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We evaluate the phase diagram of the Kern–Frenkel patchy model with four interaction sites for four
different values of the radial interaction range �all in the single-bond-per-patch regime� keeping the
area of the interaction patches fixed. Four stable crystal phases are investigated, namely diamond
cubic �DC�, bcc, fcc, and plastic fcc. The DC is favored at low temperatures and pressures, while the
bcc is favored at low temperatures and intermediate to high pressures. At low temperatures and very
high pressures an ordered fcc phase is found, while—as expected—at high temperatures, the only
stable crystal is a plastic fcc phase. We find a rich phase diagram with several re-entrant coexistence
lines, which can be brought in the equilibrium phase diagram by a proper choice of the range. We
also show that the gas-liquid phase separation becomes metastable as the range narrows, and it takes
place in a region of the phase diagram where the low density diamond crystal is the
thermodynamically stable phase. © 2010 American Institute of Physics. �doi:10.1063/1.3393777�

I. INTRODUCTION

Both for fundamental and technological reasons, par-
ticles with short-range, highly anisotropic �i.e., patchy� inter-
actions have recently drawn a great deal of attention. The
renewed interest in the study of patchy potentials, started two
decades ago1,2 in the field of associated liquids, has been
motivated by the possibility of synthesizing patchy particles
that may self-assemble into new materials with potential
technological applications.3,4 A lot of effort has been put, for
example, in the crystallization of the diamond cubic crystal,
a structure that is predicted to have photonic properties.5 It is
therefore very valuable to deeply understand how the ar-
rangement and nature of the interacting patches influences
the thermodynamic stability of the target structures. Another
topic where the physics of patchy particles might be relevant
is the long-standing problem of protein crystallization, essen-
tial for the x-ray characterization of their structure. In a
rough approximation, proteins can be regarded as patchy par-
ticles since their interactions are short-ranged and highly
directional.6–8 The study of patchy interactions can therefore
be helpful in understanding the mechanisms of protein crys-
tallization.

Previous studies have revealed interesting differences in
equilibrium and dynamic properties of patchy particles with
respect to isotropic potentials. The gas-liquid separation, for
example, moves toward low densities and temperatures9,10 as
the number of patches per particle decreases, thus leaving
behind a region of intermediate densities in which homoge-
neous gels can be formed. One result that carries over from
isotropic to patchy interactions is the metastability of the

gas-liquid critical point with respect to crystallization for
short interaction ranges. Furthermore, the extended law of
corresponding states11 has been shown to apply also for
short-ranged patchy potentials12 among models with the
same valence.

A full picture of the phase diagram of patchy potentials
is already available for particles with octahedral,13,14

waterlike,2 and fcc-like14 symmetry, showing a rich variety
of crystal phases, but the effect of the range has not been
discussed in detail. We have recently studied, for a tetrahe-
dral patchy model, the competition between crystallization
and gas-liquid phase separation, finding that lowering the
interaction range favors crystallization to a minor extent than
it does for isotropic potentials.15 In this article, we present a
complete thermodynamic study of the same model for sev-
eral values of the interaction range, analyzing how the rela-
tive stability between the fluid and the crystal structures is
modified by the bonding distance. This will provide some
guidance in finding the optimal interaction parameters for the
crystallization of the stable solid phases. Specifically, we
quantify the region of stability of the technologically rel-
evant DC structure and investigate how its melting tempera-
ture varies with the interaction range. The presented equilib-
rium phase diagram will serve as a starting point for studies
of crystal nucleation in tetrahedral liquids.16–19

II. THE MODEL

We study the tetravalent Kern–Frenkel20 model for
patchy particles, with four directionally attractive sites on the
surface of a hard sphere located in a tetrahedral fashion. Thea�Electronic mail: flavio.romano@gmail.com.
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two-body potential is a square-well potential modulated by a
function that depends only on the relative orientation of the
interaction sites �patches� on the particles,

u�rij� = uSW�rij�f���i,� j�� . �1�

The prefactor uSW�rij� is a well potential of attractive range
� and depth u0, while the modulating function f is defined as
follows; let ûi

� be the normalized vector that, starting from
the center of the particle i, points toward the interaction site
labeled by � �ranging from 1 to 4� on its surface, and let r̂ij

be the normalized vector connecting the centers of particles i
and j. The function f reads

f��i,� j� = �− 1 if�r̂ij · ûi
� � cos��max�for any � ,

and

r̂ ji · û j
� � cos��max�for any � ,

�
0 otherwise.

�
�2�

Then, to form a bond, two particles must be within the
square well range and each particle must have a patch that
forms an angle less than a maximum angle �max with the
vector connecting the centers of the two particles. A pictorial
representation of a such particle is given in Fig. 1. We stress
that in this model the angular ��max� and radial ��� interac-
tion ranges are decoupled, giving the possibility of changing
the maximum bonding distance keeping fixed the fraction of
the particle surface covered by interaction patches �=4��1
−cos��max�� /2�.

We study the thermodynamic behavior of this model at
fixed �max=acos�0.92� for four different values of the site-
site interaction range � /�=�=0.03, 0.07, 0.12, and 0.24, �
being the particle’s diameter. All these parameters respect the
single-bond-per-patch condition, which is ensured for geo-
metrical reasons12 if sin��max�	1 / �2�1+���. Throughout all
this work, we use reduced units with �=1 and u0=1, tem-
perature T is measured in units of u0 /kB, number density 
 in
units of �−3, and pressure P in units of u0 /�3.

III. FREE ENERGY CALCULATIONS

An extensive review of all the techniques needed for the
computation of phase diagrams via numerical simulation has
been recently published by Vega et al.21 Both free energy
computation and coexistence lines tracing methods are cov-
ered, and all the work presented in this article follows the
guidelines in Ref. 21.

Computing a phase diagram entails finding the points in
the P−T plane for which two phases have the same chemical
potential �=A /N+ p /
. We compute the Helmholtz free en-
ergy A of a thermodynamic state point starting from a refer-
ence system with known free energy—either analytically or
by numerical calculations. The free energy of the investi-
gated system can then be recovered by integrating its free
energy difference with respect to the reference system along
a �non-necessarily physically meaningful� path connecting
the two. While conceptually identical, the procedure is tech-
nically different for fluid and crystal phases.

A. Fluid free energy

The Helmholtz free energy A of the gas and fluid phases
at density 
 and temperature T is computed taking as a ref-
erence state the ideal gas at the same thermodynamic condi-
tions. The final expression reads, in reduced units where
�De Broglie=1,21

Afluid�T,
�
NkBT

=
Aideal gas�
�

NkBT
+ 	

0


 
 p

kBT
�2 −
1


�
�d
�, �3�

with

Aideal gas

NkBT
= ln�
� − 1 +

1

N
ln�2N� , �4�

where we included O�1 /N� finite-size corrections to the ideal
gas free energy. Note that the contribution to the entropy of
the ideal gas arising from the orientational degrees of free-
dom is not accounted for here and will be taken into account
as normalization into the orientational part of the crystals’
free energy, as discussed below.

The most accurate procedure to compute the integral in
Eq. �3� is achieved by running several NPT ensemble simu-
lations and then integrating a polynomial fit of the integrand
function. Having the latter a factor 
2 at the denominator, it
is difficult to estimate at low densities, but as pointed out in
Ref. 21 it is easy to show that its intercept is the second virial
coefficient B2. The analytic form for the Kern–Frenkel model
B2, reported in Ref. 20, reads

B2

B2
HS = 1 − �2��1 + ��3 − 1��eu0/kBT − 1� , �5�

where B2
HS= �2 /3��3 is the hard spheres’ second virial co-

efficient and � is defined in Sec. II.
The right hand side of Eq. �3� was computed by means

of isotropic NPT Monte Carlo �MC� simulations on systems
of 250 particles. Simulations at the highest � were run for at
least 105 MC steps �each defined as N translational attempts,
N rotation attempts, and 1 volume change attempt�, one third
of which were used for equilibration. Low-� runs required

FIG. 1. Graphical representation of a particle as described by the Kern–
Frenkel model. The four interaction sites are arranged on the vertexes of a
regular tetrahedron inscripted in a impenetrable sphere of diameter �. The
patches’ attractive regions are represented by the dark sections of spherical
cap of height � and aperture ��max.
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much longer equilibration and sampling times, at least 106

MC steps. At least ten pressures were sampled at each tem-
perature.

Note that, in the case of patchy particles, a reasonable
theoretical expression for the fluid equation of state can be
formulated implementing the thermodynamic perturbation
Wertheim theory �WTPT�.22,23 Such theory has been success-
fully used for reproducing the low density behavior of mod-
els for associating fluids such as the one treated here.24–26 A
comparison between the numerical and theoretical equation
of state for the present model is shown in Fig. 2.

B. Crystals’ free energy

The free energy of the solid phases are computed taking
as a reference model an ideal Einstein crystal with fixed cen-
ter of mass27 and tetrahedral symmetry21 with Hamiltonian

HEinst��tras,�or� = �tras�
i=0

N

�ri − ri,0�2

+ �or�
i=0

N

�sin2��ia� + sin2��ib�� , �6�

where the term �ri−ri,0� is the displacement of the particle i
from its rest position in the ideal Einstein crystal and the
angles �ia and �ib are the minimum angles formed by the
vector defining any of the patches of particle i and the rest
position of the patch a and b respectively, provided that �ia

and �ib are not formed by the same patch in the ideal Ein-
stein crystal. �tras and �or are the translational and orienta-
tional coupling parameters respectively. The issue of the
fixed center of mass is discussed in detail in Refs. 28 and 21.
We stress that the Hamiltonian in Eq. �6� has the same sym-
metry of the chosen Kern–Frenkel model. The Hamiltonian
in Eq. �6� leads to the following expression for the reference
free energy, split in the orientational and translational contri-
butions,

AEinst
�CM� = AEinst−tras

�CM� + AEinst−or, �7�

where we defined

AEinst−tras
�CM�

NkBT
= −

3

2

N − 1

N
lnkBT

�tras
� −

3

2N
ln�N� , �8�

as the translational free energy of the ideal Einstein crystal
with fixed center of mass �including O�ln�N�� terms�, while

AEinst−or
�CM�

NkBT
= − ln� 1

82	 d� sin���d�d�

�exp
−
�or

kBT
�sin2��ia� + sin2��ib���� �9�

is the orientational free energy of the ideal Einstein crystal
��, �, and � are the Euler angles�. The solid angle normal-
ization factor 1 / �82� is consistent with the choice of Eq. �4�
for the ideal gas free energy.

The integral in Eq. �9� is the one-particle angular parti-
tion function of the reference Einstein crystal and, in our
case, has to be computed by numerical means. To this extent,
we used a MC integration with at least 109 function calls for
each calculation. As reported in Fig. 3, we found that the
values of AEinst

or as a function of �or / �kBT� are well described
by a logarithmic fit over several orders of magnitude, so we
used the fitting function to compute AEinst−or for the calcula-
tions reported below.

Once the free energy of the reference crystal is known,
one can compute the free energy of the investigated crystal
with the following formula:

A = AEinst
�CM� + �A1 + �A2 + �A3. �10�

Following Ref. 21, we define �A1 as the free energy differ-
ence between the ideal Einstein crystal with fixed center of
mass and the interacting Einstein crystal with fixed center of
mass, �A2 as the free energy difference between the interact-
ing Einstein crystal with fixed center of mass and the inves-
tigated crystal with fixed center of mass, and �A3 as the free
energy difference between a solid with fixed center of mass
and a solid with unconstrained center of mass. We used the
following standard expressions for the terms �A1 and �A3,

�A1

NkBT
= −

1

N
ln�exp�− Usol�ri,r j�

kBT
−

U0

kBT
���

Einst−id

+
U0

NkBT
, �11�
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FIG. 2. Fluid equation of state at �=0.12 and T=0.2 �i.e., close to Tc

=0.1573�. Numerical results �open circles� compared with WTPT �solid
line� and the virial expansion up to B2 �dashed line�. The WTPT follows the
numerical results up to density of the order of 0.2.
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FIG. 3. Orientational reference free energy per particle versus the orienta-
tional coupling parameter �or divided by kBT. The circles are the points
computed with a MC integration algorithm and the dashed line is a fit to a
function AEinst

or �T ,�or� /N=a+ �3 /2�ln��or / �kBT��. The resulting best fit func-
tion, with a=0.4524�0.0005, was used for the calculations presented in
Sec. VI. Note the log scale on the x-axis.
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�A3

NkBT
= −

1

N
ln�
� . �12�

The average in Eq. �11� is taken sampling with the Einstein
Hamiltonian alone. Here Usol is the potential energy of the
Kern–Frenkel �in our case� model as sampled in the simula-
tion, while U0 is the Kern–Frenkel potential energy of the
reference Einstein crystal, and is thus fixed. Our choice of
�A3 is due to the fact that we performed simulations of the
interacting Einstein crystal with fixed center of mass.21

The heart of the free energy calculation is the free energy
difference between the investigated crystal and the interact-
ing Einstein crystal, both with fixed center of mass, �A2. For
numerical reasons, we do not choose the two coupling pa-
rameters of the Einstein Hamiltonian Eq. �6� to be equal,
having found that a better precision could be achieved if we
introduced a multiplicative factor in between them, that is

� = �tras = �or/� , �13�

this leads to the following form for �A2:

�A2 � − 	
0

�max

d�� �HEinst��,��
��

�
�

= − 	
0

�max

d�� �Htras
Einst���
��

+ �
�Hor

Einst���
��

�
�

. �14�

Here, �max is chosen in such a way that the system behavior
is completely determined by the reference Einstein Hamil-
tonian. The choice �13� is due to an imbalance between the
field needed to avoid hard-core overlaps and the one needed
to avoid that a particle breaks its bonds by rotating. On low-
ering �, one has to increase �max to account for the increased
density of the crystals, while the orientational field does not
need to be increased. The introduction of the factor � al-
lowed us to independently choose the orientational and trans-
lational contributions without increasing the number of simu-
lations needed to compute �A2. The integrals in Eq. �14�
were computed running 10–20 fixed-NVT� MC simulations
of the interacting Einstein crystal with fixed center of mass at
log-spaced values of � for at least 105 MC steps as defined in
Sec. III. The values of �tras and � were chosen so that �A1

=−2Nu0 �i.e., the average in Eq. �11� is equal to one� over a
105 steps long MC simulation of the noninteracting Einstein
crystal. A few examples of the free energies thus obtained are
reported in Table I.

The form of Eqs. �10�, �11�, and �14� suggests that when
the temperature is so low that all possible bonds are formed
and the energy remains fixed to the ground state value
throughout all the integration procedure, one can separately
compute the free energy contributions associated to the ori-

entational and translational degrees of freedom. Hence, we
define the translational and orientational entropy contribu-
tions Str and Sor, as

Str

NkB
= −

AEinst−tras
�CM�

NkBT
+ 	

0

�max

d�� �Htras
Einst

��
� − �A3, �15�

Sor

NkB
= −

AEinst−or
�CM�

NkBT
+ 	

0

�max

d���
�Hor

Einst

��
� . �16�

IV. COEXISTENCE LINES

A. Gas-liquid

The gas-liquid coexistence lines were computed via the
Gibbs ensemble simulation technique.29 A system of 216 par-
ticles is divided in two boxes of total volume 1100�3. The
top of our coexistence is completed with the critical param-
eters of Ref. 12 at �=0.03, 0.07, and 0.12, while the critical
point at �=0.24 has been calculated here as described in Ref.
12. The coexistence pressures between the gas and liquid
phases were computed via a bracketing procedure with the
aid of fixed-NPT MC simulations. Close to the critical tem-
perature, a pressure slightly lower than the critical value
pushes the system toward low densities �gas phase�, while a
pressure slightly higher pushes the system toward high den-
sity �liquid phase�. Knowing the critical temperatures and
densities from Ref. 12, at each � studied, we ran several
simulations at the critical temperature bracketing the critical
pressure.

B. Fluid-crystal and crystal-crystal

Once the free energy of a state point is known, one has
to integrate the free energy difference at fixed temperature
�or pressure� to obtain the chemical potential �=A /N+ P /

as a function of the pressure �or temperature�. One then de-
fines the coexistence temperature and pressure to satisfy

�phase I�Pcoex,Tcoex� = �phase II�Pcoex,Tcoex� . �17�

Starting from the found coexistence point in the �T− P�
plane, one can calculate the whole coexistence line by means
of the Gibbs–Duhem integration technique introduced by
Kofke,30 which consists in numerically integrating the
Clausius–Clapeyron equation, expressing the variation of the
pressure versus temperature along the coexistence � �x�, as

�dP

dT
�

x
=

�U + P�V

T�V
, �18�

starting from the known coexistence point. In Eq. �18�, �U
and �V are the differences between the thermodynamic av-

TABLE I. Free energies as computed with the Frenkel–Ladd procedure. Free energies are in units of kBT per particle. All symbols are defined in the text.

Phase � N T 
 �tras�
2 / �kBT� � / �kBT� AEinst

or �A1 �A2 �A3 A

DC 0.07 216 0.15 0.6045 10000 1.00 17.113 �13.333 �12.474 0.001 6.144
bcc 0.07 250 0.15 1.1586 6000 0.01 9.440 �13.333 �12.169 0.001 �1.974
DC 0.12 216 0.10 0.5600 7500 1.00 17.290 �20.000 �23.217 0.001 �10.912
bcc 0.12 250 0.20 1.1500 5000 1.00 15.642 �10.000 �18.527 0.001 0.502
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erages of the energy and volume of the two coexisting phases
as obtained by numerical simulations. Depending on the
slope dP /dT �x, one can decide to integrate the inverse of Eq.
�18� to achieve a better numerical precision or equivalently a
faster estimate. All the coexistence lines between ordered
and disordered phases were obtained with the Gibbs–Duhem
technique, using a fourth order Runge–Kutta algorithm. The
slope dP /dT was obtained running separate NPT simulations
of the two phases. Simulations for the fluid phases were run
on systems with N=250 particles for at least 106 MC steps,
one third of which were used for equilibration. Simulations
of the crystal phases were done with systems of N=250, 216,
and 256 for the bcc, DC, and fcc phase respectively, and
were run for at least 105 MC steps.

V. CONSISTENCY CHECKS

As pointed out in Ref. 21, it is wise to check some of the
free energies and coexistence points obtained with indepen-
dent approaches. Several checks can be made for both kinds
of computations. As far as the fluid is concerned, its free
energy as computed by thermodynamic integration at a given
temperature and density can be checked in a straightforward
way by running a grand canonical MC simulation28 at the
computed chemical potential to verify that the predicted
equilibrium density is reached. We used this check once at
every range studied obtaining consistent results.

A completely independent check useful for solid-fluid
coexistence lines is the Ladd–Woodcock direct coexistence
technique,31 consisting in running a simulation at the pre-
dicted coexistence temperature and pressure of a system
composed of equilibrated configurations of the two coexist-
ing phases. If the predicted coexistence point is correct, the
two phases will stay at equilibrium indefinitely, while if the
parameters are not correct one phase will prevail. We
checked several coexistence points, either obtained directly
from free energy calculations or by Gibbs–Duhem integra-
tion, with the direct coexistence technique. A few examples
are reported in Table II. The comparison between the pre-
dicted coexistence temperatures and the temperatures found
via direct simulations of the coexisting phases �last two col-
umns of the table� confirm the stability of the methodology
and its accuracy.

We used the Hamiltonian Gibbs–Duhem integration32 to
compute a coexistence point at any � starting from a known
coexistence point at a given �. The basic idea of this tech-

nique is to introduce a coupling parameter �, ranging from 0
to 1, that combines two potentials of the same symmetry as
follows:

u = �1 − ��u1 + �u2. �19�

It has been shown32 that one can obtain the following
generalized Clapeyron equations in the T−� or P−� plane
for two coexisting phases I and II,

�dT

d�
�

x
= T

��uII/���NPT� − ��uI/���NPT�

hII − hI
, �20�

�dP

d�
�

x
= −

��uII/���NPT� − ��uI/���NPT�

vII − vI
. �21�

Lower case letters refer to thermodynamic variables per par-
ticles. h is the enthalpy, v is the specific volume, and u is the
configurational energy. If we choose 1 and 2 to be the same
model at two different values of the interaction range �, we
can compute the coexistence point at one value of � starting
from another � at which the coexistence point is known by
numerically integrating Eq. �20� or �21� from �=0 to �=1.
This technique is not only useful for checks between the
coexistence lines obtained at different �’s, but can in prin-
ciple be used to obtain the whole phase diagram of a model
starting from the phase diagram of a different model.33 We
found that the Hamiltonian integration is faster than repeat-
ing the whole Frenkel–Ladd procedure, so we used Hamil-
tonian Gibbs–Duhem integration to obtain the phase diagram
at the smallest range studied �=0.03 starting from �=0.07,
and then checked some of the points obtained with the direct
coexistence technique �see Sec. II�.

VI. RESULTS

In order to compute the phase diagram, we considered
four crystalline phases: fcc, both orientationally ordered �fcc�
and disordered �fcc-d�, DC, and bcc. A pictorial representa-
tion of these structures is reported in Fig. 4. The fcc is the
close packed structure with 12 nearest neighbors.34 Each par-
ticle is bonded to four nearest neighbors, which are arranged
on four of the vertexes of a octahedron, a structure which
does not completely reflect the symmetry of the model. Still,
the finite width of the patch angle allows for full bonding
also in the fcc structure. The DC crystal is the structure of
Ice Ic,35 with eight particles per unit cell and a close packing
density 
DC

max=33/2 /8=0.6459. In this case, one particle has
all of its four nearest neighbors arranged on a tetrahedron,
thus reflecting its symmetry. The bcc crystal is the structure
of Ice VII.35 It has two atoms per unit cell and a close packed
density 
bcc

max=33/2 /4=1.2989. This crystal is made up of two
interpenetrating DC lattices, so that each particle has eight
nearest neighbors, four of which are bonded. The bcc and
DC phases have nearest neighbors forming an exact tetrahe-
dral angle �tetra�109°, while the fcc does not. At low T, all
these crystals have a ground-state energy equal to −2Nu0. We
also study the stability field of the orientationally disordered
�plastic� fcc-d phase. Indeed, as expected, this crystal will
eventually become the only thermodynamically stable crystal
at high T, since the Kern–Frenkel model reduces to that of

TABLE II. Fluid–crystal coexistence points checked with the direct coex-
istence technique by Ladd and Woodcock �Ref. 31�. The errors represent the
difference between the lowest temperature that led to crystallization with
respect to the highest temperature that led to melting.

Coexisting phases � p Predicted Tcoex Actual Tcoex

DC-fluid 0.03 0.300 0.1347 0.135�0.002
bcc-fluid 0.03 0.392 0.1397 0.140�0.003
DC-fluid 0.07 0.080 0.1530 0.153�0.002
bcc-fluid 0.07 0.300 0.1636 0.163�0.001
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hard spheres.27 The transition at high T to fcc-d has been
observed in the study of other patchy models, in the limit
where patches become irrelevant.13

The phase diagrams obtained are presented in Figs. 5
and 6. As discussed in detail in Ref. 15, the gas-liquid critical
point becomes metastable when the range becomes smaller
than �	0.15. The liquid phase disappears from the equilib-
rium phase diagram, existing only as a metastable state. We

have never observed spontaneous crystallization of the meta-
stable liquid into the stable DC crystal, suggesting that the
activation barriers for crystallization of the present model,
for all �, are large and do not allow for spontaneous crystal-
lization within the explored computational time. The evolu-
tion with � of the critical parameters has been studied
previously12 and it has been shown that while the critical
density scales as �1+� /2�−3, the critical temperature is well
approximated by a constant value of the reduced second
virial coefficient B2 /B2

HS�−4.5.
A global look at Figs. 5 and 6 shows immediately that

the two phases that appear to be more sensitive to the value
of the range are the bcc and the fcc. Indeed, on increasing the
range, the field of stability of both crystals expand. This is
evident in the T−
 plane �Fig. 6�, where the region of den-
sities where the fcc and bcc phase are stable significantly
grows. There is a limitation on the maximum value of �
�0.276 in the present model� where the single-bond-per-patch
condition applies and the ground state energy is fully deter-
mined by the number of patches. In this scenario, all fully
bonded structures share a common coexistence point at T
=0 and P=0, where neither density or entropy matter and
they all have the same configurational energy. At zero pres-
sure and small but positive temperature, the higher free vol-
ume available in the open structure DC results in a higher
entropy �a quantitative discussion of this is given below� and
thus dominates over bcc. In this respect, it is impossible to
increase � to values such that the bcc structure always domi-
nates over the DC without altering the bonding pattern.

At equilibrium, at low densities and temperatures, the
system phase separates in a gas coexisting with a DC crystal.
This structure is the lowest density fully bonded crystalline
structure for tetrahedral particles. The region of densities
where the DC crystal is stable is very narrow. As the inter-

FIG. 4. Crystal structures present in the phase diagram; �a� DC �one unit
cell, composed of eight atoms�; �b� bcc �eight atoms in the vertices of a cube
around the central one�; �c� fcc �2�2�2 unit cells, composed of four
atoms each�; �d� fcc-d. �2�2�2 primitive cells, composed of four atoms
each�. Note the random orientations of the patches in �d� with respect to �c�.
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FIG. 5. Phase diagrams in the P−T plane. We use reduced units defined in Sec. II. The gas-liquid critical temperatures are taken from Ref. 12, while the
critical pressures have been computed as described in Sec. IV A.
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action range increases, the DC phase melts at higher tem-
peratures, suggesting that crystallization of the DC phase
could be facilitated by the choice of a large interaction range
�but still within the single bond per patch condition�.

The phase diagrams reported in Figs. 5 and 6 also show
an interesting behavior concerning the possibility of a re-
entrant melting of the DC phase. Indeed the boundary be-
tween the DC and the fluid becomes negatively sloped �in
the �P−T� plane� at high pressures, generating a nose which,
for small values of �, can be accessed in equilibrium. Indeed
�data not shown�, at high pressures, the metastable extension
of the DC-fluid coexistence inside the stable bcc region is
always negatively sloped, as previously observed in Ref. 2.
This re-entrant melting appears to be a typical feature of
open crystals. Re-entrant melting is a consequence of the fact
that the compressibility of the fluid is much larger than that
of the solids. Thus, by increasing the pressure, the fluid can
become denser than open crystal structures, making the co-
existence line’s slope negative.36 The re-entrant phenomenon
appears as a maximum of T versus 
 along coexistence at
densities around 
�0.6. At the maximum, the fluid and DC
crystals have the same equilibrium density.

Another re-entrant phase boundary is found for the bcc–
fcc-d coexistence. On increasing pressure, the fcc-d trans-
forms into bcc and then into fcc-d again. As in the DC-fluid
case, the re-entrance can take place at equilibrium �case �
=0.07, Fig. 5�b�� or be located �data not shown� in the sta-
bility field of the fcc crystal �case �=0.03, Fig. 5�a�� or in the
stability field of the fluid �cases �=0.12 and 0.24, Figs. 5�c�
and 5�d��. Also here, the re-entrant phenomenon appears as a
maximum of T versus 
 along coexistence at densities
around 
�1.2 at �=0.07. At the maximum, the bcc and the
fcc-d crystals have the same equilibrium density.

The phase diagram at high temperatures and pressures
also presents an interesting behavior concerning the coexist-
ence between the bonded fcc and the orientationally disor-
dered fcc-d phases, consistent with a previous finding for an
anisotropic octahedral model.13 Comparing the two crystals,
we observe that the fcc-d is stabilized by the larger transla-
tional and rotational entropy, while the fcc is stabilized by
the lower energy. As Fig. 6�a� shows in the top-right part, the
fcc–fcc-d transition in the studied anisotropic model shows a
density gap which progressively shrinks on increasing T. In
the case of very small �, the two coexisting phases reach the
same density. However, the solid-solid transition does not
turn in a second order critical point but continues as an �ori-
entational� order-disorder transition controlled by tempera-
ture. This transition is first order since there is always an
energy difference between the two phases.37

We next look into properties of the DC and bcc crystals
in the region where all bonds are formed. We start by show-
ing the low T �so that no bonds are ever broken� equilibrium
density at P=0 in Fig. 7. Both curves can be rather well
approximated by the following functional form, based on the
idea that the nearest neighbors distance scales linearly with
the interaction range,


��,P = 0� =

�0,0�

�1 + ���3 , �22�

where 
�0,0� and � are fitting parameters. Interestingly, the
best fit value is ��1 /2, suggesting that the average distance
between bonded particles is approximately given by the
hard-core diameter plus half of the range. While for the bcc
case, 
�0,0� coincides with 
bcc

max, in the case of the DC crys-
tal, the extrapolated intercept provides a value 
�0,0�
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FIG. 6. Phase diagrams in the 
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=0.669 which is significantly larger than 
DC
max. This suggests

that the open structure of the DC crystal, due to the finite
width of the bonding angle, can significantly deform without
bond breaking.

In this class of square-well potentials, in the T region
where all bonds are formed, the excess Helmholtz free en-
ergy can be written as A=−2Nu0−TS, where S is only func-
tion of 
 and not of T, measuring the volume available to the
system without breaking bonds. Hence the density at zero
pressure as a function of the range, 
�� , P=0�, is
T-independent, provided that T is small enough so that bonds
are not broken. To get a deeper insight into the properties of
the crystal structures studied, we computed their entropy at
low temperature as a function of the density. This was done
by computing the entropy at zero pressure and T=0.1 as
described in Sec. III B, and then by performing thermody-
namic integration along the T=0.1 isotherm. Figure 8�a�
shows the entropy of the DC and bcc crystals in the fully
bonded configurations, at different densities, for several val-
ues of the range. Since the energy of the crystal does not
change with density �in the range of densities in which bond-
ing can be achieved�, the maximum of S�
� selects the equi-
librium density at zero pressure. The dependence of the zero-
pressure entropy on the range is shown in Fig. 8�b�. The
figure also shows the two contributions to the total entropy,
the orientational and the translational one, which have been
separately evaluated as described in Sec. III B.

The rotational contribution to the entropy is constant
with � and identical in the two bonded crystals, suggesting
that the angular space explored in these two crystals is the
same. The translational contribution instead increases on de-
creasing the number of neighbors, which progressively con-
strains the amplitude of the rattling motion in the bonded
configuration. Interestingly enough, the slope of S versus
ln��� for the DC case is significantly different from the one
observed in the isotropic square-well fcc and in the bcc case.
While in the last two cases the explored volume increases
with the cube of �, in the DC case a quadratic dependence
describes the data much more accurately, suggesting that the
open environment around a bonded particle significantly al-
ters the geometry of the explored volume compared to the
more dense case created by the presence of a large number of
neighbors, either partially �as in the bcc case� or fully bonded
�as in the square-well fcc case�. Figure 8�b� also reports the

entropy of the square-well potential in the fcc configuration
as a reference. As expected, in this case, the dependence of S
on ln � is well described by a slope of three, S / �NkB�
=3 ln�0.7��, in close agreement with the theoretical proposi-
tion by Sear.38 We also note that in the case of the hard-
sphere fcc, for which analytic calculations of the free volume
in the spirit of the cell theory are available,39 a similar de-
pendence on the particle-particle distance is found.

VII. CONCLUSIONS

This manuscript reports a detailed numerical study of the
phase diagram of a model with a hard-core repulsion and
four tetrahedrally arranged interaction sites, focusing on the
role of the interaction range on the relative stability of the
different phases in the equilibrium phase diagram. The phase
diagrams obtained show that, at low pressures and tempera-
tures, the low-density diamond cubic is the stable crystal. As
pressure increases, the bcc crystal becomes the most stable
phase. Both the DC and bcc crystals are favored by the sym-
metry of the patch arrangement. At very high pressures pack-
ing effects dominate and a fully bonded fcc phase appears,
even though the angle between bonded neighbors is not tet-
rahedral. Finally, at high temperatures, the only stable crystal
is the plastic fcc structure. Interestingly, for small ranges, the
fcc and fcc-d can coexist in a narrow window of densities,
which shrinks on increasing T.
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As previously found in spherical models,40–42 the gas-
liquid critical points becomes metastable on decreasing the
range below �0.15�, with respect to the DC phase. For
smaller values the Kern–Frenkel tetrahedral model does not
have a thermodynamically stable liquid phase. But, differ-
ently from the spherical case, the metastability gap does not
increase significantly on decreasing the range.15

We have observed re-entrant behavior in two coexistence
curves: the fluid–DC and the bcc–fcc-d. The re-entrant be-
havior is observed in the equilibrium phase diagram only for
specific values of the interaction range, but can nonetheless
be observed as a metastable extension of the coexistence
line.

We have also reported a study of the crystal properties in
the fully bonded region, where the Helmholtz free energy
changes only for entropic contributions. The open nature of
the DC signals itself in a rather large value of the crystal
entropy and in a non trivial dependence of the accessible free
volume with �.

In the present study, the bonding angle has been kept
constant and the role of the interaction range has been ex-
plored. This has been made possible by the use of the Kern–
Frenkel potential, in which bond angle and bond range are
completely decoupled. We plan to investigate the role of the
angle on the phase diagram in a future publication. A full
understanding of the role of the range and of the angle will
help clarifying the conditions for optimal crystallization for
particles with tetrahedral geometry.
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