
Latent process modelling of threshold exceedances in

hourly rainfall series

Paola Bortot

Dipartimento di Scienze Statistiche, Università di Bologna, Italy
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Abstract

Two features are often observed in analyses of both daily and hourly rainfall series.

One is the tendency for the strength of temporal dependence to decrease when looking

at the series above increasing thresholds. The other is the empirical evidence for rain-

fall extremes to approach independence at high enough levels. To account for these

features, Bortot and Gaetan (2014) focus on rainfall exceedances above a fixed high

threshold and model their dynamics through a hierarchical approach that allows for

changes in the temporal dependence properties when moving further into the right tail.

It is found that this modelling procedure performs generally well in analyses of daily

rainfalls, but has some inherent theoretical limitations that affect its goodness of fit

in the context of hourly data. In order to overcome this drawback, we develop here a

modification of the Bortot and Gaetan model derived from a copula-type technique.

Application of both model versions to rainfall series recorded in Camborne, England,

shows that they provide similar results when studying daily data, but, in the analysis

of hourly data the modified version is superior.

Keywords: Asymptotic independence, Exceedance, Extreme values, Generalized Pareto

distribution, Hourly rainfall, Hierarchical model, Latent process.



1. INTRODUCTION

Statistical analysis of extreme values plays an important role in environmental sciences (for

reviews, see Katz et al. (2002) and Jonathan and Ewans (2013)). An example, which is also

the main theme of this work, is the study of extreme rainfalls, whose accurate inference and

forecast are essential ingredients for the assessment of flood risk.

Two main approaches can be identified in the literature for studying the extremal be-

haviour of sequences under the assumption of strict stationarity (e.g., Coles (2001) and

Reiss and Thomas (2007)). The first assumes that maxima extracted over blocks of records,

typically of length one-year, can be modelled by the Generalized Extreme Value (GEV)

distribution with cumulative distribution function (cdf)

GEV (x;µ, σ, ξ) = exp

{
−
(

1 + ξ
(x− µ)

σ

)−1/ξ

+

}
,

where (a)+ = max(0, a), ξ is a real shape parameter, µ a real location parameter and σ a

positive scale parameter. In the second approach the exceedances of the series over a high

threshold u are modelled using the Generalized Pareto (GP) distribution, having cdf

GP (x;σ, ξ) = 1−
(

1 + ξ
x

σ

)−(1/ξ)

+
, (1)

defined for x > 0.

Both approaches have an asymptotic justification. The GEV distribution stems from the

limiting distribution of block maxima as the block size goes to infinity (Leadbetter et al.,

1983), while the GP distribution arises as the limiting distribution of exceedances as the

threshold increases to the upper endpoint of the variable’s support (Pickands, 1975). The

block maxima approach is relatively easy to implement, especially when blocks are large

enough for sample maxima to be considered as approximately independent. However, it

tends to be wasteful of data. On the other hand, when working with exceedances, a larger

part of the data is retained for the analysis, but their temporal dependence cannot be ignored

and needs to be properly handled.

In many environmental series, including rainfall series, dependence persists at high levels,

causing exceedances to occur in clusters. This behaviour is consistent with results of extreme

value theory on a wide class of stationary sequences (Leadbetter et al., 1983). If the only
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objective is inference of the marginal distribution of the exceedances, a common and simple

approach to dealing with extremal dependence is declustering, i.e. filtering exceedances

such that the resulting series consists of approximately independent observations (Ferro and

Segers, 2003). A downside of filtering is a loss of information leading to reduced estimation

precision. Another possibility is to fit the GP distribution to all exceedances, treating them as

if they were independent, and in a second step adjust the standard errors of the estimates to

accommodate for dependence (e.g., Smith, 1990). In this way no relevant data are discarded.

Both procedures described above, however, allow no inference of the within-cluster behaviour

of exceedances, which is often of interest in its own right. In the analysis of rainfall data,

for example, summary measures of the stochastic features of a cluster of exceedances, such

as its average length, or the distribution of the aggregated exceedances within clusters, are

useful to judge the potential damage of an extremal event.

General functionals of exceedances can be investigated by inferring the joint distribution

of all exceedances of the series through a model that explicitly incorporates serial dependence.

An early example of this approach, still widely used, is due to Smith et al. (1997) who

suggested modelling the observed series above a threshold u as the tail of a first-order Markov

chain with continuous state space. Different solutions have also been developed, enlarging

the class of available dependence models. For example, in Reich et al. (2014) and Raillard

et al. (2014) the sequence of the exceedances is assumed to be a realization of a censored

max-stable process (de Haan, 1984) (see also Huser and Davison, 2014, for a space-time

example). Alternatively, Bortot and Gaetan (2014) propose a hierarchical model, which will

be denoted hereafter by M , that combines a latent process controlling serial dependence with

distributional assumptions that guarantee GP margins. This model has two distinguishing

features: it allows for the strength of dependence to decrease when considering exceedances

of increasing thresholds, and it also covers different degrees of limiting dependence, ranging

from asymptotic independence to asymptotic dependence. We term a time series to be

asymptotically independent when the sequence of exceedances it generates converges to an

independent sequence as the threshold increases to the upper endpoint of the univariate

marginal distribution. Asymptotically independent time series have isolated exceedances in
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the limit. When a time series is not asymptotically independent we will refer to it as being

asymptotically dependent; in this case, exceedances occur in clusters even at asymptotically

high thresholds.

The properties of M were exploited in Bortot and Gaetan (2014) for the analysis of

daily rainfall in Venice, which showed evidence of convergence to asymptotic independence

but also of clustering of exceedances at any finite level. In further unpublished work on

rainfall series recorded at other sites, M was also found to perform well for the prediction of

extreme daily rainfall. Although datasets of daily rainfall are more prevalent than those of

higher frequencies, in many situations the extremal behaviour of high frequency rainfall is

also important. For example, extreme hourly rainfalls play a key role in flood mapping and

zoning and in the design of hydraulic structures, such as dams, levees and drainage systems.

However, applications of M to hourly data generally resulted in much poorer fits. This is not

entirely unexpected: for a large class of theoretical processes, Robinson and Tawn (2000)

show that the sampling frequency affects the degree of extremal dependence. Consistent

with this theoretical finding, we noticed that both hourly and daily rainfall series display

a weakening of serial dependence at increasing thresholds, but the rates of convergence to

independence differ, with that of hourly data being poorly captured by M . By way of

illustration, for rainfall recordings during the summer season in Camborne, England, Figure

1 shows the mean size of clusters of exceedances as a function of the upcrossing level, varying

between the 0.90 and the 0.99 quantiles of the positive observations. The left panel displays

results for daily observations and the right panel for hourly observations, respectively. To

identify clusters the runs method of Davison and Smith (1990) was applied, deeming a

cluster to be terminated when in 3 consecutive days rainfall measurements fell below the

reference level. Added to each plot are the corresponding estimates obtained from the best

fitting M model. More details on the data and the model will be given in the subsequent

sections, but some features are already identifiable. For both daily and hourly observations,

the observed average cluster size has a downward trend, approaching the lower bound of

1, which is consistent with asymptotic independence. The initial values of the average

cluster dimension differ substantially between the two recording frequencies as does the rate
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of decrease: daily observations start from smaller values and have a slower convergence

to 1. The model-based estimates follow closely the empirical counterparts for daily data,

while discrepancies are observed for hourly data, especially at higher upcrossing levels. Our

conjecture is that this lack of fit on the hourly scale is due to a rigidity in the dependence

structure of M , induced by the lack of separation between the model parameters determining

the univariate marginal behaviour and those controlling temporal features. With the aim

of overcoming this weakness, we introduce a modification of M based on a copula-type of

technique that separates the parameters’ role, while preserving most of the good properties

of the original model. A positive side effect of this reformulation is an enlargement of the

class of attainable univariate tails, which under M is limited to heavy tails, i.e. ξ > 0 in

equation (1). This condition can be restrictive in rainfall analyses: although most series

display heavy tails, some instances with an estimated ξ < 0 have also been reported (e.g.,

Koutsoyiannis, 2004).

The structure of the paper is as follows. Section 2.1 reviews model M and Section

2.2 develops the modified version. Section 3 deals with the inference for the two models.

Some more technical details of the inferential procedure are described in the Appendix. In

Section 4 the ability of the new formulation to accurately reproduce and predict the extremal

behaviour of hourly rainfalls is assessed and compared with that of M through the analysis

of a series spanning a long period of time available for Camborne, England. Some concluding

remarks are given in Section 5.

2. LATENT PROCESS MODELS FOR EXCEEDANCES

2.1 A hierarchical formulation for temporal exceedances

Let {Xt}t≥1 be a stationary random sequence. To infer the tail behaviour of {Xt}t≥1 we

focus on values of the series exceeding a fixed high threshold u, termed the base threshold.

This leads to the censored stationary sequence of excesses {Yt}t≥1, with

Yt = (Xt − u) · IXt>u,

where IA denotes the indicator variable of the set A. It is common practice to model the

marginal distribution of the excesses Yt, conditionally on Xt > u, by means of the GP
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distribution (1). Setting Pr(Xt ≤ u) = p, the univariate marginal cdf of the censored series

becomes

F (y;σ, ξ) =

 p for y = 0

p+ (1− p)GP (y; ξ, σ) for y > 0
(2)

If {Xt}t≥1 is a sequence of independent and identically distributed random variables, the

likelihood of the censored sequence can be easily constructed from (2). In the presence of

temporal dependence, a model for the joint distribution of the excesses is required. Bortot

and Gaetan (2014) propose a hierarchical formulation that maintains (2) as the marginal

distribution for Yt, while inducing serial dependence through a latent process. The model is

outlined below.

Following Reiss and Thomas (2007, p. 157), for ξ > 0, the GP distribution can be

expressed as a Gamma mixture of an Exponential distribution. More precisely, if

Y |Λ ∼ Exp(Λ) and Λ ∼ Gamma(1/ξ, σ/ξ), (3)

then Y has cdf GP (·;σ, ξ), where Exp(λ) denotes the Exponential distribution with mean

1/λ and Gamma(α, β) the Gamma distribution with mean α/β.

Characterization (3) suggests the formulation of a two-stage model. In the first stage,

conditionally on an underlying process Λt, it is assumed that

Yt|Λt, Xt > u ∼ Exp(Λt)

and

Pr(Xt > u|Λt) = exp(−κΛt), (4)

where κ > 0 is a parameter controlling the rate of upcrossings of the base threshold. By

letting Λt ∼ Gamma(1/ξ, σ/ξ), marginally with respect to Λt, Yt has cdf (2) with shape

parameter ξ, scale parameter σ′ = ξκ+ σ, and

p = 1−
( σ
σ′

)1/ξ

. (5)

.

Temporal aspects are incorporated in the second stage by specifying a parametric form

for the process {Λt}. Two choices are considered in Bortot and Gaetan (2014): the Gaver
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and Lewis (GL) model (Gaver and Lewis, 1980; Walker, 2000) and the Warren (W) model

(Warren, 1992). The GL model is defined by the set of equations

Λt = ρΛt−1 +Wt,

Wt|Πt ∼ Gamma

(
Πt,

σ

ξρ

)
,

Πt|Pt ∼ Poisson

(
Pt

(1− ρ)

ρ

)
, 0 < ρ < 1, (6)

Pt ∼ Gamma(1/ξ, 1),

with Λt−1 independent of Pt, Πt|Pt and Wt|Πt. The W model is given by

Λt|Πt ∼ Gamma(Πt + 1/ξ, ξ(1− ρ)/σ)

Πt|Λt−1 ∼ Poisson

(
ρΛt−1σ

(1− ρ)ξ

)
, 0 ≤ ρ < 1. (7)

The class of hierarchical models obtained by combining the two stages is denoted by M or

Ma, with a =GL or W, when we need to specify the process selected in the second stage.

Both choices for {Λt} are stationary first-order Markov chains with Gamma(1/ξ, σ/ξ)

univariate marginal distribution and autocorrelation function corr(Λt,Λt+j) = ρ|j|. Despite

these common aspects, when combined with the first stage, they lead to different extremal

dependence properties for M . A detailed treatment of the extremal features of M can

be found in Bortot and Gaetan (2014). Broadly speaking, both specifications generate

exceedances of a level u∗ > u whose dependence strength decreases when u∗ increases.

However, MGL is asymptotically dependent, i.e., as u∗ →∞, exceedances will still occur in

clusters, while MW is asymptotically independent.

Many of the models available in the literature for the series of exceedances are derived

from limiting representations of the extremal behaviour of a stochastic process (see, for exam-

ple, Smith et al., 1997; Reich et al., 2014; Raillard et al., 2014). The use of asymptotic forms

typically induces asymptotic dependence and stability of the temporal structure at levels

higher than the base threshold u. Various studies, however, have shown that convergence to

the limiting behaviour can be rather slow in practice, so that at any finite threshold the sta-

bility assumption is violated (Ledford and Tawn, 1997; Bortot and Tawn, 1998). In addition,
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while in some contexts, e.g. in finance, asymptotic dependence prevails, in others, especially

in environmental applications, asymptotic independence is more commonly observed (Led-

ford and Tawn, 2003). The level-varying dependence and the coverage of both asymptotic

dependence and independence are, therefore, appealing features that M possesses. On the

other hand, it was observed that ξ’s twofold role as a marginal and a dependence parameter

causes a loss of flexibility in some circumstances. For instance, in Section 4 of Bortot and

Gaetan (2014) it is shown that when ξ is close to 0, i.e. when approaching an exponential

tail decay, for MGL the tendency of clustering of exceedances is weak regardless of the value

of ρ. Moreover, the condition ξ > 0 limits the applicability of the model to the analysis of

long-tailed variables and forces an a priori choice of the type of tail which could be avoided

with the use of the unrestricted GP family. In the following section we introduce a variation

of M with the aim of overcoming some of its drawbacks, while preserving the good properties

outlined above.

2.2 An alternative hierarchical formulation

The proposed modification can be framed in a copula approach. The basic idea is to trans-

form M marginally to have margins as in (2) with unconstrained shape parameter. Consider

the sequence of excesses {Yt}t≥1 generated from M with parameters ξ = 1, σ = 1, ρ = ρ∗

and κ = κ∗, with 0 < ρ∗ < 1 and k∗ > 0. Transforming Yt, for Yt > 0, through

g(y) = (σ∗/ξ∗)

{(
1 +

y

κ∗ + 1

)ξ∗
− 1

}
, (8)

with ξ∗ ∈ IR and σ∗ > 0, yields the stationary sequence

Y ∗t = g(Yt)IYt>0, t ≥ 1

which satisfies Y ∗t ∼ GP (·; ξ∗, σ∗), conditionally on Y ∗t > 0. The new class of models will

be denoted by M∗, or M∗
a , with a =GL or W, when the second-stage process needs to be

specified. Similarly to the derivation of copulas, the probability integral transform is applied

to each Yt, for Yt > 0, to obtain Y ∗t . However, while for copula models the probability integral

transform is enough to guarantee the required uniform margins, here the GP quantile function

is also applied to ensure that Y ∗t ∼ GP (·; ξ∗, σ∗), conditionally on Y ∗t > 0. This explains the

form of expression (8).
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Model M∗ covers all types of tail decay, as ξ∗ can take any real value. In terms of

the dependence characteristics, the temporal structure of M∗ is that of M with ξ = 1

and ρ∗ replacing ρ. Thus, M∗
GL is asymptotically dependent, while M∗

W is asymptotically

independent. The parameter ρ∗ has the same interpretation as ρ, i.e., within each subclass,

ρ∗ controls the degree of extremal dependence, with larger values of ρ∗ yielding stronger

dependence. In addition, a separation between marginal and dependence parameters is

attained: ξ∗, σ∗ and κ∗ determine the marginal distribution and ρ∗ affects only dependence.

This separation allows simple adjustments of M∗ to accommodate for possible non-

stationary patterns of the data. A standard way to account for non-stationarity in extreme

values (Davison and Smith, 1990; Eastoe and Tawn, 2009; Chavez-Demoulin and Davison,

2012) is to express the parameters of the marginal distribution as suitable functions of co-

variates Zt, i.e.

Pr(Y ∗t ≤ y) =

 p∗(Zt) for y = 0

p∗(Zt) + (1− p∗(Zt))GP (y; ξ∗(Zt), σ
∗(Zt)) for y > 0

(9)

allowing for time-variations in both the GP parameters, ξ∗ and σ∗, and the probability of

exceeding u, p∗. Continuous-time parametric functions can then be specified for logit(p∗(·)),

ξ∗(·) and log(σ∗(·)). For instance, setting Zt = t,

ξ∗(t) = α0 + α1t+

bs/2c∑
k=1

{
β1,k sin

(
2πkt

s

)
+ β2,k cos

(
2πkt

s

)}
yields a linear trend and a seasonal effect with period s for the shape parameter of the GP

distribution. In this case, care has to be taken on how to interpret the tail behaviour if the

sign of ξ∗(t) changes over time. A seasonal effect can also be introduced in the extremal

dependence by letting logit(ρ∗(t)) be a continuous-time periodic function in a spirit similar

to that of Coles et al. (1994). It is worth noting that these types of adjustments would not

be feasible under M , as time-variations of ξ affect simultaneously the marginal and the joint

properties of the multivariate distribution.

In applying the copula procedure to M to obtain M∗, σ and ξ can, in principle, be fixed

at any value. Setting σ = 1 simplifies computations and implies no loss of generality as this

is a scale parameter which is replaced by σ∗ in the new model. The choice for ξ is more
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delicate, as it restricts the class of temporal models. We selected the value ξ = 1 partly for

computational reasons and partly because the theoretical developments of Bortot and Gaetan

(2014) show that with this choice the range of extremal dependence that can be captured

under both GL and W is wide. As a result, M∗ includes only one dependence parameter.

However, this does not necessarily lead to a greater rigidity than M , as estimation of ξ is

conditioned by marginal aspects. The relative flexibility of the two formulations will be

investigated in Section 4 in relation to their ability to capture the extremal behaviour of

rainfall series, with particular attention to hourly data.

3. INFERENTIAL ISSUES

Let ψ be the vector of unknown parameters, with ψ = (ξ, σ, ρ, κ) forM and ψ = (ξ∗, σ∗, ρ∗, κ∗)

for M∗, respectively. Due to the hierarchical nature of the models, evaluation of the full likeli-

hood for ψ is impracticable. Exact inference would still be possible through Bayesian MCMC

techniques, but at the cost of a substantial computational burden. At each iteration of the

chain the whole of the latent process {Λt}, for t = 1, . . . , n, would have to be simulated, but

only a small percentage of the realizations (those above u) would be retained for estimation.

A computationally more efficient alternative is considered in Bortot and Gaetan (2014): a

pairwise likelihood approach (Lindsay, 1988) is adopted to estimate M and shown by sim-

ulation to produce fast and yet accurate results. Casciani (2015) employs Approximate

Bayesian Computation methods (Marin et al., 2011) to fit M to financial series, obtaining

estimates that are almost identical to those of the pairwise likelihood. These findings give

support to the choice of the pairwise likelihood procedure followed here.

In summary, let y1, . . . , yn be the observed censored series of excesses. The logarithm of

the pairwise likelihood that combines the contributions f(yt, yt′ ;ψ) of all possible pairs of

observations (yt, yt′) is

PLn(ψ) =
∑

{(t,t′):1≤t<t′≤n}

log f(yt, yt′ ;ψ)wt,t′ (10)

where wt,t′ is a weight defined on [0,∞). A cut-off weight, namely wt,t′ = 1 if |t−t′| ≤ ∆, and

0 otherwise, is adopted. What motivates this choice is that dependence between observations

which are distant in time is weak. Therefore, the use of all pairs may skew the information
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confined in pairs of near observations (Davis and Yau, 2011). In the applications of Section 4

we will discuss further the choice of ∆. As the series includes censored data, the contributions

f(yt, yt′ ;ψ) are computed from the bivariate joint cdf by differentiating with respect to the

uncensored components. Analytical expressions for f(yt, yt′ ;ψ) under each of M and M∗ are

given in the Appendix.

The maximum pairwise likelihood estimator is

ψ̂ = argmaxψPLn(ψ)

whose variance and covariance matrix can be approximated by the inverse of the Godambe

information

Gn(ψ) = Hn(ψ)Jn(ψ)−1Hn(ψ),

where Hn(ψ) = E[−∇2PLn(ψ)] and Jn(ψ) = Var[∇PLn(ψ)].

Model selection can be performed by minimizing the pairwise likelihood information

criterion, defined as

PLIC = −PLn(ψ̂) + tr(Jn(ψ̂)−1Hn(ψ̂))

which is an analogue of the Akaike information Criterion (AIC) in a pairwise likelihood

framework (Varin and Vidoni, 2005).

4. APPLICATION TO RAINFALL EXTREMES

The objective of the study is inference and prediction of extreme rainfalls in Camborne, west

Cornwall, England. The available data come from the UK Hourly Rainfall Data set which

is part of the Met Office Integrated Data Archive System (MIDAS), hosted at the British

Atmospheric Data Centre (http:\\badc.nerc.ac.uk). The data set comprises hourly and

daily rainfall measurements to the nearest 0.1 mm from 01/01/1980 to 31/12/2012. For both

series the whole of September 1994 is missing, but the recordings are otherwise complete.

Figure 2 contains a boxplot by month and a time series plot for a subset of the data for each

of the recording frequencies.

For Camborne data there is strong evidence of heavy tails, so that M can be safely applied

to this study case. Another issue is that both series have a seasonal cycle, as the boxplots of

10



Figure 2 clearly highlight. Since model M cannot be easily adapted to incorporate seasonal

effects, only the summer season, from June to September, was analyzed. This season, within

which the data are approximately stationary, is the one that produces the most extreme

events.

As pointed out in the Introduction, M tends to perform well on the daily scale, and

Camborne daily data are no exception. For this reason, the focus of the application will be

on hourly measurements, which constitute a more critical setting for M . For completeness,

however, and to test the flexibility of the new formulation, M∗ was also fitted to the daily

series. It was found that for both M and M∗, the W specification outperformed GL on the

basis of PLIC, suggesting the convergence of the exceedances to independence. With respect

to all of the diagnostics considered, the two formulations presented similar behaviours and

goodness of fit, so that there would be no loss in replacing M with M∗ for the daily series.

Hourly data

To choose the base threshold u above which the hourly series is modelled via the hierar-

chical specifications of Section 2, a preliminary analysis of the marginal distribution of the

exceedances based on the mean residual life plot (Davison and Smith, 1990) was carried out.

This led to setting u = 2.2 mm, corresponding approximately to the 0.99 quantile of the

whole dataset and the 0.90 quantile of the non-zero observations.

Models M and M∗ were fitted to the censored series by pairwise likelihood. To select the

parameter ∆ of the PL definition, a simulation study was carried out. Series of observations

were repeatedly simulated from each of Ma and M∗
a , with a = W and GL, for different values

of ∆, ranging between 1 and 30, and using a parameter configuration that should reproduce,

at least approximately, the features of the Camborne dataset. It was found that the value

∆ = 6 balances bias and efficiency across all the parameters in ψ and for all model versions

and was subsequently chosen for the analysis. More details on the simulations are given in

the Supplementary Material. A procedure similar to that followed here can be implemented

in other applications to select ∆, for example, by using as a set of parameter values for the

simulation scheme those estimated under ∆ = 1.

Table 1 shows estimates of model parameters and PLIC values. The comparison of models
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through PLIC points at M∗
W as the best fitting model, followed by MW ; hence, within each

formulation, PLIC gives strongest support to the configuration generating asymptotically

independent exceedances. To judge the goodness-of-fit of the estimated models beyond the

PLIC comparison, various diagnostics were carried out. These can be classified in three

groups: assessments of the marginal tail behaviour alone, of the dependence structure alone

and of the combined effect of marginal and dependence features. In addition, since the

Markov chain (MC) method of Smith et al. (1997) is a well established and wide spread

procedure for modelling temporal extremes, in all of the following investigations it was used

as a benchmark. When applying MC, we assumed a bivariate logistic distribution for the

chain transitions and maintained the same base threshold as for the hierarchical approach.

For the first type of diagnostics, GP QQ-plots of the marginal distribution of the ex-

ceedances of u were built. For the best fitting model within each hierarchical formulation

these are displayed in Figure 3, together with the QQ-plot produced under MC. Models MW

and MC display similar fits, since they yield similar estimates of the GP parameters (under

MC, the GP scale and location parameters are estimated, respectively, as 1.64 and 0.25).

Both these models overestimate empirical quantiles not only in the most extreme right-hand

region, but also at relatively low levels. For M∗
W , some departures in the direction of under-

estimation can also be observed, but they are confined to the eleven highest values. A closer

look at the data reveals that four out of the eleven most extreme observations are consecutive

in time and, therefore, generated from the same extremal episode that M∗
W fails to capture.

The comparison of the estimates of ξ and ξ∗ in Table 1 highlights a marginal tail decay

that is significantly slower under MW than under M∗
W , which explains the overestimation

occurring under MW .

For the second set of diagnostics, we examined the behaviour of the following sum-

mary statistics that depend only on temporal aspects: the conditional probabilities P (Xt >

u∗|Xt−δ > u∗), for δ = 1 and δ = 2, and the average size of the clusters of exceedances of u∗,

for u∗ > u. Conditional probabilities were adopted as they provide a standard measure of the

strength of the local extremal dependence of the series (Ledford and Tawn, 2003) and allow

evaluation of the short-term prediction abilities or deficiencies of the model. The average
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cluster size is of practical relevance as it summarizes the tendency of extremal episodes to

persist. In order to assess the quality of the extrapolation above the base threshold, the

summary measures were studied as a function of u∗, with u∗ ≥ u. Necessary conditions for

the series to be asymptotically independent are that the conditional probabilities converge

to zero and the mean cluster size to one, respectively, as u∗ →∞ (Ledford and Tawn, 2003).

Figure 4 compares model-based and empirical estimates of the conditional probabilities

for all four estimated models. All model-based estimates are obtained by simulation. Em-

pirical values show a decreasing degree of dependence and are consistent with convergence

to independence as u∗ → ∞, as the analysis of PLIC also suggested. Predictions obtained

from M∗
W follow closely the empirical patterns, while M∗

GL substantially overestimates tem-

poral dependence. Within the older formulation, MW is preferable to MGL, but both yield

estimates that are more stable than the empirical counterparts as u∗ increases, resulting in

underestimation (overestimation) of the dependence for low (high) values of u∗.

Figure 5 shows estimates of the mean cluster size obtained from the observed series and,

by simulation, from the best fitting models within each hierarchical formulation, i.e. from

MW and M∗
W . Also displayed in the figure are pointwise 95% confidence bands, obtained

by a bootstrap technique which consists of simulating 1000 series of the same length as the

observed one from the estimatedMW model and evaluating the mean cluster size as a function

of u∗ for each replication. Under all settings, the runs method of Davison and Smith (1990)

was applied to identify clusters, which are deemed to be terminated when r consecutive

observations fall below u∗. A range of values for r was considered, with estimates showing

stability around r = 72 (three days), which was, therefore, selected for the diagnostics. For

values of u∗ near the base threshold, MW provides estimates that are close to the empirical

ones, but at higher values of u∗ discrepancies of increasing magnitude can be observed, with

the empirical estimates approaching the lower bound of the 95% confidence bands. On

the other hand, M∗
W displays slight deviations for low u∗ values, but extrapolates well. In

terms of the MC procedure, it should be noted that one of its basic assumptions is that the

fitted chain provides the limiting form of the observed process, so that all the associated

estimates and predictions are invariant with u∗. By simulating from the fitted MC model,
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the conditional probabilities resulted as 0.33 and 0.16, for δ = 1 and δ = 2, respectively, and

the average cluster size as 0.42. These values are well above the corresponding empirical ones

for any choice of u∗ > u, indicating an overestimation of the degree of extremal dependence.

To complete the assessment by considering simultaneously marginal and dependence

features, QQ-plots for the aggregated exceedances within clusters were constructed. For

clarity, only the results for the two best fitting models, MW and M∗
W , are shown in Figure

6. The identification of clusters is based on the same definition used for Figure 5. In the left

panel, aggregates of exceedances above the threshold u∗ = u are plotted, while the right panel

displays aggregates of exceedances above u∗ = 3.2 mm, which corresponds approximately

to the 0.995 quantile of all hourly observations and the 0.95 quantile of the positive ones.

For both choices of u∗, M∗
W outperforms MW , although some departures from the empirical

values can be observed in the left panel also for M∗
W in the most extreme region.

Model ξ σ ρ κ PLIC

MGL 0.31 0.33 0.90 3.50 78789.26
(0.02) (0.04) (0.03) (0.22)

MW 0.31 0.34 0.97 3.52
(0.02) (0.04) (0.01) (0.23) 78788.94

ξ∗ σ∗ ρ∗ κ∗ PLIC

M∗
GL 0.24 1.64 0.56 101.61 78828.14

(0.04) (0.08) (0.03) (6.16)

M∗
W 0.15 1.61 0.98 103.09 78529.11

(0.04) (0.08) (0.002) (6.21)

Table 1: Estimates of model parameters under Ma and M∗
a , a=GL and W, for Camborne

hourly observations. Standard errors are specified in parentheses. The final column gives

the value of PLIC for each estimated model.

5. CONCLUSIONS

Hourly and daily rainfall data in Camborne have two common features that are often encoun-

tered in extreme rainfall studies. One is the tendency of the temporal dependence to weaken

14



at increasing upcrossing levels; the other is the empirical support to asymptotic indepen-

dence. These characteristics make the use of asymptotically dependent and threshold-stable

models unsuitable to capture extreme rainfall patterns, especially if the aim is the extrapo-

lation beyond the range of the data. They prompt instead the development and application

of models, such as M and M∗, that allow for substantial variations in the temporal structure

when moving further into the right tail of the marginal distribution.

In terms of the comparison between the two model versions, the application to Camborne

data has shown that, for the daily scale, characterized by relatively weak dependence, M and

M∗ provide similar qualities of fit. On the other hand, for hourly rainfall, having stronger se-

rial dependence, the improvement obtained with M∗ is substantial. Although these findings

provide no definite confirmation of a general superiority of M∗ over M for rainfall analy-

ses, further unpublished studies of rainfall series at different sites endorse such a conclusion.

These sites included Church Lawford and Blackpool, England, both extracted from the MI-

DAS repository as the Camborne data, as well as Titusville, Pennsylvania, and Lafayette,

Louisiana, U.S.A., obtained from the U.S. Climate Reference Network/U.S. Regional Cli-

mate Reference Network (USCRN/USRCRN) via the National Centers for Environmental

Information (NCDC) website. In addition, as mentioned in Section 2.2, M∗ has the extra

flexibility to allow for the incorporation of seasonal effects and any type of tail decay.

APPENDIX

Let LP
(1)
a (v) = E

(
e−vΛt

)
and LP

(2)
a;t′−t(v1, v2) = E

(
e−v1Λt−v2Λt′

)
, t′ > t be the univariate and

bivariate Laplace transform, respectively, of {Λt} under specification a, with a=GL or W.

Bortot and Gaetan (2014) show that, for α = 1/ξ and β = σ/ξ,

LP (1)
a (v) =

(
β

β + v

)α
,

regardless of a, while

LP
(2)
GL;t′−t(v1, v2) =

(
(β + ρt

′−tv2)β

(β + v2)(β + v1 + ρt′−tv2)

)α
,

and

LP
(2)
W;t′−t(v1, v2) =

[
1 + (v1 + v2)/β + (1− ρt′−t)v1v2/β

2
]−α

.
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Let fa(yt, yt′ ;ψ), with ψ = (ξ, σ, ρ, κ), be the contribution of (yt, yt′) to the censored

pairwise likelihood under model Ma. We have

fa(yt, yt′ ;ψ) =



∂2

∂v1∂v2
LP

(2)
a;t′−t(v1, v2)|(v1=yt+κ,v2=yt′+κ) yt > 0, yt′ > 0

− ∂
∂v
LP

(1)
a (v)|(v=yt+κ) + ∂

∂v1
LP

(2)
a;t′−t(v1, v2)|(v1=yt+κ,v2=κ) yt > 0, yt′ = 0

− ∂
∂v
LP

(1)
a (v)|v=yt′+κ

+ ∂
∂v2
LP

(2)
a;t′−t(v1, v2)|(v1=κ,v2=yt′+κ) yt = 0, yt′ > 0

1− 2LP
(1)
a (κ) + LP

(2)
a;t′−t(κ, κ) yt = 0, yt′ = 0

Let f ∗a (yt, yt′ ;ψ
∗), with ψ∗ = (ξ∗, σ∗, ρ, κ), be the censored pairwise likelihood contribution

of (yt, yt′) under model M∗
a , and let ha(y, y

′) = fa(y, y
′;ψ0), with ψ0 = (1, 1, ρ, κ). Then,

f ∗a (yt, yt′ ;ψ
∗) =



ha(s(yt), s(yt′))s
′(yt)s

′(yt′) yt > 0, yt′ > 0

ha(s(yt), 0)s′(yt) yt > 0, yt′ = 0

ha(0, s(yt′))s
′(yt′) yt = 0, yt′ > 0

ha(0, 0) yt = 0, yt′ = 0

where

s(y) = (κ+ 1)

{(
1 +

ξ∗y

σ∗

)1/ξ∗

− 1

}
,

and

s′(y) =
κ+ 1

σ∗

(
1 +

ξ∗y

σ∗

)1/ξ∗−1

.
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Figure 1: Mean cluster size as a function of the threshold u∗ for Camborne summer data.

Left panel for daily data and right panel for hourly data, respectively. The continuous line

corresponds to empirical estimates and the dashed line to estimates under M.
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Figure 2: First column: boxplots by month of Camborne rainfall series. Second column:

times series plots of a subset of Camborne rainfall series. First row for hourly data, second

row for daily data.
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Figure 3: GP QQ-plots of the marginal distribution of the exceedances of u. From top-left

clockwise, QQ-plot for MC, QQ-plot for MW and QQ-plot for M∗
W .
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Figure 4: In the left panel, empirical and model-based estimates of P (Xt > u∗|Xt−1 > u∗)

for the hourly series. In the right panel, empirical and model-based estimates of P (Xt >

u∗|Xt−2 > u∗) for the hourly series. Continuous line for empirical estimates, dotted line for

estimates with the GL second stage specification and dashed line for estimates with the W

second stage specification. Black lines for M and red lines for M∗.
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Figure 5: Estimates of the mean cluster size versus the upcrossing level u∗ for the hourly

series. Continuous line for empirical estimates, dotted line for MW estimates and dashed

line for M∗
W estimates. The -·- lines give pointwise 95% confidence bands under MW .
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Figure 6: QQ-plots of the model based estimates of the aggregated exceedance of u∗ versus

empirical aggregates for the hourly series. In the top panel u∗ = u, in the bottom panel

u∗ = 3.2 mm. Circles are associated to M∗
W and crosses to MW .
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