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A. Caliciotti et al.

1 Introduction12

We deal with the large scale unconstrained optimization problem13

min
x∈IRn

f (x), (1.1)14

where f : IRn −→ IR is a twice continuously differentiable function and n is large.15

We assume that for a given x1 ∈ IRn the level set16

�1 =
{

x ∈ IRn | f (x) ≤ f (x1)
}

17

is compact, but no convexity assumption is considered for the function f (x). A con-18

siderably large number of real world applications can be modeled (or reformulated19

as) an optimization problem of the form (1.1), strongly motivating the interest for the20

solution of such problems in several contexts.21

Among the iterative methods for large scale unconstrained optimization, when the22

Hessian matrix is possibly dense, the NCG method and Limited Memory quasi-Newton23

method (e.g. L-BFGS) are often the methods of choice. In their iterations they do not24

include explicitly second order information; nevertheless, they both exploit the local25

structure and curvatures of f (x) through the gradient at different iterates.26

In this paper we focus on the NCG method and, in particular, on effective tech-27

niques to improve it. We highlight that the main aim of the paper is not to define a28

challenging algorithm for large scale unconstrained optimization, but rather introduc-29

ing a preconditioning strategy and showing its effectiveness.30

As well known (see any textbook, e.g. [23]) the NCG method is a natural extension,31

to general nonconvex functions, of the linear conjugate gradient (CG) method for32

quadratic functions. In particular, the NCG method generates the sequence of iterates33

xk+1 = xk + αk pk , where pk is the search direction34

pk = −∇ f (xk) + βk pk−1,35

with βk a suitable scalar. The positive steplength αk is obtained by an appropriate line-36

search. Different values of βk give rise to different algorithms (see [15] for a survey),37

endowed with different convergence properties. Among them, the most common and38

historically settled schemes are39

– Fletcher and Reeves (FR) [9],40

– Polak and Ribière (PR) [24],41

– Hestenes and Stiefel (HS) [17].42

However, more recently several other efficient proposals have been introduced in the43

literature, among them we can find for instance44

– Hager and Zhang (HZ) [14],45

– Dai and Yuan (DY) [3].46

The NCG methods have been widely studied and are often very efficient when solving47

large scale problems. A keynote issue for increasing their efficiency is the use of a48

preconditioning strategy, especially when solving difficult ill-conditioned problems.49
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Novel preconditioners based on quasi-Newton updates for…

Defining good preconditioners for NCG methods is currently still considered a50

challenging research topic. On this guideline, this work is devoted to investigate the51

use of quasi-Newton updates as preconditioners for NCG. In particular, we propose52

iteratively constructed preconditioners, exploiting information on the inverse of the53

Hessian matrix at the current iterate. Our proposal is based on quasi-Newton updates54

of the inverse of the Hessian matrix, and collects also some information from a fixed55

number of previous iterations. This represents an attempt to improve the efficiency56

of the NCG method, by conveying information from previous iterates, similarly to a57

limited memory quasi-Newton approach, so that a preconditioned nonlinear conjugate58

gradient (PNCG) method can be applied. More in detail, we study new symmetric59

low-rank updates for defining such preconditioners, where the information used is a60

by-product of NCG iterates. In this regard it is worth to recall that there exists a close61

connection between BFGS and NCG [21], and on the other hand, NCG algorithms62

can be viewed as memoryless quasi-Newton methods (see e.g., [23,25,26]).63

Observe that the idea of using a quasi-Newton update, as a preconditioner within64

NCG algorithms, is not new. In [2], when storage is available, a preconditioner defined65

by m quasi-Newton updates is used within an NCG algorithm. In [1] a scaled memo-66

ryless BFGS matrix is used as preconditioner in the framework of NCG. Moreover, an67

automatic preconditioning strategy based on a limited memory quasi-Newton update68

for the linear CG is proposed in [19], within Hessian–free Newton methods, and is69

extended to the solution of a sequence of linear systems.70

The paper is organized as follows: in Sect. 2 some preliminaries on PNCG and71

quasi-Newton updates are reported. In Sect. 3 we include guidelines for designing our72

novel preconditioners. Then, Sect. 4 contains our proposal, while Sect. 5 includes an73

extensive numerical experience, highlighting the benefits from adopting our precon-74

ditioners. A section of conclusions also completes the paper. As regards the notation,75

with A ≻ 0 [A � 0] we indicate that the matrix A is positive definite [semidefinite].76

2 Preliminaries77

In this section first we report the scheme of a general PNCG algorithm (see e.g. [25]),78

where Mk ≻ 0 denotes the preconditioner at the k-th iteration.79

Preconditioned nonlinear conjugate gradient (PNCG) algorithm80

Step 1: Set x1 ∈ IRn and M1. Set p1 = −M1∇ f (x1) and k = 1.81

Step 2: Compute the steplength αk by using a linesearch procedure, which ensures82

the strong Wolfe conditions, and set83

xk+1 = xk + αk pk .84

Step 3: If a stopping criterion is satisfied then stop,else compute βk+1 and85

pk+1 = −Mk+1∇ f (xk+1) + βk+1 pk, (2.2)86

set k = k + 1 and go to Step 2.87
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A. Caliciotti et al.

By setting Mk = In for any k, the popular (unpreconditioned) NCG method is88

trivially obtained. The parameter βk+1 can be chosen in a variety of ways. For PNCG89

algorithm, among the most recurrent choices from the literature there are the following90

ones:91

βFR
k+1 =

∇ f (xk+1)
T Mk∇ f (xk+1)

∇ f (xk)T Mk∇ f (xk)
, (2.3)92

βPR
k+1 =

[

∇ f (xk+1) − ∇ f (xk)
]T

Mk∇ f (xk+1)

∇ f (xk)T Mk∇ f (xk)
, (2.4)93

βHS
k+1 =

[

∇ f (xk+1) − ∇ f (xk)
]T

Mk∇ f (xk+1)
[

∇ f (xk+1) − ∇ f (xk)
]T

pk

, (2.5)94

which require Mk ≻ 0. We recall that to guarantee global convergence, an accurate95

linesearch technique is required to determine the steplength αk in a PNCG algorithm.96

The latter fact justifies the use of a linesearch procedure, ensuring the strong Wolfe97

conditions (see e.g. [23]). This also guarantees that the condition98

sT
k yk > 0, for any k (2.6)99

holds, being sk = xk+1 − xk and yk = ∇ f (xk+1) − ∇ f (xk). As we will see shortly,100

(2.6) is a fundamental relation to our purposes.101

As already said, preconditioning is applied for increasing the efficiency of the102

NCG method. In this regard, we remark a noticeable difference between CG and103

NCG. Whenever the CG is applied, the Hessian matrix does not change during the104

iterations of the algorithm. On the contrary, when NCG is applied to a general nonlinear105

function, the Hessian matrix (possibly indefinite) changes with the iterations. The latter106

fact implies that the mutual conjugacy of the search directions, generated by the NCG,107

may be hardly fulfilled. In this work our aim is to exploit possible conjugacy among108

vectors within a quasi-Newton approach, to generate in some sense an approximate109

inverse of the Hessian matrix. Namely, we want to use the latter approximation as110

preconditioner within a PNCG framework.111

In this regard, as well known (see e.g. [23]), when using quasi-Newton methods in112

place of (2.2) we generate a search direction of the form113

pk = −Hk∇ f (xk),114

where Hk is an approximation of the inverse of the Hessian matrix ∇2 f (xk). Then, as in115

Step 2 of PNCG, the new iterate xk+1 can be obtained according to xk+1 = xk +αk pk ,116

where αk is a steplength. In particular, instead of computing Hk from scratch at each117

iteration k, these methods update Hk in a simple manner, in order to obtain the new118

approximation Hk+1 to be used in the next iteration. Moreover, instead of storing full119

dense n × n approximations, they only save a few vectors of length n, which allow to120

represent the approximations {Hk} implicitly.121

Among the quasi-Newton schemes, the L-BFGS method is usually considered one122

of the most efficient [18,22]. It is well suited for large scale problems because the123
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Novel preconditioners based on quasi-Newton updates for…

amount of storage it requires is limited and controlled by the user. This method is124

based on the construction of the approximation of the inverse of the Hessian matrix, by125

exploiting curvature information gained only from the most recent iterations. Specif-126

ically, the inverse of the Hessian matrix is updated by L-BFGS at the k-th iteration127

as128

Hk+1 = V T
k Hk Vk + ρksksT

k , (2.7)129

where130

ρk =
1

yT
k sk

, Vk = In − ρk yksT
k ,131

and132

sk = xk+1 − xk = αk pk, yk = ∇ f (xk+1) − ∇ f (xk). (2.8)133

Observe that rearranging the expression of Hk we can also iteratively obtain relation134

Hk = (V T
k−1 · · · V T

k−m)H0
k (Vk−m · · · Vk−1)135

+ ρk−m(V T
k−1 · · · V T

k−m+1)sk−msT
k−m(Vk−m+1 · · · Vk−1)136

+ ρk−m+1(V T
k−1 · · · V T

k−m+2)sk−m+1sT
k−m+1(Vk−m+2 · · · Vk−1)137

+ · · ·138

+ ρk−1sk−1sT
k−1,139

where m is the memory of the method and H0
k is an initial approximation of the inverse140

of the Hessian matrix (see [18,22,23]).141

The well known reasons for the success of the L-BFGS method can be summarized142

in the following two points: firstly, even when m is small, Hk+1 proves to be an143

effective approximation of the inverse of the Hessian matrix. Secondly Hk+1 is the144

unique (positive definite) matrix which solves the subproblem145

min
H

‖H − Hk‖F

s.t. H = H T

H yk = sk,

146

where ‖ · ‖F is the Frobenius norm. Namely, Hk+1 is the positive definite matrix147

“closest” to the current approximation Hk , satisfying the secant equation148

H yk = sk . (2.9)149

Relation (2.9) also reveals that when f (x) is quadratic, then [∇2 f (xk)]
−1 yk = Hk yk ,150

meaning that Hk approximates the action of [∇2 f (xk)]
−1 along the direction yk .151

However, as well known L-BFGS method presents some drawbacks, including the152

slow convergence on ill-conditioned problems, namely when the eigenvalues of the153

Hessian matrix are very spread.154

As already noted in the Introduction, the idea of using a quasi-Newton update as155

a preconditioner within both PNCG algorithms and Hessian-free Newton methods is156

123

Journal: 11590 Article No.: 1060 TYPESET DISK LE CP Disp.:2016/6/29 Pages: 19 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

A. Caliciotti et al.

not new (see also [1,2,19]). Now, to introduce our proposal, let us consider the BFGS157

updating formula: we want to better exploit the relation with the CG in case f (x) is158

quadratic, i.e.159

f (x) =
1

2
xT Ax + bT x, A ∈ IRn×n . (2.10)160

The BFGS update (2.7) can be rewritten as161

Hk =

(

In −
yk−1sT

k−1

yT
k−1sk−1

)T

Hk−1

(

In −
yk−1sT

k−1

yT
k−1sk−1

)

+
sk−1sT

k−1

yT
k−1sk−1

, (2.11)162

so that explicitly using the expression of f (x) (see also [13]), which implies yk = Ask ,163

we can set164

Vk = In −
AsksT

k

sT
k Ask

(2.12)165

and write recursively166

Hk = V T
k−1 Hk−1Vk−1 +

sk−1sT
k−1

yT
k−1sk−1

167

= V T
k−1(V T

k−2 Hk−2Vk−2)Vk−1 + V T
k−1

sk−2sT
k−2

yT
k−2sk−2

Vk−1 +
sk−1sT

k−1

yT
k−1sk−1

. (2.13)168

Now, since f (x) is quadratic, assuming the conjugacy of the vectors {p1, . . . , pk} in169

(2.8), we have that170

V T
k sk−1 =

(

In −
AsksT

k

sT
k Ask

)T

sk−1 = sk−1 −
sksT

k Ask−1

sT
k Ask

= sk−1,171

which implies also that (2.13) becomes172

Hk = V T
k−1 Hk−1Vk−1 +

sk−1sT
k−1

yT
k−1sk−1

173

= V T
k−1(V T

k−2 Hk−2Vk−2)Vk−1 +
sk−2sT

k−2

yT
k−2sk−2

+
sk−1sT

k−1

yT
k−1sk−1

174

= V T
k−1V T

k−2 · · · V T
1 H0

k V1 · · · Vk−2Vk−1 +

k−1
∑

i=1

si s
T
i

sT
i Asi

. (2.14)175

Formula (2.14) can be used to potentially generate preconditioners for the PNCG,176

by looking at the rightmost contribution177

k−1
∑

i=1

si s
T
i

sT
i Asi

, (2.15)178
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Novel preconditioners based on quasi-Newton updates for…

whose range is exactly span{s1, . . . , sk−1}. Indeed, we can draw our inspiration from179

(2.14) and [7], where a new preconditioner for Newton–Krylov methods is described.180

In particular, in [7] the set of directions generated by a Krylov subspace method is181

used to provide an approximate inverse preconditioner, for the solution of Newton’s182

systems. On this guideline, observe that for f (x) as in (2.10), with A positive definite,183

the CG method may generate n conjugate directions {p j } (see e.g. [11]) such that184

A−1 =

n
∑

j=1

p j pT
j

pT
j Ap j

. (2.16)185

This implies that the rightmost contribution in (2.14) might be viewed and used as an186

approximate inverse of the Hessian matrix A. In the next sections we aim at extending187

the latter idea, to the case where f (x) is nonlinear, following similar guidelines.188

3 Guidelines for a new Symmetric Rank-2 update189

In this section we consider a new quasi-Newton updating formula, by considering the190

properties of a parameter dependent Symmetric Rank-2 (SR2) update of the inverse191

of the Hessian matrix. Suppose that after k iterations of NCG the sequence of iterates192

{x1, . . . , xk+1} is generated. Let us consider the quasi-Newton update H , satisfying193

the secant equation at the iterates x1, . . . , xk , i.e.194

H y j = s j , j ≤ k. (3.17)195

Observe that the latter appealing property of the matrix H is satisfied by all the updates196

of the Broyden class, provided that the linesearch adopted is exact (see e.g. [23]). We197

would like to recover the motivation underlying the latter class of updates, and by198

using a novel rank-2 update we would like to define a preconditioner for PNCG.199

On this guideline, let the matrix H in (3.17) depend on the three parameters {τ j },200

{γ j } and {ω j }, and let us consider the update201

H(τk+1, γk+1, ωk+1) = H(τk, γk, ωk) + 	k, 	k ∈ IRn×n, symmetric. (3.18)202

We want (3.18) to represent, to some extent, our quasi-Newton updates of [∇2 f (x)]−1,203

such that:204

(0) H(τk+1, γk+1, ωk+1) is well-defined and nonsingular;205

(1) H(τk+1, γk+1, ωk+1) can be iteratively updated;206

(2) H(τk+1, γk+1, ωk+1) collects the information from the iterations k − m, k − m +207

1, . . . , k of a NCG method, where m < k is a given positive integer (memory of208

the preconditioner);209

(3) H(τk+1, γk+1, ωk+1) satisfies the secant equation at least at iteration k;210

(4) H(τk+1, γk+1, ωk+1) “tends to resemble” the inverse of ∇2 f (xk+1), in case f (x)211

is a general convex quadratic function and, by suitably setting the three parameters,212

it can be used as a preconditioner for PNCG, i.e. Mk+1 = H(τk+1, γk+1, ωk+1) ≻213

0.214
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A. Caliciotti et al.

Observe that the Symmetric Rank-1 (SR1) quasi-Newton update (see Section 6.2 in215

[23]) satisfies properties (1)–(4) but not the property (0), i.e. it might be possibly216

not well-defined for a general nonlinear function. The latter result follows from the217

fact that SR1 update provides only a rank-1 quasi-Newton update, unlike BFGS and218

DFP. On the other hand, while BFGS and DFP quasi-Newton formulae provide only219

positive definite updates, the SR1 formula is able to recover the inertia of the Hessian220

matrix, by generating possibly indefinite updates. Thus, now we want to study an SR2221

quasi-Newton update, such that at iteration k222

– it satisfies (0)–(4);223

– at least one of the two newest dyads used for the update is provided using infor-224

mation from iterations k − m, . . . , k of the NCG method.225

4 A preconditioner using a BFGS-like quasi-Newton update226

In this section we address the final remark of Sect. 3. Indeed, we introduce a new class227

of preconditioners which are iteratively constructed by using information from NCG228

iterations, and satisfy the properties (0)–(4). On this purpose, in order to comply with229

properties (3) and (4), the preconditioners in our proposal satisfy two prerequisites.230

First they are conceived around the rightmost term (2.15) in (2.14), in order to possibly231

approximate the inverse Hessian matrix; then, they satisfy the secant equation at the232

current iterate, and not necessarily at all the previous iterates. This is a weak theoretical233

requirement, with respect to other quasi-Newton updates, however numerical results234

in Sect. 5 yet confirm its efficiency and robustness.235

Now, in order to introduce a class of preconditioners for the NCG, suppose we236

have performed k iterations of the (unpreconditioned) NCG, so that the directions237

p1, . . . , pk are generated. Let us consider the matrix Mk+1 defined by238

Mk+1 = τkCk + γkvkv
T
k + ωk

k
∑

j=k−m

p j pT
j

pT
j ∇2 f (x j )p j

, (4.19)239

where 0 ≤ m ≤ k − 1, γk, ωk ≥ 0, τk > 0, Ck ∈ IRn×n is symmetric positive definite240

and vk ∈ IRn . In order to use Mk+1 as a preconditioner in the PNCG, and to update its241

expression iteratively, we can set τkCk = H(τk, γk, ωk) (with H(τ0, γ0, ω0) given)242

and rewrite (4.19) in the form243

H(τk+1, γk+1, ωk+1) = H(τk, γk, ωk) + γkvkv
T
k + ωk

k
∑

j=k−m

p j pT
j

pT
j ∇2 f (x j )p j

.

(4.20)244

H(τk+1, γk+1, ωk+1) in (4.20) may be treated as a symmetric quasi-Newton update245

of the form (3.18). However, for simplicity, in the sequel we prefer to use the more246

general form given by (4.19). Indeed, as will shortly be evident, relation (4.19) is easier247

to handle, in order to impose the satisfaction of the secant equation at the current iterate248

xk .249
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Novel preconditioners based on quasi-Newton updates for…

Observe that in the expression of Mk+1 (see (4.19)), γkvkv
T
k represents a rank-1250

matrix while in view of (2.14)–(2.16), the term251

k
∑

j=k−m

p j pT
j

pT
j ∇2 f (x j )p j

(4.21)252

is aimed at building, in some sense, an approximate inverse of the Hessian matrix on253

a specific subspace. The next proposition better justifies the last statement.254

Proposition 1 Let f (x) = 1/2xT Ax + bT x , with A ≻ 0. Let p1, . . . , pn ∈ IRn\{0},255

with pT
i Ap j = 0, 1 ≤ i 
= j ≤ n. Then, for any 0 ≤ m ≤ min{n − 1, k − 1},256

⎡

⎣

k
∑

j=k−m

p j pT
j

pT
j ∇2 f (x j )p j

⎤

⎦ Av = v, for all v ∈ span{pk−m, . . . , pk}.257

Moreover, when m = n − 1 then
∑k

j=k−m

p j pT
j

pT
j ∇2 f (x j )p j

= A−1.258

Proof Let v =
∑k

i=k−m µi pi , µi ∈ IR; then, since ∇2 f (x) = A, for any x ∈ IRn , we259

have260

⎡

⎣

k
∑

j=k−m

p j pT
j

pT
j ∇2 f (x j )p j

⎤

⎦ Av =

⎡

⎣

k
∑

j=k−m

p j pT
j

pT
j Ap j

⎤

⎦ Av261

=

k
∑

j=k−m

k
∑

i=k−m

µi

p j pT
j

pT
j Ap j

Api =

k
∑

i=k−m

µi pi = v.262

In case m = n − 1, since the vectors {p j } are also linearly independent, we directly263

obtain the inverse matrix A−1. ⊓⊔264

Thus, in case f (x) is quadratic, then (4.21) behaves as an inverse of the Hessian matrix265

on the subspace spanned by the linearly independent vectors pk−m, . . . , pk .266

The integer m can be viewed as a “limited memory” parameter, similarly to the L-267

BFGS method. Moreover, we can set the matrix Ck , the vector vk and the parameters268

τk, γk, ωk such that the class of preconditioners {Mk} satisfies, for any k, the secant269

equation at the current iterate270

Mk+1 yk = sk, (4.22)271

along with a modified secant equation at some previous iterates, as described in the272

next proposition.273

Proposition 2 Let f : IRn → IR be twice continuously differentiable. Suppose that274

k iterations of NCG are performed, using a strong Wolfe linesearch procedure. Let275

Mk+1 ∈ IRn×n be defined as in (4.19), with 0 ≤ m ≤ k − 1, τk > 0, γk, ωk ≥ 0.276

(i) Let Ck ∈ IRn×n be symmetric positive definite, then there exist values of277

τk, γk, ωk such that Mk+1 ≻ 0 and (4.22) holds.278
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(ii) Let Ck ∈ IRn×n be symmetric positive definite and f (x) = 1/2xT Ax + bT x.279

Then, Mk+1 ≻ 0, (4.22) holds and Mk+1 reduces to280

Mk+1 = τkCk + γkvkv
T
k + ωk

k
∑

j=k−m

s j s
T
j

yT
j s j

, (4.23)281

with vk = σk(sk − τkCk yk − ωksk), σk ∈ {−1,+1}.282

(iii) Let f (x) = 1/2xT Ax + bT x, with A ≻ 0, and suppose k ≥ 2 iterations of283

the NCG algorithm are performed, using an exact linesearch. Then, there exist284

values of τk , γk , ωk , and a positive semidefinite matrix Ck , such that Mk+1 ≻ 0,285

(4.22) holds and the following modified secant conditions286

Mk+1 yi = ωksi , i = k − m, . . . , k − 1, (4.24)287

are satisfied.288

Proof From (4.19) imposing relation (4.22) we have289

τkCk yk + γk(v
T
k yk)vk + ωk

k
∑

j=k−m

pT
j yk

pT
j ∇2 f (x j )p j

p j = sk;290

hence, assuming γk(v
T
k yk) 
= 0 (which may be straightforwardly guaranteed by a291

suitable choice of τk , γk and ωk),292

vk = σk

⎡

⎣sk − τkCk yk − ωk

k
∑

j=k−m

pT
j yk

pT
j ∇2 f (x j )p j

p j

⎤

⎦ , (4.25)293

for some σk ∈ IR. Replacing (4.25) in (4.22) we obtain the equation294

γkσ
2
k

⎡

⎣sT
k yk − τk yT

k Ck yk − ωk

k
∑

j=k−m

(pT
j yk)

2

pT
j ∇2 f (x j )p j

⎤

⎦295

×

⎡

⎣sk − τkCk yk − ωk

k
∑

j=k−m

pT
j yk

pT
j ∇2 f (x j )p j

p j

⎤

⎦296

= sk − τkCk yk − ωk

k
∑

j=k−m

pT
j yk

pT
j ∇2 f (x j )p j

p j .297

Thus, the following relation among the parameters γk, σk, τk and ωk has to be satisfied298

γkσ
2
k =

1

sT
k yk − τk yT

k Ck yk − ωk

∑k

j=k−m

(pT
j yk)

2

pT
j ∇2 f (x j )p j

, (4.26)299
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Novel preconditioners based on quasi-Newton updates for…

where, without loss of generality, we can set σk ∈ {−1,+1}. Then, we remark that the300

condition (4.26) guarantees the matrix Mk+1 in (4.22) to satisfy the secant equation301

only at the k-th iteration (even for quadratic functions), and possibly not at the previous302

iterates. To complete the proof of item (i), observe that the Wolfe conditions used in303

the linesearch procedure for computing the steplength αk ensure that (2.6) holds, i.e.304

sT
k yk > 0. Thus, for τk > 0 and ωk ≥ 0 sufficiently small in (4.26) we obtain that305

γk > 0, and the matrix Mk+1 is positive definite. To prove item (ii), by the Mean Value306

Theorem we have307

∫ 1

0

sT
j ∇2 f [x j + ζ(x j+1 − x j )]s j dζ = sT

j y j ,308

and using relation s j = α j p j (see (2.8)), in case f (x) is the quadratic function in309

(2.10), then we have310

pT
j Ap j = pT

j ∇2 f (x j )p j =

∫ 1

0

pT
j ∇2 f [x j +ζ(x j+1−x j )]p j dζ =

pT
j y j

α j

, (4.27)311

which can be replaced in (4.19) to obtain (4.23). Since the Wolfe conditions are used312

in the linesearch procedure, then (2.6) holds, still implying that313

k
∑

j=k−m

s j s
T
j

yT
j s j

� 0.314

In addition, since yk = Ask , now the expression of vk in (4.25) reduces to vk =315

σk(sk − τkCk yk − ωksk).316

Finally, as regards (iii), let us define317

Ck = V T
k V T

k−1 · · · V T
k−m Vk−m · · · Vk−1Vk . (4.28)318

Even if Ck now is not positive definite, similarly to the proof of (i), we can obtain (4.25)319

and (4.26). Now, since yk = Ask , we have Mk+1 yk = sk , vk = σk(sk −τkCk yk −ωksk)320

and321

γkσ
2
k =

1

(1 − ωk)s
T
k yk − τk yT

k Ck yk

. (4.29)322

We prove that the matrix Mk+1 (which is now the sum of positive semidefinite matrices)323

is positive definite. Indeed, let s1, . . . , sn be n conjugate (hence linearly independent)324

directions with respect to matrix A ≻ 0. Then, recalling that the exact linesearch along325

with the conjugacy among {s j } yield ∇ f (x j+1) = ∇ f (x j ) + As j and326

(Asi )
T (As j ) = 0, for all |i − j | > 1, (4.30)327
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by (2.12) and for any τk 
= 0, ωk 
= 0 it results328

⎡

⎣τkCk + ωk

k
∑

j=k−m

s j s
T
j

yT
j s j

⎤

⎦ Asi 
= 0, i = 1, . . . , n.329

Indeed, the latter result trivially holds for any i 
= k−m−1; moreover, for i = k−m−1330

it also holds, using the relation V T
k−m(Ask−m−1) = Ask−m−1 
= 0. This implies that331

the matrix τkCk + ωk

∑k
j=k−m s j s

T
j /yT

j s j (and consequently Mk+1) is nonsingular.332

Moreover, since f (x) is quadratic, by (4.23) we obtain for i ∈ {k − m, . . . , k}333

Mk+1 yi =

⎡

⎣τkCk + γkvkv
T
k + ωk

k
∑

j=k−m

s j s
T
j

yT
j s j

⎤

⎦ yi334

=
[

τkCk + γkvkv
T
k

]

Asi + ωksi .335

Now, since vk = σk(sk − τkCk yk − ωksk), then we obtain for i ∈ {k − m, . . . , k − 1}336

that vT
k Asi = 0. Furthermore, by a direct computation we also have for i ∈ {k −337

m, . . . , k − 1}338

Ck Asi = V T
k V T

k−1 · · · V T
k−m Vk−m · · · Vk−1Vk Asi = 0;339

thus, we finally obtain340

Mk+1 yi = τkCk Asi + ωksi = ωksi , i ∈ {k − m, . . . , k − 1}.341

⊓⊔342

In the next proposition we give some properties about the clustering of the eigenvalues343

of the preconditioner Mk+1.344

Proposition 3 Let f (x) = 1/2xT Ax+bT x, with A ≻ 0, and suppose k ≥ 2 iterations345

of the NCG algorithm are performed, using an exact linesearch. Consider the matrix346

Ck in (4.28) and Mk+1 in (4.23). Then, Mk+1 has at least n − (m + 2) eigenvalues347

equal to τk .348

Proof We first recall that, after some computations, we obtain the relation349

V T
k−m(Ask−m−1) = Ask−m−1, and by the hypotheses (see also (4.25)), it results350

vk = σk(sk − τkCk yk − ωksk). Then, recalling (4.30), we have351

Mk+1 Asi = τk Asi , for i ≤ k − m − 1 and k + 2 ≤ i ≤ n,352

so that [k − m − 1]+ [n − (k + 2)+ 1] = n − (m + 2) eigenvalues of Mk+1 are equal353

to τk . ⊓⊔354
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Novel preconditioners based on quasi-Newton updates for…

Observe that the different choices for the parameters τk and ωk in (4.26) provide a355

different scaling of the matrices Ck and356

k
∑

j=k−m

p j pT
j

pT
j ∇2 f (x j )p j

357

in the preconditioners.358

As regards the specific choice of ωk , τk and Ck in (4.23), observe that by (4.24),359

the choice ωk = 1 and Ck given by (4.28) seems appealing when f (x) is quadratic.360

However, with ωk = 1 in (4.29) γk might not be well defined or possibly negative.361

Also observe that362

rk(Ck) = rk
[

V T
k V T

k−1 · · · V T
k−m Vk−m · · · Vk−1Vk

]

≤ n − 1,363

so that Ck is consequently singular, and when f (x) is non-quadratic the precondi-364

tioner Mk+1 might be singular. To avoid the latter drawback, and possibly reduce the365

computational burden, while preserving a certain level of efficiency, an obvious choice366

could be ωk 
= 1 and367

Ck = εk In, εk ∈ IR.368

The parameter εk may be computed as the least squares solution of the equation369

(ε In)yk − sk = 0, i.e. εk solves370

min
ε

‖(ε In)yk − sk‖
2 .371

Hence,372

εk =
sT

k yk

‖yk‖2
373

so that since sT
k yk > 0 by the Wolfe conditions, the matrix374

Ck =
sT

k yk

‖yk‖2
In (4.31)375

is positive definite. It is not difficult to verify that the choice (4.31), for Ck , also satisfies376

the weak secant equation yT
k Ck yk = yT

k sk (see [4]), at current iterate xk .377

For the sake of clarity we report here the overall resulting expression of our class378

of preconditioners (4.19), including the choice (4.31) and σk = 1:379

Mk+1 = τk

sT
k yk

‖yk‖2
In + γkvkv

T
k + ωk

k
∑

j=k−m

s j s
T
j

yT
j s j

, (4.32)380
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where381

vk = sk − τk

sT
k yk

‖yk‖2
yk − ωk

k
∑

j=k−m

sT
j yk

yT
j s j

s j , (4.33)382

γk =
1

(1 − τk)s
T
k yk − ωk

∑k

j=k−m

(sT
j yk)

2

yT
j s j

. (4.34)383

The reader may conjecture that since Mk+1 merely satisfies, in the convex quadratic384

case, the interpolation (say secant) conditions (4.22) and (4.24), then its theoretical385

properties with respect to BFGS are definitely poor. This seems indeed a partially386

correct conclusion. However, since in practice L-BFGS often performs better than387

BFGS, we warn the reader that on nonconvex problems the good performance of our388

proposal in Sect. 5 might not be so surprising. In fact, likewise L-BFGS we retain389

information from a limited number of previous iterates, mainly relying on the role of390

the rightmost term in (4.32), as detailed in Proposition 1.391

We conclude this section by highlighting that, interestingly enough, similarly to392

(4.20) we can also construct a class of preconditioners based on DFP-like quasi-393

Newton updates. Indeed, we can iteratively build the matrices394

B(τk+1, γk+1, ωk+1),395

approximating ∇2 f (x) instead of its inverse. Then, by the Sherman–Morrison–396

Woodbury formula applied to B(τk+1, γk+1, ωk+1) we can compute a class of397

preconditioners alternative to H(τk+1, γk+1, ωk+1) in (4.20). However, following the398

current literature which privileges the use of BFGS in place of DFP [23], here we399

have proposed the class described in (4.32)–(4.34), which performed successfully in400

practice.401

5 Numerical experience402

In order to investigate the reliability of the class of preconditioners we have introduced,403

we performed a wide numerical testing using the preconditioners defined in (4.32). To404

this purpose, we embedded the preconditioners (4.32) within the standard CG+ code405

(see [10]), from the literature, available at J. Nocedal’s web page. For a fair comparison406

we used the same stopping criterion407

‖∇ f (xk)‖∞ ≤ 10−5(1 + | f (xk)|),408

(namely original) and the same linesearch used by default in CG+ code. It is the409

Moré–Thuente linesearch [20] with a slight modification (we refer the reader to [10]410

for a complete description of the algorithm). Then, we also tested the robustness of411
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Novel preconditioners based on quasi-Newton updates for…

our proposal using the following different stopping criterion412

‖∇ f (xk)‖2 ≤ 10−5 max{1, ‖xk‖2},413

(namely novel), which is also quite common in the literature.414

In particular, we tested both the standard Fletcher and Reeves (FR) and Polak and415

Ribiere (PR) versions of the PNCG method in Sect. 2. As regards the test problems,416

we selected all the large scale unconstrained test problems in the CUTEst collection417

[12]. The dimension of the test problems is between n = 1000 and n = 10,000 (we418

considered 112 resulting problems). The parameters of the preconditioners (4.32) have419

been chosen as follows:420

m = 4, ωk =

1

2
sT

k yk

yT
k Ck yk +

∑k
j=k−m

(sT
j yk )

2

sT
j y j

, τk = ωk, γk =
2

sT
k yk

,421

where Ck is given by (4.31), for all k (this choice ensures that, by Wolfe conditions, the422

denominator of γk in (4.34) is positive). As preliminary investigation, we considered423

the results in terms of the number of iterations and the number of function evaluations,424

comparing three alternatives:425

– Mk+1 in (4.32), namely OUR PREC;426

– Mk+1 = I (unpreconditioned case), namely UNPREC;427

– Mk+1 coincident with the L-BFGS update Hk+1 in (2.7), using a memory of m = 4,428

namely PREC-LBFGS.429

The overall comparison is reported by using performance profiles [5]. For a fair com-430

parison, we have excluded from each profile all the test problems where the three431

alternatives do not converge to the same stationary point. Moreover, for k < 4 (i.e. in432

the first three PNCG iterations) we have coherently set m = min{4, k}.433

We strongly highlight that our proposal (4.32) is built using a dual standpoint with434

respect to PREC-LBFGS. Indeed, our proposal starts by first considering the third435

matrix in the right hand side of (4.32), in the light of approximating (in the quadratic436

case) the inverse of the Hessian matrix, as in (2.16). Then, the other two matrices, on437

the right hand side of (4.32), make our proposal Mk+1 nonsingular and consistent with438

a current interpolation condition at iterate k. On the contrary, PREC-LBFGS update439

starts from imposing multiple interpolation conditions at previous iterates (i.e. the440

secant equations). Then, as by-product it also proves to yield in the quadratic case,441

after n iterations, the inverse Hessian.442

The choice m = 4 was in our experience the best compromise over the chosen test443

set. This should not be surprising if compared with the results in [7,8,19], where the444

best choice for the memory parameter is either m = 7 or m = 8. In fact, in the latter445

papers the preconditioner is built using the CG (or L-BFGS for quadratics) in place446

of the NCG, which allows to fully exploit the mutual conjugacy among the search447

directions. On the contrary, in the present paper the NCG is unable to guarantee the448

latter property, so that the information at iterations k − m − 1, k − m − 2, . . . for large449

m risks to be unreliable.450
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0.9

OUR PREC_FR_feval

PREC-LBFGS_FR_feval
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Fig. 1 Profiles using the original stopping criterion, adopting FR and with respect to #i terations (left)

and # f unction evaluations (right)
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OUR PREC_PR_iter

PREC-LBFGS_PR_iter
UNPREC_PR_iter
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

OUR PREC_PR_feval

PREC-LBFGS_PR_feval
UNPREC_PR_feval

Fig. 2 Profiles using the original stopping criterion, adopting PR and with respect to #i terations (left)

and # f unction evaluations (right)

As regards the FR version of the PNCG algorithm, in Fig. 1 we report the comparison451

among the three algorithms. These profiles show that using the FR algorithm and452

the original stopping criterion in CG+ code, our proposal definitely outperforms the453

competitors, both in terms of number of iterations and number of function evaluations.454

Now, we turn to the PR version of the PNCG algorithm, and in Fig. 2 we report a similar455

comparison, obtaining again that our proposal is definitely preferable.456

On the other hand, the Figs. 3 and 4 report analogous profiles, where we used the457

novel stopping criterion in place of the original one in CG+. Again our preconditioner458

seems to be the winning strategy.459

Finally, we guess that in place of (4.31), a more sophisticated choice of the matrix460

Ck might be conceived, which possibly summarizes more information on the function461

at the previous iterates.462

As already claimed, the main focus of the paper is not to define a challenging463

algorithm for large scale unconstrained optimization, but it aims at introducing a464
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Fig. 3 Profiles using the novel stopping criterion, adopting FR and with respect to #i terations (left) and

# f unction evaluations (right)
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Fig. 4 Profiles using the novel stopping criterion, adopting PR and with respect to #i terations (left) and

# f unction evaluations (right)

preconditioning strategy and showing its effectiveness. However, for the sake of465

completeness, in order to have an idea of the overall efficiency of our proposal, we466

would like to compare our results with those obtained by some benchmark algorithms.467

For large scale unconstrained optimization, L-BFGS [18,22] and L-CG_DESCENT468

[14,16] methods are currently considered the most efficient ones.469

As regards L-BFGS, the original Fortran code is available in the J. Nocedal’s web470

page. We used this code (denoted by LBFGS) in order to perform a comparison with471

the unpreconditioned (UNPREC) and the preconditioned (OUR PREC) version of472

PNCG algorithm. In particular, in our codes we use the FR version. Note that L-BFGS473

adopts the original Moré–Thuente linesearch [20], without the slight modification474

introduced in CG+. Therefore, for a fair comparison, we here used the original Moré–475

Thuente linesearch also in our codes OUR PREC and UNPREC. The profiles reporting476

this comparison are in Fig. 5. We can see that our proposal using FR seems enough477
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Fig. 5 Comparison between OUR PREC (FR) and L-BFGS. Profiles using the novel stopping criterion,

with respect to #i terations (left) and # f unction evaluations (right)

competitive in terms of number of iterations. On the other hand, considering the number478

of function evaluations, we can observe that the search direction we compute does not479

seem yet well scaled. This indicates that future refinements on our preconditioners are480

possibly necessary.481

As regards L-CG_DESCENT, the most recent version available in the W. Hager’s482

web page is the L-CG_DESCENT 6.8 code. It is written in C , uses an hybrid version483

of βk coefficient and a different linesearch expressly designed by the authors (see [14]),484

more efficient and accurate than the Moré–Thuente one. At present, this possibly makes485

unfair any comparison between our codes and L-CG_DESCENT. Anyway, embedding486

our preconditioner in L-CG_DESCENT 6.8 would be an interesting further numerical487

experiment.488

6 Conclusions and future work489

In this paper we have proposed a novel class of quasi-Newton updates, to be used as490

possible preconditioners within PNCG method. In our proposal, namely the satisfac-491

tion of the secant equation only at the current iteration is ensured, and the resulting492

update is guaranteed to be positive definite. Furthermore, our class of preconditioners493

also satisfies the theoretical properties in Sects. 3 and 4. We numerically tested the494

latter approach versus both the unpreconditioned case and an L-BFGS based precon-495

ditioning approach. The results obtained showed that the preconditioners we propose496

are definitely much efficient and robust in optimization frameworks. At this stage of497

the research we still urge to experience our preconditioners also on tough and signif-498

icant real applications, where specific “pathologies” may be expected. Moreover, we499

think that our proposal may be possibly exploited also for solving difficult nonconvex500

problems where the fast iterative computation of negative curvatures for the function501

is a fruitful ingredient (see e.g. [6]).502
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