
Dynamic control of the join-queue lengths in
saturated fork-join queues

Andrea Marin and Sabina Rossi

DAIS - Università Ca’ Foscari, Venezia, Italy
{marin,srossi}@dais.unive.it

Abstract. The analysis of fork-join queueing systems has played an
important role for the performance evaluation of distributed systems
where parallel computations associated with the same job are carried out
and the job is considered served only when all the parallel tasks it consists
of are served and then joined. The fork&join nodes that we consider
consist of K ≥ 2 parallel servers each of which is equipped with two FCFS
queues, namely the service-queue and the join-queue. The latter store the
serviced tasks waiting for being joined. This paper addresses the problem
that under independent and exponentially distributed service time, the
process describing the join-queue lengths becomes instable under heavy
load. This is due to the variance of the service time distribution. We
propose a simple mechanism that avoids this problem, show that we can
analytically study a set of relevant performance indices and study by
simulation its robustness.

1 Introduction

Fork-join queueing stations have been widely studied in the literature because
of their wide applications in the context of distributed and parallel systems. Such
queueing stations behave as follows: jobs arrive according to an arrival process
and are forked into K tasks that are enqueued in the service-queue and then
served by independent servers. Once a task is serviced, it is enqueued in the
join-queue waiting for the service completions of all the other tasks of the job
it belongs to. Once all the tasks of a job are serviced, the join operation is
performed and the job leaves the systems.

Fork-join queues have found applications in a wide variety of domains in
computer science and telecommunication networks. For instance, in [?] the au-
thors study the response times of multiprocessor systems by means of fork-join
networks, in [?] the authors consider parallel communication systems and in [?]
a RAID system is studied by simulating a fork-join station.

In this work we introduce a simple mechanism that allows the system to
dynamically control the length of join-queues by slowing down the processors
that have already served many tasks while maintaining the other ones at their
full speed. As a consequence, although we observe a reduction of the system’s
throughput, the length of the join-queues will be highly reduced and the system
significantly reduces its energy consumption. Informally, the idea is that it is not



worth using a processor at its full speed when the worked task will have to wait
for the join operation in the join-queue. Our contribution includes an analyti-
cally tractable model of such a rate control mechanism. We start by considering
the FlattoHahnWright (FHW) model [?,?] in saturation, i.e., the service times
are modelled by i.i.d. exponential random variables, the join operation is instan-
taneous, and the service queues are never empty. We show that even in the case
of two servers (K = 2), the stochastic process modelling the join-queue lengths
is unstable because of the variance in the service times. By the introduction
of our rate-control mechanism we show that the model process underlying the
join-queue length becomes stable and their expected length is finite. Moreover,
we are able to derive an analytical expression for the system’s throughput. We
study, by simulation, the behaviour of our algorithm when the service times are
not exponentially distributed and show a coefficient of variation greater or lower
than one.

1.1 Related work

[?]

2 Rate-control algorithm

In this section we formally introduce the problem we are studying and the
rate-control algorithm that we propose. In the following sections we study the
performance of such an algorithm in terms of throughput, load-balance and
energy saving.

2.1 Problem statement

Let us consider a fork-join queueing system with K servers as depicted in
Figure 1. We consider a saturated model, i.e., there is always a job waiting
for being processed. As a consequence the servers’ queues always contain at
least one task. The service times are modelled by i.i.d. continuous time random
variables and we initially assume that the join operation occur immediately after
all the tasks belonging to the same job are served. All the queues follow a FCFS
discipline. Clearly, if the expected service time at the servers is not the same,
and not rate-control mechanism is applied, then the join-queue length of the
fastest servers tend to grow infinitely large as time t → ∞. Less obvious is the
case in which all the service times are independent and identically distributed,
i.e., with the same mean. In these cases, the variance of the service time causes
an unbounded growth of the join-queue population, i.e., the expected queue
length at the servers tends to infinity as t→∞. In Figure 2 we show a transient
simulation of the saturated model with three service time distributions: Erlang-2,
hyperexponential and exponential. The confidence intervals have been build on
15 independent executions of the simulation with a confidence of 95%. The plot
supports the intuition that higher coefficient of variations in the service times

2



Jobs waiting the fork

Fork

Tasks waiting for service Served tasks waiting for join

Served jobs

Servers

Join

Fig. 1: Fork-join queueing station with K = 3 servers.

make the expected queue lengths grow faster. We formally prove the model
instability for when the service times are exponentially distributed.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25

E
x
p
ec
te
d
jo
in
-q
u
eu

e
le
n
gt
h

Simulation time

Expected join-queue length for saturated fork-join stations

Exponential
Hyper-exponential

Erlang-2

Fig. 2: Growth of the expected join-queue length for K = 20 servers, exponential
(CV = 1), Erlang-2 (CV =

√
2/2), Hyper-exponential (CV = 1.31).

Proposition 1. In the long run, the saturated fork-join model with K ≥ 2,
i.i.d. exponential service times, immediate join, has an infinite expectation of
the join-queue length.

Proof. For brevity, we give the proof for K = 2. The state space of the model is

S = {(n1, n2) : n1 = 0 ∨ n2 = 0, ni ∈ N} ,

3



and the transitions are from state (0, n2) to (0, n2 + 1) or to (0, n2−1) and from
state (n1, 0) to (n1+1, 0) or (n1−1, 0). Since the service times are exponential the
stochastic process is continuous time Markov chain, and specifically is a random
walk on the line. In this CTMC all the rates are equal and hence the states are
not positive recurrent. Therefore, let Q be the random variable associated with
the join-queue length for one of the two servers at a time t0, with t0 →∞, then
E[Q] =∞. ut

We devise an algorithm that dynamically controls the service rates (e.g., by
scaling the operating frequency of the processors) with the following aims:

– Having a finite expectation of the join-queue lengths;
– Maintaining the throughput at reasonable high levels;
– Reducing the overall energy consumption by controlling the servers’ rates.

Moreover, we will see that if the service rates are exponentially distributed, then
a Markovian model with analytically tractable solution exists, therefore one can
tackle problems of optimisation or capacity planning that would be expensive to
address by stochastic simulation.

2.2 The rate-control algorithm

The main idea of the algorithm is to slow down the servers that have already
completed their work on many tasks whereas the servers that have served less
tasks will work at maximum speed. Since it would be unrealistic to assume that
each server can take a decision about its own speed by knowing the global state of
the system, we introduce a policy that implements a rate-control strategy by just
maintaining a single integer state variable. Let us label each of the K servers with
integer numbers in {1, . . . ,K} and define the following neighbourhood relation:
for each server k we define its neighbour ne(k) as:

ne(k) =

{
k + 1 if k < K

1 if k = 1
.

Let nk denote the state variable of each server. When server k completes a task,
then nk is increased by 1, when its neighbour completes a task nk is decreased
by 1. In other words, nk maintain the difference between the join-queue length
of server k and ne(k). Let µ(nk) be the local state dependent service rate at a
server (recall that they are all stochastically identical), then:

µ(nk) =

{
µ

nk+1 if nk ≥ 0

µ otherwise
. (1)

Intuitively, when a server k has completed less or the same number of tasks
than ne(k) then it works at its full service speed, otherwise it slows down in a
proportional way with the number of exceeding jobs. Notice that for server k, the

4



key point for regulating the join-queue length is to consider the difference in the
queue lengths of the servers rather that the total length of its join queue. Indeed
this latter value could be high because of some delay in the join operation, while
the mechanism that we propose is based on balancing the number of tasks served
by each server.

3 Analytical model for the rate-control mechanism
applied to the saturated FHW model with immediate
join

Let us consider the vector n = (n1, . . . , nK) of the state variables of each

server, and observe that at each time epoch we have
∑K
k=1 nk = 0. We aim at

studying the stochastic process n(t) on the state space S = {n = (n1, . . . , nK) :

nk ∈ Z ,
∑K
k=1 nk = 0}. Since the service rates are the only events that cause a

state change, from the fact that they are exponentially distributed we conclude
that n(t) if a homogeneous CTMC. Although we will derive a product-form
expression for the invariant measure of n(t), it is worth of notice that n(t) is not
reversible for K > 2. In fact, consider state (0, 0, 0) and assume that server 2
completes a task taking the state of the process to (0, 1,−1). It should be clear
that there does not exist any transition bringing back the model to (0, 0, 0). One
path that brings back the model state to (0, 0, 0) is that consisting of a sequence
of transitions associated with one task completion at servers 1 and 3.

Before proceeding with he analysis we have to introduce the regularized Kum-
mer’s confluent hypergeometric function M(a, b, x) defined as follows (the first
equality shows an alternative common notation):

M(a, b, x) = 1F̃1(a; b;x) =
1

Γ (b)
M(a, b, x) b ∈ N+ , (2)

where M(a, b, x) is the Kummer’s confluent hypergeometric function defined by
the series

M(a, b, x) = 1F1(a; b;x) =

∞∑
k=0

(a)k
(b)k

xk

k!
b ∈ N+ , (3)

Γ is Euler’s Gamma function and (y)k is the Pochhammer’s symbol (y)k =
y(y + 1) · · · (y + k1).

Theorem 1. Given the CTMC n(t), then we have that:

1. n(t) is ergodic, i.e., admits a unique stationary distribution πK(n);

2. The stationary distribution is given by the following expression:

πK(n) =
1

GK

1∏K
i=1(niδni>0)!

(4)

5



where we assume that empty products are equal to 1 and δP is 1 if proposition
P is true, 0 otherwise and

GK = 1 +

K−1∑
j=1

(
K

j

)
jK−jM(K − j,K − j + 1, j) . (5)

We base the proof of the theorem on few Lemmas: first we assume the er-
godicity and derive the model’s product-form expression. The we show that
normalising constant GK is finite (thanks to the properties of the Kummer’s
confluent hypergeometric function) for finite K and hence the CTMC must be
ergodic.

Lemma 1. Assume that n(t) is ergodic and hence admits a unique stationary
distribution. Then, its expression is that of Equation (4) where:

GK =
∑
n∈S

1∏K
i=1(niδni>0)!

. (6)

Proof. The proof can be obtained by substitution of Equation (4) in the system
of global balance equations of the CTMC. ut

Notice that since S is an infinite set, at the moment the fact that GK is finite,
i.e., the infinite series (6) converges, depends on the assumption of ergodicity.
We now algebraically prove that (5) converges and hence that the CTMC is
ergodic.

Lemma 2. The series (6) is equivalent to the expression given by Equation (5)
which is finite for any K ∈ N.

Proof. Let P(n) be the multiset with all the non-negative components of n,
i.e., P(n) = {ni : ni ≥ 0} and observe that for all the states n′ such that
P(n′) = P(n) the expression under the sum symbol of Equation (6) is the same.
Let 1 ≤ j ≤ K−1 and (x1, . . . , xj) be a tuple such that xi ≥ 0 for all i = 1, . . . , j

and
∑j
i=1 xj = n, with n ≥ 0. Basically, j denotes the number of non-negative

components in a state and n their sum. Notice that, given j and n we can
count how many states have exactly j non-negative components whose sum is
n. This is given by the product of the number of non-negative solutions of the
Diophantine’s equation y1 + . . . + yj = n multiplied by the number of strictly
positive solutions of the Diophantine’s equation y1 + . . . + yK−1 = n (since
the sum of all the state components is 0), i.e., we can rewrite the normalising
constant as:

GK = 1 +

K−1∑
j=1

∞∑
n=K−j

∑
x:x1+...+xj=n

1∏j
t=1 xt!

(
K

j

)

·
(

n− 1

K − j − 1

)
= 1 +

K−1∑
j=1

(
K

j

) ∞∑
n=K−j

jn

n!

(
n− 1

K − j − 1

)
,

6



where the last equality follows from the multinomial theorem. Notice that the
boundaries of j in the external summatory start from 1 (there cannot be any state
with all negative components) and terminate at K − 1. Indeed, the only state
with all non-negative components is 0 that we take into account by summing 1
at the beginning of the right-hand-side.
We can rewrite Equation (2) as:

M(a, b, x) =

∞∑
k=0

(a)k
Γ (b+ k)

xk

k!
b ∈ N+. (7)

So we have:

GK = 1 +

K−1∑
j=1

(
K

j

) ∞∑
w=0

jw+K−j

(w +K − j)!

(
w +K − j − 1

K − j − 1

)

= 1 +

K−1∑
j=1

(
K

j

) ∞∑
w=0

jw+K−j

(w +K − j)!
(K − j)w

w!

= 1 +

K−1∑
j=1

(
K

j

)
jK−j

∞∑
w=0

jw

Γ (w +K − j + 1)

(K − j)w
w!

= 1 +

K−1∑
j=1

(
K

j

)
jK−jM(K − j,K − j + 1, j)

where the last equality follows from Equation (7) with a = K − j, b = K − j+ 1
and x = j. Finally, we observe that 1 < GK < ∞ since its definition does
not involve any infinite sum and function M evaluation at the specified integer
parameters is always finite and non-negative. ut

Proof of Theorem 1. The theorem follows straightforwardly by Lemma 1
and 2. ut

In order to derive the expression for the marginal distribution of the join-
queue lengths we have to consider that although the state space of each single
queues ranges from −∞ to +∞, the joint state space is not the Cartesian product
of the single state spaces. Therefore, the knowledge of GK is not sufficient to
obtain the marginal distribution. A similar situation arises when studying closed
queueing networks. However, while for closed product-form queueing networks
several algorithms have been proposed, e.g., [?,?,?], in our case we are able to
express the marginal distributions in terms of (regularized) Kummer’s function
evaluated in point whose closed-form solution is known.

Let us consider the definition of GK given by Equation (6), and let GNk be
the normalising constant defined as:

GNk =
∑

n∈SN
k

1∏k
i=1(niδni>0)!

,

7



where SNk = {(n1, . . . , nk) :
∑k
i=1 ni = N}. Note that GK = G0

K . Then, we can
write the marginal distribution as:

π∗K(n) =
1

(niδni>0)!

G−nK−1
G0
K

. (8)

The following Lemma gives the expression for GNk for arbitrary k ≥ 1 and N ∈ Z.

Lemma 3. The expression for GNk is:

– If N ≥ 0:

GNk =
(kµ)N

N !
+ µN

k−1∑
j=1

(
k

j

)
jN+k−j M(k − j,N + k − j + 1, j) .

– If N < 0 and 2 ≤ k ≤ N :

GNk =

(
−N − 1

k − 1

)
µN +µN

k−1∑
j=1

(
k

j

)(
−N − 1

k − j − 1

)
M(−N,−N − k+ j+ 1, j) .

– If N < 0 and k > N :

GNk = µN
k+N−1∑
j=1

(
k

j

)
jN+k−j M(k − j,N + k − j + 1, j)

+ µN
K−1∑
j=k+N

(
k

j

)(
−N − 1

k − j − 1

)
M(−N,−N − k + j + 1, j)

– If k = 1:

GN1 =

{
µN/N ! if N ≥ 0

µN if N < 0

The following lemma gives an analytical expression for the station’s through-
put.

Lemma 4. The throughput X of the model in steady-state is:

X =
µ

KGK

(
K +

K−1∑
j=1

(
K

j

)
j
(
jK−j+1 M(K − j,K − j + 2, j)

− (j − 1)K−j+1 M(K − j,K − j + 2, j − 1)

+ (K − j)jK−j−1M(K − j,K − j + 1, j
))

. (9)

8



The numerical evaluations of both GNk and of TK are based on the com-
putation of the confluent hypergeometric function M(a, b, z) with parameters
a ∈ N+, b ∈ N+ and b > a. Indeed, if a and b are non-negative integers, then the
series converges for all finite x. In particular, for b > a, M(a, b, z) converges to
[?]:

M(a, b, z) =

(
ez

a−1∑
k=0

(1− a)k (−z)k

k! (2− b)k

−
b−a−1∑
k=0

(1− b+ a)k z
k

k! (2− b)k

)
(2− b)a−1 z1−b

(a− 1)!
. (10)

4 Numerical evaluation

In this section we study the sensitivity of the throughput, the expected join-
queue length and the power consumption with respect to the distribution of
the service times and on the assumption of a saturated model. Then, we study
the performances in terms of throughput and energy consumption of the model
implementing the rate-control algorithm under the assumptions introduced in
Section 3.

4.1 The power consumption

Since our rete-control mechanism reduces the computation speed of the sev-
ers, this can be interpreted as a reduction of the operating frequency leading to a
reduction of the overall server power consumption. Clearly the minimum power
consumption with maximum throughput corresponds to a situation in which the
servers work at a constant maximum rate, but we have already discussed that
the drawback of this approach is the infinite growth of the join-queue length in
saturated models.

Under the assumptions of Section 3 we know the analytical expression of
the marginal stationary state distribution for each server (see Equation (8) and
Lemma 3). This allows us to define a lower and upper bound of the energy
consumption by truncation of the probabilities. Given an integer E > 0, the
expected power consumption in steady-state P is bounded by:

−1∑
i=−E

π∗K(i)+

E−1∑
i=0

π∗K(i)
1

(i+ 1)3
< P <

−1∑
i=−E

π∗K(i)+

E−1∑
i=0

π∗K
1

(i+ 1)3
+(1−

E−1∑
i=−E

π∗K) ,

where we have assumed that the sever at maximum speed consumes 1 unit of
energy for unit of time, and that the power consumption depends on the cube of
the operating frequency. Clearly, more accurate models of the relation between
operating frequency and power consumption can be considered, but this is out of
the scope of this paper, especially because this relation depends on the intrinsic
characteristics of the processors [?].

9



4.2 Sensitivity analysis

The analytical model proposed in Section 3 requires that the service time are
state dependent i.i.d. exponential random variables. Under this assumption and
by considering a saturated model with immediate join, we proved the stability
of the process modelling the join-queue lengths. Clearly, we expect to find a
sensitivity of the performance indices on the distribution of the service times,
because its its variance that causes the growth the join-queue length in the
model without the rate-control mechanism. It is nice to note that with small
values of E ' 10 we obtain tight bounds for the energy consumption as shown
in Figure 3-(A).

References

1. Optimal job splitting in parallel processor sharing queues. Stochastic models,
28:144–166, 2012.

2. S. C. Bruell, G. Balbo, and P. V. Afshari. Mean Value Analysis of mixed, multiple
class BCMP networks with load dependent service stations. Perf. Eval., 4:241–260,
1984.

3. J. P. Buzen. Computational algorithms for closed queueing networks with expo-
nential servers. Commun. ACM, 16(9):527–531, 1973.

4. G. Casale. A generalized method of moments for closed queueing networks. Per-
form. Eval., 68(2):180–200, 2011.

5. L. Flatto and S. Hahn. Two parallel queues created by arrivals with two demands.
SIAM J. on Applied Mathematics, 44(5):1041, 1984.

6. A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Modelling zoned RAID
systems using fork-join queueing simulation. In Proc. of 6th European Performance
Engineering Workshop, EPEW 2009 London, UK, July 9-10, 2009 Proceedings,
pages 16–29. Springer, 2009.

7. V. Nguyen. Processing networks with parallel and sequential tasks: heavy traffic
analysis and Browinian limits. Annals of Applied Probability, 3(1):28–55, 1993.

8. F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of
Mathematical Functions. Cambridge University Press, New York, NY, USA, 1st
edition, 2010.

9. T. Rauber and G. Rünger. Energy-aware execution of fork-join-based task paral-
lelism. In Proc. of the 20th IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, (MASCOTS), pages
231–240, 2012.

10. D. Towsley, G. Romel, and J. Astankovic. Analysis of fork-join program re-
sponse times on multiprocessors. IEEE Trans. on Parallel and Distributed Systems,
1(3):286–303, 1990.

11. Paul E. Wright. Two parallel processors with coupled inputs. Advances in Applied
Probability, 24:986–1007, 1992.

10



0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

2 4 6 8 10 12 14 16

P

K

Bounds on the power consumption

Lower
Upper

(a) Bounds of the power consumption

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25

E
x
p
ec
te
d
jo
in
-q
u
eu

e
le
n
gt
h

Simulation time

Expected join-queue length for saturated fork-join stations

Exponential
Hyper-exponential

Erlang-2

(b) Two

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25

E
x
p
ec
te
d
jo
in
-q
u
eu

e
le
n
gt
h

Simulation time

Expected join-queue length for saturated fork-join stations

Exponential
Hyper-exponential

Erlang-2

(c) Three

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25

E
x
p
ec
te
d
jo
in
-q
u
eu

e
le
n
gt
h

Simulation time

Expected join-queue length for saturated fork-join stations

Exponential
Hyper-exponential

Erlang-2

(d) Bounds of the expected energy con-
sumption

Fig. 3: Numerical Evaluation.

11



A Proofs of statements

Proof of Lemma 3

Let us define

SNk = {n = (n1, . . . , nk) : ni ∈ Z,
k∑
i=1

ni = N} .

Then the state space of the stochastic process n(t) is S = S0K .
First observe that for N ≥ 0

SNk =
⋃k−1
j=1

(⋃∞
p=N+k−j{n = (n1, . . . , nk) : ni ∈ Z,∑k

i=1 δni≥0 = j,
∑k
i=1 niδni≥0 = p,

∑k
i=1 ni = N}⋃

{n = (n1, . . . , nk) : ni ∈ Z,
∑k
i=1 δni≥0 = k,

∑k
i=1 ni = N}

Now consider N < 0 with 2 ≤ K ≤ −N , then

SNk =
⋃k−1
j=1

(⋃∞
p=0{n = (n1, . . . , nk) : ni ∈ Z,∑k

i=1 δni≥0 = j,
∑k
i=1 niδni≥0 = p,

∑k
i=1 ni = N}⋃

{n = (n1, . . . , nk) : ni ∈ Z,
∑k
i=1 δni≥0 = 0,

∑k
i=1 ni = N}

Finally we consider N < 0 with K > −N , then

SNk =
⋃k+N−1
j=1

(⋃∞
p=N+k−j{n = (n1, . . . , nk) : ni ∈ Z,∑k

i=1 δni≥0 = j,
∑K
i=1 niδni≥0 = p,

∑k
i=1 ni = N}⋃k−1

j=k+N

(⋃∞
p=0{n = (n1, . . . , nk) : ni ∈ Z,∑k

i=1 δni≥0 = j,
∑k
i=1 niδni≥0 = p,

∑k
i=1 ni = N}

We first compute GNk for N ≥ 0. By the definition of SNk above, we can write

GNk =
(kµ)N

N !
+

k−1∑
j=1

∞∑
p=N+k−j

∑
x:x1+...+xj=p

µp∏j
t=1 xt!

1

µp−N

(
k

j

)(
p−N − 1

k − j − 1

)

=
(kµ)N

N !
+ µN

k−1∑
j=1

(
k

j

) ∞∑
p=N+k−j

jp

p!

(
p−N − 1

k − j − 1

)

where the last equality follows from the multinomial theorem. Notice that the
boundaries of j in the external summatory start from 1 (there cannot be any state
with all negative components) and terminate at K − 1. The states with all non-

negative components are considered into the addend
∑

x:x1+...+xk=N
µp∏j

t=1 xt!

1
µp−N

12



= (Kµ)N

N ! at the beginning of the right-hand-side. The lower bound of p is N+k−j
following from the fact that, since k−j states are negative, then p has a minimal
value of N + k − j. Now GNk can be written:

GNk =
(kµN

N !
+ µN

k−1∑
j=1

(
k

j

) ∞∑
w=0

jw+N+k−j

(w +N + k − j)!

(
w + k − j − 1

k − j − 1

)

=
(kµ)N

N !
+ µN

k−1∑
j=1

(
k

j

)
jN+k−j

∞∑
w=0

jw

Γ (w +N + k − j + 1)

(k − j)w
w!

=
(Kµ)N

N !
+ µN

k−1∑
j=1

(
K

j

)
jN+k−j M(k − j,N + k − j + 1, j)

Now we compute GNk for N < 0 and 2 < k ≤ −N . By the definition of SNk
above, we can write

GNk =

(
−N − 1

k − 1

)
µN +

k−1∑
j=1

∞∑
p=0

∑
x:x1+...+xj=p

µp∏j
t=1 xt!

1

µp−N

(
k

j

)(
p−N − 1

k − j − 1

)

=

(
−N − 1

k − 1

)
µN + µN

k−1∑
j=1

(
k

j

) ∞∑
p=0

jp

p!

(
p−N − 1

k − j − 1

)

=

(
−N − 1

k − 1

)
µN + µN

K−1∑
j=1

(
k

j

) ∞∑
p=0

jp

p!

(p−N − 1)!

(k − j − 1)!(p−N − k + j)!

=

(
−N − 1

k − 1

)
µN + µN

k−1∑
j=1

(
K

j

)(
−N − 1

k − j − 1

) ∞∑
p=0

jp

p!

(−N)p
(−N − k + j + 1)p

=

(
−N − 1

k − 1

)
µN + µN

k−1∑
j=1

(
k

j

)(
−N − 1

k − j − 1

)
M(−N,−N − k + j + 1, j)

13



Finally we compute GNk for N < 0 and k > −N . By the definition of SNk above,
we can write

GNk =

k+N−1∑
j=1

∞∑
p=N+k−j

∑
x:x1+...+xj=p

µp∏j
t=1 xt!

1

µp−N

(
k

j

)(
p−N − 1

k − j − 1

)

+

K−1∑
j=k+N

∞∑
p=0

∑
x:x1+...+xj=p

µp∏j
t=1 xt!

1

µp−N

(
k

j

)(
p−N − 1

k − j − 1

)

= µN
k+N−1∑
j=1

(
k

j

)
jN+k−j M(k − j,N + k − j + 1, j)

+ µN
k−1∑

j=k+N

(
k

j

)(
−N − 1

k − j − 1

)
M(−N,−N − k + j + 1, j)

Proof of Lemma 4

We proceed by computing the total throughput TK of the servers which can
be rewritten as:

XK =
µ

GK

(
K−1∑
j=2

∞∑
n=K−j

n+1∑
m=1

1

m!
·

∑
x:x1+...+xj−1=n−m+1

j−1∏
t=1

1

xt!
j

(
K

j

)(
n− 1

K − j − 1

)

+

∞∑
n=K−1

1

(n+ 1)!
K

(
n− 1

K − 2

)
+K

+

K−1∑
j=1

∞∑
n=K−j

∑
x:x1+...+xj=n

j∏
t=1

1

xt!
(K − j)

(
K

j

)(
n− 1

K − j − 1

))
,

where (x1, . . . , xj) is a possible tuple of the non-negative components of state

n, such that
∑j
i=1 xi = n, with 2 ≤ j ≤ K − 1. If xj has value m − 1 then the

remaining x1, . . . , xj−1 sum to n−m+ 1. There are j possible ways of inserting
xj into the sequence x1, . . . , xj−1 to form a j-tuple of non-negative components

and
(
k
j

)
possible ways of assigning (x1, . . . , xj) to the values of a state n ∈ S.

The remaining (K − j) components are negative. The cases j = 1 and j = K
are treated separately. By applying the multinomial theorem we obtain:

XK =
µ

GK

(
K−1∑
j=2

∞∑
n=K−j

n+1∑
m=1

1

m!

(j − 1)n−m+1

(n−m+ 1)!

· j
(
K

j

)(
n− 1

K − j − 1

)
+

∞∑
n=K−1

1

(n+ 1)!
K

(
n− 1

K − 2

)
+K

+

K−1∑
j=1

∞∑
n=K−j

(j)n

n!
(K − j)

(
K

j

)(
n− 1

K − j − 1

))
.

14



and by the binomial formula:

n+1∑
m=1

(
n+ 1

m

)
(j − 1)n−m+1 = jn+1 − (j − 1)n+1.

Hence, the throughput can be written as:

XK =
µ

GK

(
K−1∑
j=2

∞∑
n=K−j

j

(n+ 1)!

(
K

j

)(
n− 1

K − j − 1

)

· (jn+1 − (j − 1)n+1) +

∞∑
n=K−1

1

(n+ 1)!
K

(
n− 1

K − 2

)
+K

+

K−1∑
j=1

∞∑
n=K−j

(j)n

n!
(K − j)

(
K

j

)(
n− 1

K − j − 1

))
.

The rest of the proof is purely algebraic. Indeed, from the above expression we
can derive:

XK =
µ

GK

(
K−1∑
j=2

(
K

j

)
jK−j+2

∞∑
w=0

jw (K − j)w
Γ (w +K − j + 2) w!

−
K−1∑
j=2

(
K

j

)
j(j − 1)K−j+1

∞∑
w=0

(j − 1)w (K − j)w
Γ (w +K − j + 2) w!

+

+K

∞∑
w=0

(K − 1)w
Γ (w +K + 1) w!

+K

+

K−1∑
j=1

(
K

j

)
(K − j)jK−j

∞∑
w=0

jw (K − j)w
Γ (w +K − j + 1) w!

)
.

and by Equation (7), we have:

XK =
µ

GK

(
K−1∑
j=2

(
K

j

)
jK−j+2 M(K − j,K − j + 2, j)

−
K−1∑
j=2

(
K

j

)
j(j − 1)K−j+1 M(K − j,K − j + 2, j − 1)

+K M(K − 1,K + 1, 1) +K

+

K−1∑
j=1

(
K

j

)
(K − j)jK−j M(K − j,K − j + 1, j)

)

Now, observe that since n(t) is ergodic and the join operation is instantaneous
we have that the expected join-queue length must be finite. Since by symmetry

15



the throughput of each server must be the same, i.e., XK/K and there is not
an infinite accumulation of customers in the join-queue, the throughput X is
XK/K. ut

16


