+1
+ ) : (1)� (4) hold at all t � 0.} (6)

We stress the fact that, due to the constraints (2)–(4), the admissible controls depend on
the initial capital k0.

Remark 2.1 Since from (1) one derives

k(t) = e��tk0 +

Z

t

0
e��(t�s)x(s)ds

the solution k is in the space W 1,1
loc

(0,+1;Rn). Note that in our assumption, trajectories
k are always nonnegative, as they are bounded from below from k0e

��t � 0. Moreover, if
vector ` is strictly positive, then trajectories are uniformly bounded by a constant depending

only on k0. Indeed, if we define c :=
�

P

n

i=1 `
�2
i

�1/2
we may check that (3) implies kxk  c

so that
kk(t)k  kk0k+ c/�, 8t � 0.

⇤
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Due to (3) and (4), when ⇢ > 0 the utility is finite for all admissible controls. On the
contrary, when ⇢ = 0 the utility may be infinite valued. We take into consideration the
following criteria of optimality.

Definition 2.2 A control (x⇤, x⇤
c

) in X (k0) is said optimal (or overtaking optimal) at k0
if, for every other control (x, x

c

) in X (k0)

lim inf
T!+1

Z

T

0
e�⇢t(x⇤

c

(t)� x
c

(t)) dt � 0.

If k⇤ is the trajectory starting at k0 and associated to (x⇤, x⇤
c

), then (k⇤; (x⇤, x⇤
c

)) is said an
optimal couple.

Definition 2.3 A control (x⇤, x⇤
c

) in X (k0) is said maximal (or weakly overtaking) at k0
if, for every other control (x, x

c

) in X (k0)

lim sup
T!+1

Z

T

0
e�⇢t(x⇤

c

(t)� x
c

(t)) dt � 0.

If k⇤ is the trajectory straiting at k0 and associated to (x⇤, x⇤
c

), then (k⇤; (x⇤, x⇤
c

)) is said a
maximal couple.

Every optimal control is maximal but the viceversa is false in general.
We here list the assumptions that will be used throughout the paper.

Hypothesis 2.4 1. The matrix A is semipositive, that is, a
ij

� 0 for all i and j and
there is at least a positive element;

2. The vector ↵ is semipositive, that is, ↵ � 0 and ↵
i

> 0 for at least one i.

3. The vector ` is positve, that is, `
i

> 0 for all i; also `
c

> 0.

4. A is indecomposable;2

3 Golden Rules

The aim of this section is to define golden rules, that is, stationary solutions supported
by stationary prices. Some properties of Hamiltonian functions will prove useful for the
arguments developed afterwards. We define the current value Hamiltonian associated to
the problem as h : Rn

+ ⇥ R+ ⇥ Rn

+ ⇥ R+ ! R given by

h(k,�, x, x
c

) = x
c

+ h�, x��ki

and the maximal value Hamiltonian as

H(k,�) = sup{h(k,�, x, x
c

) : (x, x
c

) � 0, Ax+ x
c

↵  k, h`, xi+ x
c

`
c

 1}. (7)

2In economic terms, this assumption means that each capital good enters directly or indirectly into the
production of all capital goods. Since the vector ↵ is semipositive, this also implies that each capital good
enters directly or indirectly into the production of all goods. Indecomposable semipositive square matrices
have some useful properties: their Perron Frobenious eigenvalue µ is positive, right and left eigenvectors
associated to this root are unique (up to multiplication by a scalar), and (I � �A)�1 > 0, whenever � is a
scalar such that µ� < 1 (see e. g., Kurz & Salvadori, 1995, Theorem A.3.5).
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The maximization process through which the maximal value Hamiltonian is computed, cor-
responds to solving the following linear programming problem

max[h�, xi+ x
c

] (8)

subject to
Ax+ x

c

↵  k
h`, xi+ x

c

`
c

 1
(x, x

c

) � 0.
(9)

which has feasible region

U(k) = {(x, x
c

) 2 Rn

+ ⇥ R+ : (9) holds}.

The corresponding dual problem is

min[hq, ki+ w] (10)

subject to
�  AT q + w `
1  h↵, qi+ w `

c

q � 0, w � 0,
(11)

where (q,w) 2 Rn ⇥ R are dual control variables having the meaning, respectively, of rental
rates of capital goods and wage rate (i.e., the multiplier associated to the constraint of
availability of labour). We denote the feasible region of the dual problem by

V (�) = {(q, w) 2 Rn

+ ⇥ R+ : (11) holds}.

.

Remark 3.1 The set U(k) is nonempty and compact as a consequence of Hypothesis
(2.4.4), for every given and positive k, so that the maximum is attained at some (x⇤, x⇤

c

)
and, equivalently (see e. g., Franklin, 2002, Section 1.8), there exists an optimal solution
(q⇤, w⇤) of the corresponding dual problem, namely

(x⇤, x⇤
c

) 2 argmax{h�, xi+ x
c

: (x, x
c

) 2 U(k)}

if and only if there exists (q⇤, w⇤) in Rn+1 such that

(q⇤, w⇤) 2 argmin{hk, qi+ w : (q, w) 2 V (�)}

with both sets above being nonempty, moreover
(

h�, xi+ x
c

 hk, qi+ w, 8x, x
c

, q, w

h�, x⇤i+ x⇤
c

= hk, q⇤i+ w⇤.
(12)

Remark 3.2 As a consequence of (12), one has

@
�

H = ��k + x⇤, @
k

H = q⇤ � ��.
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Heuristically speaking, the candidate conditions of optimality associated to the problem
are the following:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

k̇(t) = ��k(t) + x(t), t � 0

k(0) = k0

�̇(t) = (⇢+ �)�(t)� q(t), t � 0

(x(t), x
c

(t)) 2 argmax{h�(t), xi+ x
c

: (x, x
c

) 2 U(k(t))}, t � 0

(q(t), w(t)) 2 argmin{hk(t), qi+ w : (q, w) 2 V (�(t))}, t � 0

(13)

As a consequence of the previous remarks, we define golden rules as follows.

Definition 3.3 We say that (k̄, x̄, x̄
c

, �̄, w̄, q̄) is a golden rule if it is a stationary solution
of (13).

Remark 3.4 In the literature, golden rules are sometimes called modified golden rules
when ⇢ > 0 (see e. g., Mas-Colell et al., 1995, Definition 20.E.2).

4 Su�cient conditions of optimality

Now we develop su�cient conditions of optimality which we will use to test optimality of
specific admissible couples.

Theorem 4.1 Let Hypothesis 2.4 be satisfied. Assume also k0 2 Rn

+, (x
⇤, x⇤

c

) 2 X (k0),
and that there exists �⇤, q⇤ : R+ ! Rn

+ and w⇤ : R+ ! R+, with �⇤ absolutely continuous,
q⇤ and w⇤ measurable and locally bounded, so that (k⇤,�⇤, x⇤, x⇤

c

, q⇤, w⇤) satisfies (13) for
almost every t � 0. If in addition

lim
t!+1

e�⇢t hk(t),�(t)i= 0 (14)

then (k⇤; (x⇤, x⇤
c

)) is an optimal couple.

Proof. The proof is standard but we write it here for the reader’s convenience. Given (x, x
c

)
in X (k0), let k(t) = k(t; k0, x, xc

) and define

�
T

=

Z

T

0
e�⇢t(x⇤

c

(t)� x
c

(t))dt

Then it is enough to show that lim
T!+1 �

T

� 0. Note that by concavity in k of the
Hamiltonian and by Remark 3.2 one has

x⇤
c

(t)� x
c

(t) =

= h(x⇤(t), x⇤
c

(t), k⇤(t),�⇤)� h(x(t), x
c

(t), k(t),�⇤(t))� h�⇤(t), k̇⇤(t)� k̇(t)i
� hk⇤(t)� k(t), @

k

H(k⇤(t))i � h�⇤(t), k̇⇤(t)� k̇(t)i
� hk⇤(t)� k(t), q⇤(t)� ��⇤(t)i � h�⇤(t), k̇⇤(t)� k̇(t)i. (15)
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Since by assumption on �⇤ one has

d

dt

⇥

e�⇢th�⇤(t), k⇤(t)� k(t)i
⇤

=

= e�⇢t

h

h�⇤(t), k̇⇤(t)� k̇(t)i+ h�̇⇤(t)� ⇢�⇤(t), k⇤(t)� k(t)i
i

= e�⇢t

h

h�⇤(t), k̇⇤(t)� k̇(t)i�hq⇤(t)� ��⇤(t), k⇤(t)� k(t)i
i

(16)

comparing the last identity with (15), and then recalling that k(0) = k⇤(0) = k0 and that k
and �⇤ are both nonnegative, one obtains

�
T

� �
⇥

e�⇢th�⇤(t), k⇤(t)� k(t)i
⇤

t=T

t=0
� �e�⇢T h�⇤(T ), k⇤(T )i,

so that, taking the limits as T tends to +1, the conclusion is drawn by means of the
transversality condition (14).

Theorem 4.2 Assume Hypothesis 2.4. Denote by µ the Perron-Frobenius eigenvalue of
A. Suppose that � < µ�1 and 0  ⇢ < µ�1 � �. Then there exists a unique golden rule
(k̄, x̄, x̄

c

, �̄, w̄, q̄), given by

x̄
c

=
⇥

�h`, (I � �A)�1↵i+ `
c

⇤�1
(17)

x̄ = �x̄
c

(I � �A)�1↵ (18)

k̄ = x̄
c

(I � �A)�1↵ (19)

w̄ =
h

(� + ⇢)h↵,
⇥

I � (� + ⇢)AT

⇤�1
`i+ `

c

i�1
(20)

�̄ = w̄
⇥

I � (� + ⇢)AT

⇤�1
` (21)

q̄ = (⇢+ �)�̄. (22)

Moreover, for ⇢ > 0, (k̄, x̄, x̄
c

) is optimal.

Remark 4.3 Note that the assumption � < µ�1 says that the system is vital, meaning
that the production can be strictly greater than mere reproduction of capital goods after
decay. As a consequence, the matrix (I � �A) is invertible, with positive inverse (I � �A)�1,
as A is indecomposable. Similarly 0  ⇢ < µ�1� � implies (I � (�+ ⇢)AT ) is invertible with
positive inverse (I � (� + ⇢)AT )�1.

Remark 4.4 Note that x̄, x̄
c

and k̄ in the previous theorem do not depend on the discount
⇢.

Proof of Theorem 4.2. We show first that (13) is uniquely satisfied (among stationary solu-
tions) by (k̄, x̄, x̄

c

, �̄, w̄, q̄). Note that the first and third equation in (13) imply

x̄(t) ⌘ x̄ = �k̄, q̄(t) ⌘ q̄ = (⇢+ �)�̄.

Note also that the argmax/argmin conditions in (13) coincide with (9) (11). We then
multiply the first inequality in (9) by q̄, the second by w̄ and sum them up to obtain

hAx̄, q̄i+ x̄
c

h↵, q̄i+ h`, x̄iw̄ + x̄
c

`
c

w̄  hk̄, q̄i+ w̄. (23)

6



Similarly, we multiply the first inequality in (11) by x̄, the second by x̄
c

and sum them up
to obtain

h�̄, x̄i+ x̄
c

 hx̄, AT q̄i+ x̄
c

h↵, q̄i+ h`, x̄iw̄ + x̄
c

`
c

w̄. (24)

By (12), the right hand side in (23) coincides with the left hand side in (24), so that all
inequalities hold as equalities. As a consequence, we have a golden rule for any solution
(k̄, x̄

c

, �̄, w̄) of the following simplified system

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�Ak̄ + x̄
c

↵  k̄, h�Ak̄ + x̄
c

↵� k̄, �̄i = 0

�h`, k̄i+ x̄
c

`
c

 1, (�h`, k̄i+ x̄
c

`
c

� 1)w̄ = 0

�̄  (� + ⇢)AT �̄+ w̄ `, h�̄� (� + ⇢)AT �̄� w̄ `, k̄i = 0

1  (� + ⇢)h↵, �̄i+ w̄ `
c

, (1� (� + ⇢)h↵, �̄i+ w̄ `
c

)x̄
c

= 0

k̄ � 0, x̄
c

� 0, �̄ � 0, w̄ � 0.

(25)

We claim that w̄ > 0. Indeed, assume by contradiction that w̄ = 0 and that e
µ

is the
eigenvector associated with the Perron-Frobenius eigenvalue µ. Then, from the third line in
(25) we derive

he
µ

, �̄i  µ(⇢+ �)he
µ

, �̄i

which implies 1  µ(⇢+ �), in contradiction with the assumptions. From w̄ > 0 we deduce
that the inequality in the second line of (25) is an equality. Moreover, since (12) implies
x̄
c

= w̄ + ⇢h�̄, k̄i, also x̄
c

> 0, so that the inequality in the the fourth line inequality of
(25) is an equality. Next we show that k̄ > 0. In fact, as (I � �A)�1 is positive, the first
inequality in (25) is equivalent to

k̄ � x̄
c

(I � �A)�1↵ > 0.

The fact that k̄ > 0 implies that the inequality in the third line of (25) is satisfied as equality.
Then, from Remark 4.3,

�̄ = w̄(I � (� + ⇢)AT )�1`,

so that also �̄ > 0. As a consequence, the inequality in the first line of (25) is satisfied as
equality, that is

k̄ = x̄
c

(I � �A)�1↵.

Summing up, the unique solution of (25) is obtained by solving as equalities the inequalities
of the system, that is

8

>

>

>

<

>

>

>

:

k̄ = x̄
c

(I � �A)�1↵

�h`, k̄i+ x̄
c

`
c

= 1

�̄ = w̄(I � (� + ⇢)AT )�1`

1 = (� + ⇢)h↵, �̄i+ w̄ `
c

(26)

which has (k̄, x̄, x̄
c

, �̄, w̄, q̄) as unique solution. When ⇢ > 0, (14) is trivially satisfied by
(k̄, �̄), and the golden rule is optimal as a consequence of Theorem 4.1.
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4.1 The undiscounted case ⇢ = 0

Throughout this subsection we assume ⇢ = 0. In this case, the application of the results by
Brock & Haurie (1976) (see also Carlson et al., 1991, chapter 4) will provide the existence of
a maximal (or weakly overtaking) couple starting at those k0 from which the steady state k̄
can be reached in finite time along an admissible trajectory. Through the same techniques,
we will see that a su�cient criterium for maximality for an admissible strategy is that of
being a minimizer of the integral of a suitable value-loss function. Some preliminary work
is needed.

Proposition 4.5 Assume ⇢ = 0. The maximal Hamiltonian H defined by (7) has a saddle
point at (k̄, �̄).

Proof. We first show that H(�̄, k) has a maximum at k̄. Note that

H(�̄, k) = ��
⌦

�̄, k
↵

+max{h�̄, xi+ x
c

: (x, x
c

) 2 U(k)} = h�̄, x⇤ � �ki+ x⇤
c

where (x⇤, x⇤
c

) = (x⇤(k), x⇤
c

(k)) is the admissible strategy where the maximum is attained
(see Remark 3.1). From (26) we derive

x⇤
c

= x⇤
c

� h�̄,↵i+ x⇤
c

w̄l
c

while from (25) we get
h�̄, x⇤i = � h�̄, Ax⇤i+ w̄h`, x⇤i

which summed up give, after subtracting �hk̂, �̄i+ w̄, the following equality

x⇤
c

+ h�̄, x⇤ � �ki � w̄ = �h�̄, Ax⇤ + x⇤
c

↵� ki+ w̄(x⇤
c

`
c

+ h`, x⇤i � 1)

but since (x⇤, x⇤
c

) 2 U(k), the right hand side is less or equal than 0, implying

H(�̄, k)  w̄

On the other hand, applying (12) and the formula for q given by Theorem 4.2, one has

w̄ = x̄
c

+ h�̄, x̄i � hq̄, k̄i = x̄
c

+ h¯̄�, x̄� �k̄i = x̄
c

so that
H(�̄, k)  x̄

c

= H(�̄, k̄) (27)

We then show that H(�, k̄) has a minimum at �̄. Note that from the definition, and the fact
that (x̄, x̄

c

) is admissible at k̄, and x̄ = �k̄, one gets

H(�, k̄) = ��
⌦

�, k̄
↵

+max{h�, xi+ x
c

: (x, x
c

) 2 U(k̄)}
� ��

⌦

�, k̄
↵

+ �
⌦

�, k̄
↵

+ x̄
c

= x̄
c

= H(�̄, k̄).
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Now, in analogy with Carlson et al. (1991), set

V (k, v) = {(x, x
c

) : (x, x
c

) 2 U(k), x = �k + v}

which is a compact and convex, possibly empty, set, and

L(k, v) =
⇢

max{x
c

: (x, x
c

) 2 V (k, v)}
�1

V (k, v) 6= ;
V (k, v) = ;

and the value-loss function as

✓(k, v) = L(k̄, 0)� L(k, v)�
⌦

�̄, v
↵

. (28)

This function, which gives the value-loss of any admissible couple at the steady state com-
petitive prices, is the analogous of the value-loss function commonly used for discrete time
optimal growth problems.

Remark 4.6 Note that
✓(k, v) � 0, 8(k, v) 2 Rn ⇥ Rn. (29)

Indeed, L(k, v) is concave in both variable (see Carlson et al., 1991, Lemma 4.3), and (k̄, �̄)
is a saddle point for the Hamiltoninan H, with k̄ the steady state of the unique golden rule,
as it is shown in proposition 4.5.3 Then Assumption 4.5 in Carlson et al. (1991) holds, and
(29) is a consequence of Rockafellar (1970), Theorem 37.5.

In Carlson et al. (1991), the authors pair the original problem with an associated La-
grange Problem (briefly, ALP), that of minimizing the integral of the value-loss function
along (k(t), k̇(t)), namely

Z 1

0
✓(k(t), k̇(t))dt (30)

A solution is defined as an absolutely continuous function k⇤ : [0,1) ! Rn, such that
k(0) = k0, and

lim inf
T!1

Z

T

0

h

✓(k(t), k̇(t))� ✓(k⇤(t), k̇⇤(t))
i

dt � 0

Theorem 4.7 Assume k0 2 Rn

+, and that k̄ is reachable from k0, along an admissible
trajectory, in finite time. Then:

(i) there exists a solution of the ALP;

(ii) all solutions of ALP are maximal (that is, weakly overtaking) trajectories for the orig-
inal problem. In particular the golden rule is a maximal solution.

Proof. The proof of (i) follows from Theorem 4.7 in Carlson et al. (1991), as L(k, v) is
concave, and (k̄, �̄) is a saddle point for the Hamiltoninan H. Moreover the set of velocities
'(k) = {x � �k : (x, x

c

) 2 U(k)} is a compact convex set (indeed '(k) = ��k + ⇡1(U(k)),
that is, the translated by ��k of the projection on the first coordinate of the compact convex
set U(k)). The proof of (ii) can be deduced from the proof of Theorem 4.9 p.69, where the
fact is shown under Assumption 4.5 (and not 4.4 as erroneously reported there) p.64.

3Note that the golden rule stock is also the unique stationary solution of the maximization problem (4.34)
defined in Carlson et al. (1991), moreover our H coincides with the Hamiltonian H there defined in (4.81),
H(k,�) = supv2Rn{L(k, v) + h�, vi}.
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For the proof of Theorem 5.6 the following result contained in Carlson et al. (1991) will
prove useful.

Lemma 4.8 Consider a trajectory k of system (1)(2)(3)(4), such that

lim inf
T!1

Z

T

0

h

L(k(t), k̇(t))� L(k̄, 0)
i

dt > �1. (31)

Then

lim
T!1

1

T

Z

T

0
k(t)dt = k̄. (32)

Proof. It is enough to note that all trajectories of the system are bounded (see Remark 2.1)
and apply Lemma 4.7 p.69 in Carlson et al. (1991).

Definition 4.9 A control (x, x
c

) is good if the associated trajectory k(·, (x, x
c

)) satisfies
(31).

Lemma 4.10 Assume that k0 2 Rn

+ is such that there exists an admissible control stirring
k0 into k̄ in finite time. Any maximal (respectively, optimal) control at k0 is good.

Proof. Assume (x, x
c

) is an admissible control at k0 which is not good, and let k be the
associated trajectory. Note that by definition of L

Z

T

0
(x̄

c

� x
c

(t)) dt �
Z

T

0

h

L(k̄, 0)� L(k(t), k̇(t))
i

dt

Consider now (ky, (y, y
c

)) admissible at k0, with (y, y
c

) stirring k0 into k̄ in [0, T0] and then
coinciding with (x̄, x̄

c

) in (T0,+1). Then for all T � T0:

Z

T

0
(y

c

(t)� x
c

(t)) dt =

Z

T0

0
(y

c

(t)� x
c

(t)) dt+

Z

T

T0

(x̄
c

� x
c

(t)) dt

�
Z

T0

0
(y

c

(t)� x
c

(t)) dt�
Z

T0

0
|x̄

c

� x
c

(t)| dt+
Z

T

0

h

L(k̄, 0)� L(k(t), k̇(t))
i

dt

where the first and second addenda are bounded for all T > 0 whereas, when taking the
limsup (or liminf) of both sides as T tends to +1, the third is unbounded from above by
assumption. Hence we proved that for every nongood control one may build another control
which overtakes the first. Hence a maximal (or optimal) control need be good.

5 The example of nonexistence

We introduce the following example and study the behaviour of specific solutions both in
the discounted and undiscounted case. We set

n = 2, � =
2

3
, `

c

= 1, A =



1/2 3/4
1/4 7/8

�

, ↵ =



1/4
3/4

�

` =



1
1

�

. (33)
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Note that Hypothesis 2.4 is verified and A has eigenvalues (±
p
57 + 11)/16, with µ�1 '

0.86254 > 2/3. By means of the Theorem 4.2, the golden rule can be explicitely computed
and it is given by

x̄
c

=
2

9
, x̄ =

2

4

23
63

26
63

3

5 , k̄ =

2

4

23
42

13
21

3

5 (34)

The golden rule above is associated to a triple (�̄, q̄, w̄) that can be explicitely computed as
a function of ⇢:

w̄ =
72⇢2 � 300⇢+ 56

81⇢2 + 252
, �̄ =

2

4

56�60⇢
27⇢2+84

24⇢+112
27⇢2+84

3

5 , q̄ =
2 + ⇢

3

2

4

56�60⇢
27⇢2+84

24⇢+112
27⇢2+84

3

5 (35)

Now consider system (1) and choose the admissible controls that satisfy (2) (3) as equal-
ities. By inverting those relations, one obtains



x(t)
x
c

(t)

�

=



A ↵
`T `

c

��1 
k(t)
1

�

(36)

giving x, x
c

as functions of k, which substituted into (1) imply
(

k̇1(t) = � 2
9k1(t)�

16
9 k2(t) +

11
9

k̇2(t) =
16
9 k1(t) +

2
9k2(t)�

10
9 .

(37)

The system above can be explicitely solved. The matrix of the system has purely imaginary
eigenvalues so that one obtains periodic solutions

k̂1(t) = c1 cos
2
p
7t

3
� c2 sin

2
p
7t

3
+

23

42

k̂2(t) =
1

8

⇣

c2 + 3
p
7c1

⌘

sin
2
p
7t

3
+

1

8

⇣

3
p
7c2 � c1

⌘

cos
2
p
7t

3
+

13

21
(38)

where the constants c1 and c2 depend on k0 = (k01, k
0
2):

k01 � k̄1 = c1, k02 � k̄2 =
3
p
7

8
c2 �

1

8
c1. (39)

The associated controls (x̂, x̂
c

) can also be computed by means of (36),

x̂1(t) =
1

3
(c1 � 2

p
7c2) cos

2
p
7t

3
� 1

3

⇣

2c2 + 2
p
7c1

⌘

sin
2
p
7t

3
+

23

63

x̂2(t) =
1

3

⇣

5c1 +
p
7c2

⌘

cos
2
p
7t

3
+

1

3

⇣p
7c1 � 5c2

⌘

sin
2
p
7t

3
+

26

63

x̂
c

(t) =
1

3
(
p
7c2 � 7c1 ) cos

2
p
7t

3
+

1

3

⇣

7c2 +
p
7c1

⌘

sin
2
p
7t

3
+

2

9
. (40)
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ie

Figure 1: The cycles (38).

Note that (39) imply that c1 and c2 are small for
small di↵erences of k0 from k̄. As a consequence,
for c1 and c2 small enough:

• the whole trajectory is contained in a ball,
centered at k̄ and of arbitrarily small radius;

• (x̂, x̂
c

) is also cycling at an arbitrarily small
neighborhood of (x̄, x̄

c

);

• since for k0 = k̄ the trajectory k(t) ⌘ k̄ sat-
isfies strictly the positivity constraints (4),
that remains true also for k0 close enough to
k̄; hence, the constraints on the associated
dual variables (the argmin condition in (13))
hold unchanged, and support prices associ-
ated to k̂, x̂, x̂

c

coincide with �̄, q̄, w̄.

Assume now ⇢ > 0. As a consequence of
the previous arguments, for k0 close enough to k̄,
(k̂, (x̂, x̂

c

), �̄, q̄, w̄) satisfy the assumptions of Theorem 4.1 and is hence optimal.
We have then proved the following result.

Proposition 5.1 Let k0 > 0. The system (1)(2)(3)(4), with data (33), has a periodic solu-
tion (k̂, (x̂, x̂

c

)) given by (38)(40). For ⇢ > 0 and for k0 su�ciently close to k̄, the admissible
couple (k̂, (x̂, x̂

c

)) is optimal at k0, and it is supported by stationary prices (�̄, q̄, w̄).

Now we prove that, in the specific case here described, any initial condition k0 > 0 can be
driven to the steady state k̄ in finite time by means of an admissible control. The property
holds in general for any ⇢ � 0 although we will make use of it only in the next subsection,
where we analyse the case of a null ⇢.

Lemma 5.2 Let k0 2 R2, k0 > 0, be fixed. Then there exists T (k0)�0 and a control
(x̃, x̃

c

) 2 X (k0) such that the associated trajectory k̃(t) ⌘ k(t; k0, x̃, x̃c

) reaches k̄ at time
T (k0), that is k̃(T (k0)) = k̄.

Proof. We first consider the case in which k0 lies on {�k̄ : � 2 R+}, the ray through 0 and
k̄, that is, k0 = �0k̄, for a �0 > 0. If �0 = 1, there is nothing to prove. If �0 > 1, we choose

x̃(t) = 0, x̃
c

(t) = 0, 8t� 0,

so that the constraints are trivially satisfied, and k̃(t) = �0k̄e
��t, for all t� 0. With the

choice T (k0) = ��1 ln �0, we obtain k̃(T ) = k̄. If instead �0 < 1, we choose

x̃
c

(t) = 0, and x̃(t) = gk̃(t), 8t� 0,

and choose the constants g and T so that the associated pair is admissible, as it is shown
next. Since k̃ solves k̇(t) = (g � �)k(t),then k̃(t) = �0k̄e

(g��)t, for all t in [0, T ]. We choose
then

T (k0) = (g � �)�1 ln(1/�0),

12



so that k̃(T (k0)) = k̄. We show now that we can choose g > � so that the previous expression
is meaningful and strictly positive. Indeed, in order for (k̃, x̃, x̃

c

) to be admissible, the
following inequalities need be satisfied for all t 2 [0, T (k0)]

gAk̃(t)  k̂(t), g
D

`, k̃(t)
E

 1. (41)

Note that the second inequality is satisfied for all t in [0, T (k0)] if and only if

ge(g��)T �0
⌦

`, k̄
↵

 1, that is g 
⌦

`, k̄
↵�1

, so that (41) becomes

gAk̄  k̄, and g 
⌦

`, k̄
↵�1

If we set g1 = argmax
g�0

{(I � gA)k̄}, and g2 =
⌦

`, k̄
↵�1

, then any suitable g need satisfy

� < g  min {g1, g2}

provided the interval is nonempty. In the case of the example one has

� =
2

3
= 0.67, g1 =

23

31
= 0.74, g2 =

9

7
= 1. 28

so that g may be chosen as follows
2

3
< g  23

31
.

We now treat the case when k0 /2 {�k̄ : �0 2 R+}. Assume for instance that k02/k01 > k̄2/k̄1,
and choose a control (y, y

c

), with associated trajectory ky as follows

y
c

(t) = 0, y1(t) = gky1(t), and y2(t) = 0, 8t� 0,

with g a positive constant, so that the trajectory is

ky1(t) = e(g��)tk10, ky2(t) = e��tk20, 8t� 0,

which reaches {�k̄ : �0 2 R+} when ky2(t)/k
y

1(t) = k̄2/k̄1, that is, at time

T0 =
1

g
ln

✓

k02
k01

k̄1
k̄2

◆

> 0.

The chosen control (y, y
c

) is then admissible when for all t 2 [0, T0]
8

<

:

a11g  1
a21ge

gtk01  k02
`1ge

(g��)tk10  1

If g 2 (0, �), the previous is satisfied if and only if
8

<

:

g  1/a11
g  k̄2/(k̄1a21)
g  1/(`1k10)
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so that we may choose

0 < g  min

⇢

�,
1

a11
,

k̄2
k̄1a21

,
1

`1k10

�

.

Once on {�k̄ : �0 2 R+}, we may stir the trajectory on k̄ by making use of the control (x̂, x̂
c

)
built in the first part of the proof, pulled back of the time T0, and reach the steady state in
time T (k0) = T0 + T (ky(T0)).

5.1 The undiscounted case

We use the previous example to show that the golden rule given by Definition 3.3 may fail
to be optimal when the discount ⇢ is null. More in general, we will prove that when ⇢ = 0
the cycles described by (38)(40) are maximal but fail to be optimal for all k0 close enough to
k̄, and derive as a particular case that the golden rule (k̄, x̄, x̄

c

) is maximal and not optimal
at k̄.

Remark 5.3 Regardless the initial condition, when ⇢ = 0 the utility yielded by the control
x̂
c

(t) described in (40) in a time interval of a period length equals the utility yielded by x̂
c

in the same time span. Note that the period of the cycle is

P = 3⇡/
p
7.

Then
Z

�+P

�

x̂
c

(t)dt =

Z

�+ 3⇡p
7

�

x̄
c

dt =
2
p
7

21
⇡, 8� � 0,

as one can check by direct computation. ⇤
Lemma 5.4 For all initial capital stocks k0 2 Rn

+, there exists a maximal couple starting at
k0. In particular, the cycles described by (38)(40) and the golden rule (k̄, x̄, x̄

c

) are maximal.

Proof. In order to apply Theorem 4.7 it is enough to show that cycles described by (38) are
minimizers of the integral of losses described in (30). Note that

✓(k̂(t), ˙̂k(t)) = L(k̄, 0)� L(k̂(t), x̂(t)� �k̂(t))�
D

�̄, x̂(t)� �k̂(t)
E

= x̄
c

� x̂
c

(t)�
D

�̄, x̂(t)� �k̂(t)
E

.

Moreover, since (k̂, x̂, x̂
c

) are supported by the same prices �̄, q̄, w̄ of the golden rule, then
(12) implies

x̄
c

+
⌦

�̄, x̄
↵

�
⇥⌦

k̄, q̄
↵

+ w̄
⇤

= 0 = x̂
c

(t) +
⌦

�̄, x̂(t)
↵

�
hD

k̂(t), q̄
E

+ w̄
i

Recalling that q̄ = ��̄ and x̄� �k̄ = 0, one has

0 =
�

x̄
c

+
⌦

�̄, x̄
↵

�
⇥⌦

k̄, q̄
↵

+ w̄
⇤ 

�
n

x̂
c

(t) +
⌦

�̄, x̂(t)
↵

�
hD

k̂(t), q̄
E

+ w̄
io

= x̄
c

� x̂
c

(t)�
D

�̄, x̂(t)� �k̂(t)
E

= ✓(k̂(t), ˙̂k(t)) (42)

Then cycles k̂ are minimizers for the ALP and, as a consequence, (k̂, x̂, x̂
c

) is a maximal
couple.
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Remark 5.5 The control described in (40) is good. Indeed, since cycles realize a null loss,
one has

L(k(t), k̇(t))� L(k̄, 0) = �
D

�̄,
˙̂
k
E

and since by direct proof one has

Z

P

0

˙̂
k1(t)dt =

Z

P

0

˙̂
k2(t)dt = 0

then (31) is implied by

Z

T

0

�

�

�

D

�̄,
˙̂
k(t)

E

�

�

�

dt  3⇡p
7

�

��̄
�

� max
t2[0,P ]

�

�

�

˙̂
k(t)

�

�

�

, 8T � 0.

Theorem 5.6 There exists a neighborhood U of k̄ in Rn

+, such that for all k0 in U the

cycles (k̂, x̂, x̂
c

) starting at k0 and described by (38)(40) are not optimal at k0. More in
general, with data (33), there is no admissible control which is optimal at such k0.

From the previous Theorem, we derive the following corollary.

Corollary 5.7 The golden rule (k̄, x̄, x̄
c

) is not optimal at k̄,and there is no admissible
control which is optimal at k̄.

Proof of Theorem 5.6. We start by proving that the cycles (k̂, x̂, x̂
c

) starting at k0 are not
optimal. We proceed as follows: we build an admissible couple (ky, (y, y

c

)) starting at k0
and such that, in a (small) interval [0, ⌧ ], the control (y, y

c

) yields a utility which positively
exceeds that of the cycle (x̂, x̂

c

), and in [⌧,+1) it stirs the trajectory along the cycle starting
at ky(⌧) and described by (38)(40). Doing so that the overall control (y, y

c

) yields a utility
that periodically overtakes that of (x̂, x̂

c

), implying that (x̂, x̂
c

) is not optimal.
Assume ✓ > 0 is such that for all k0 2 B(k̄, 2✓) the cycles described by (38)(40) starting

at k0 are supported by stationary prices (�̄, q̄, w̄). Then select k0 2 B(k̄, ✓), so that (39)
imply

|c1| < ✓, |c2| < 9✓/(3
p
7)

and (40) implies for all t � 0

|x̂
i

(t)� x̄
i

| < 6✓, and |x̂
c

(t)� x̄
c

| < 7✓. (43)

For an arbitrarily chosen ⌧ > 0, we set

y(t) = 0, y
c

(t) = x̄
c

+ 8✓, for all t 2 [0, ⌧ ]

By explicit calculations, one may see that there exist positive ✓1 and ⌧1 such that for all
0 < ✓ < ✓1 and 0 < ⌧ < ⌧1 the constraints (2) (3) (4) are satisfied in [0, ⌧ ] (for instance,
⌧1 = 3/2, "1 = (26 � 7e)[42 (1 + 6e)]�1). We assume also ⌧ < ⌧2 where ⌧2 > 0 is such that
kky(⌧2)� k0k < ✓, so that the cycle starting at ky(⌧) and described by (38)(40) is supported
by stationary prices (�̄, q̄, w̄). Instead for t 2 (⌧,+1) we set

y(t) = x̂(t� ⌧), y
c

(t) = x̂
c

(t� ⌧), for t 2 (⌧,+1)
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Note that (43) implies
y
c

(t) > x̂
c

(t) + ✓, for all t 2 [0, ⌧ ]

so that
Z

⌧

0
y
c

(t)dt >

Z

⌧

0
x̂
c

(t)dt+ ⌧✓

By direct clculation one obtains (see also Remark 5.3, where P is defined) that for all n 2 N
Z

⌧+nP

0
(y

c

(t)� x̂
c

(t))dt � ⌧✓ > 0, (44)

and (x̂, x̂
c

) cannot be optimal.

Now we show that no admissible strategy can be optimal at k0. Assume by contradiction
that there exists a strategy (x̃, x̃

c

) 2 X (k0) optimal at k0. Then for " > 0, there exists T
"

> 0
such that

Z

T

0
(x̃

c

(t)� x̂
c

(t))dt � �", and

Z

T

0
(x̃

c

(t)� y
c

(t))dt � �", for all T � T
"

. (45)

Since T 7!
R

T

0 (y
c

(t) � x̂
c

(t))dt, is continuous and (44) holds, there exists a (small) � > 0
such that,

Z

T

0
(y

c

(t)� x̂
c

(t))dt � ⌧✓

2
, for all T 2 [⌧, ⌧ + �].

Set T
n

= ⌧ + nP, and n
"

= min{n 2 N : T
n

> T
"

}. Then, by periodicity

Z

T

0
(x̃

c

(t)� x̂
c

(t))dt =

Z

T

0
(y

c

(t)� x̂
c

(t))dt+

Z

T

0
(x̃

c

(t)� y
c

(t))dt

� ⌧✓

2
� ", for any T 2 [T

n

, T
n

+ �], n � n
"

(46)

We show first that

lim inf
n!1

1

T
n

+ �

Z

Tn+�

0

 

Z

T

0
(x̃

c

(t)� x̂
c

(t))dt

!

dT � ✓⌧�

4P
(47)

Note that, if ⇤ =
R

T

0 (x̃
c

(t)� x̂
c

(t))dt, one may split the previous integral as follows, and use
(45) and (46) to derive

Z

Tn+�

0
(⇤) dT =

Z

Tn"

0
(⇤) dT +

n

X

i=n"

Z

Ti+�

Ti

(⇤) dT +
n�1
X

i=n"

Z

Ti+1

Ti+�

(⇤) dT

�
Z

Tn"

0
(⇤) dT + (n� n

"

+ 1)

✓

⌧✓

2
� "

◆

� � (P � �)"(n� n
"

) (48)

so that
1

T
n

+ �

Z

Tn+�

0
(⇤) dT � ✓⌧�

2P
� "+ o

✓

1

n

◆
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with o(1/n) tending to 0, as n tends to +1, and consequently (47) holds when " 
(✓⌧�)/(4P ).

On the other hand, (29) and (42) imply

x̃
c

(t)� x̂
c

(t)  h�̄, ˙̂k(t)� ˙̃
k(t)i

so that
Z

T

0
(x̃

c

(t)� x̂
c

(t)) dt  h�̄, k̂(T )� k̃(T )i

and
1

S

Z

S

0

 

Z

T

0
(x̃

c

(t)� x̂
c

(t)) dt

!

dT  h�̄, 1
S

Z

S

0

⇣

k̂(T )� k̃(T )
⌘

dT i (49)

Note that both (x̂, x̂
c

) and (x̃, x̃
c

) are good controls in the sense of Definition 4.9 (the first
by Remark 5.5, the second by Lemma 4.10). Hence, by Lemma 4.8 one has

lim
S!1

Z

S

0
k̂(T )dT = lim

S!1

Z

S

0
k̃(T )dT = k̄,

so that passing to limits in (49) and comparing with (47) we derive a contraddiction.
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