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Phase diagram of the ground states of DNA condensates
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The phase diagram of the ground states of DNA in a bad solvent is studied for a semiflexible polymer model
with a generalized local elastic bending potential characterized by a nonlinearity parameter x and effective
self-attraction promoting compaction. x = 1 corresponds to the wormlike chain model. Surprisingly, the phase
diagram as well as the transition lines between the ground states are found to be a function of x. The model provides
a simple explanation for the results of prior experimental and computational studies and makes predictions for
the specific geometries of the ground states. The results underscore the impact of the form of the microscopic
bending energy at macroscopic observable scales.
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The nonlinear elasticity of DNA at short length scales,
probed by nonequilibrium DNA cyclization experiments [1,2],
atomic force microscopy (AFM) imaging on surfaces [3], as
well as by equilibrium mechanically constrained DNA experi-
ments [4–6], is still not well understood. While the conclusions
regarding the first two methods for probing nonlinear double-
stranded (ds)-DNA elasticity have been criticized [7], the
experiments on stressed DNA ring molecules are performed
by a different methodology based on thermodynamic methods
via DNA high-curvature states through partial hybridization of
a single-stranded (ss)-DNA loop with a linear complementary
strand [6]. This methodology does not depend on thermal
fluctuations to realize high-curvature states and thus appears
to have a far better accuracy and reliability. The nonlinearity
in this latter case is clearly present and is captured in a single
parameter describing the onset of DNA kink formation. This
clearly exhibited elastic nonlinearity is taken as the motivation
for the present study that attempts to derive the macroscopic
consequences of this interesting microscopic elastic behavior
of DNA.

Another interesting facet of DNA behavior is that under
specific solution conditions, it condenses into highly compact
structures with pronounced symmetry [8–11]. This condensa-
tion phenomenon serves as an example of high polymer density
packing in biology and of polymer phase transitions and
phase separations in general, being relevant also for artificial
gene delivery [12,13]. Several distinct morphologies of the
DNA condensates have been observed including a toroid, a
spheroid, as well as a rodlike configuration [10,14–16]. Our
principal goal is to explore the rich interplay between the
strong tendency for compactness, arising from the presence
of multivalent cations or osmolytes in the solution, and the
intrinsic stiffness of the DNA molecule promoting the chain
to be locally straight. In the absence of stiffness, one would
expect the chain to adopt a densely compact spheroidal
globule configuration. The key issue is to understand how
local stiffness and the detailed way it enters the elastic energy
result in the spheroidal configuration becoming unstable with

respect to other lower energy configurations. In particular, one
would like to map out a phase diagram and understand the
different condensate geometries.

The topology of a toroid can be modified in at least two
distinct ways. One is to cut and elongate it, making it rodlike,
and the other is by filling up the hole. Toroids of sizes larger
than ∼200 nm have been observed. In a detailed study [17],
the toroid mean diameter was found to vary between 30 and
100 nm depending on the solution conditions, while the toroid
thickness was in the range from 10 to 70 nm. The geometry of
a toroid can be characterized by the ratio between its thickness
and its diameter. This ratio was typically found to vary for
given solution conditions but had a maximum value in a small
interval between 0.7 and 0.9. Ratios close to 1 have been
observed for very large toroids [18]. A ratio of 1 corresponds
to a toroid with no hole. This is the same topology as a sphere
but has different geometry than an isotropic spheroid.

Our study here essentially focuses on the relative stability
of different ground states, disregarding the elastic fluctuations
around these ground states. An important lesson learned in the
study of critical phenomena is that details at the microscopic
level often do not matter for the behavior near a critical point.
Strikingly, however, we find that simple modifications in the
form of the elastic energy penalty at the microscopic scale
have considerable macroscopic consequences. The nature of
the phase diagram as well as of the phase transitions is found
to depend on the details of the local stiffness energy, allowing
us to provide a simple explanation for the geometries of the
commonly observed toroidal structures of condensed DNA.

The simplest and most commonly used model for describ-
ing the stiffness of a chain molecule is the wormlike chain
(WLC) model. Consider three (1,2,3) consecutive beads along
the chain. Let θ represent the bending angle, i.e., the angle
between vectors 1–2 and 2–3. θ would be zero for a straight
segment. The elastic (free) energy penalty on the WLC level
is then

u = κ(1 − cos θ )x, (1)
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where κ is the stiffness coefficient per bead and x = 1. A
recent study of the ground states of a chain molecule [19]
using the WLC, together with different types of interactions
promoting compaction, resulted in a phase diagram with
toroidal and rodlike ground states. Furthermore, the combi-
nation of analytical calculations and computer simulations
showed that the shape of the phase diagram was quite
insensitive to the microscopic details. The challenge is then to
construct the simplest model, able to qualitatively reproduce
the key experimental observations, while at the same time also
allowing some flexibility in the predicted behavior, observed
in experiments.

A value of x larger than 1 corresponds to a softer potential
promoting easy bending. Conversely, the system is stiffer
when x is less than 1. Generally, x cannot be less than 1/2
because of the behavior of the elastic energy for small θ . The
coupling between different forms of attractive interaction and
thermal fluctuations in WLC polymer collapse was addressed
by Hansen et al. [20]. Schnurr et al. [21] employed Brownian
dynamics simulations complemented by analytical theory to
study the dynamical intermediates for a limiting case of the
WLC model. Lappala and Terentjev [22] carried out dynamical
computational studies of the compaction of a long chain and
observed multiple—some metastable—configurations. Seaton
et al. [23] studied structural phases of semiflexible polymers
as a function of temperature and stiffness. The stabilities of
toroidal and rodlike condensates under stretching forces have
been assessed [24]. Interestingly, DNA-packaging simulations
carried out for a x = 1 chain yield a stable toruslike struc-
ture [25]. A careful study by Sakaue and Yoshikawa of a
x = 2 chain dynamics undergoing compaction showed a stable
toroidal phase and a metastable rodlike phase [26].

Our analysis of the generalized WLC model, as described
by Eq. (1), under compaction shows a rich variety of ground
states as a function of the stiffness parameter x: a collapsed
spheroid, a rodlike configuration that we model as a cylinder
with spherical end caps, a toroid with varying shape ratio,
and a swollen extended phase. Surprisingly, the transition
lines between these states are found to be characterized
by exponents which depend on x. In addition, our analysis
predicts the geometry of the stable toroids and shows a striking
effect of the details of the microscopic bending energy penalty
on the macroscopic behavior, relevant for both experiments
and simulations.

We model DNA as a semiflexible polymer of length
L = Nb, formed of N spherical beads of diameter b. Assume
that the morphology of DNA condensate can be either toroidal
[Fig. 1(a)] or rodlike [Fig. 1(b)]. The toroidal structure is
parametrized by its mean radius R and the thickness radius
� = αR, with 0 < α < 1. The rodlike structure is postulated
to have a shape of a spherocylinder of radius W and the
cylinder length equal to γW with γ � 0. When γ = 0, one
obtains the spheroidal configuration [Fig. 1(c)] as a limiting
case of the rodlike structure. We will show that the spheroidal
configuration will appear as the ground state not only in the
limit of κ → 0 or L → ∞ for x < 3/2, but also as a true
ground state when x > 3/2.

Assume a close-packed hexagonal chain packing in the con-
densate [10] with DNA-DNA interaxial spacing d. The DNA
volume packing fraction is η = (π/

√
12)(b/d)2. The toroidal
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FIG. 1. (Color online) Schematics of (a) toroidal, (b) rodlike,
and (c) spheroidal models of DNA condensates. Ground state
conformations obtained in Monte Carlo simulations of a N = 64
bead-and-spring model with x = 1 generalized elastic potential at (d)
moderate and (e) low stiffness and x = 2 at (f) low stiffness. The
conformation (f) is a torus with no hole.

mean radius can be expressed as R = 1
2 (Lb2/πη)

1/3
α−2/3,

while the thickness radius of the rodlike condensate is W =
(3Lb2/4η)

1/3
(4 + 3γ )−1/3. For the toroidal condensate, we

assume that the chain has a constant radius of curvature [27]
equal to its mean radius R. The alternative “spool” model [28]
for chain wrapping does not change the characteristics of
the phase diagram and yields a higher bending energy than
the constant curvature model. For the rodlike condensate,
we assume that the radius of curvature is uniformly equal
to W/2 in the spherical caps of the spherocylinder, whereas
the curvature is zero in the cylinder body.

The chain compaction is induced by introducing a surface
term in the total energy of the condensate, with σ > 0 a surface
energy per unit area. For the toroidal condensate, the total
energy including the bending energy is then

Etor = κ
L

b

(
b2

2R2

)x

+ σ4π2αR2, (2)

and for the rodlike condensate, respectively,

Erod = 24+x

3
κη

(
b

W

)2x−3

+ σ2π (2 + γ )W 2. (3)

For a given L and κ , the minimum energy E∗
tor and the

optimal ratio α∗ for the toroidal condensate are obtained by
minimizing E with respect to α. The rodlike condensate can be
a ground state only if x < 3

2 , when ∂Erod/∂γ = 0 has a positive
root, γ ∗ > 0. For x > 3

2 , there are no positive roots, and the
minimum energy is the spheroidal configuration (γ ∗ = 0).
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FIG. 2. (Color online) Ground state phase diagrams in the length-
stiffness plane of a semiflexible chain with the generalized elastic
potential for several values of x, as indicated. The lines correspond to
transitions from a toroidal to a rodlike condensate for x < 3/2, and
from a toroidal to a spheroidal configuration for x > 3/2, being fits
with slopes equal to 2x−1

3 to numerical data points. An experimental
data point (star) shown on the WLC model transition line corresponds
to the average DNA length of ∼63.6 kbp in 90 nm sized condensates
found for a plasmid DNA condensation induced by cobalt(III)
hexammine (CoHex3+) with a coexistence of toroid phase and rodlike
phase [14]. Projection from this point on the vertical axis yields
σ ≈ 0.266kBT (nm)−2, or equivalently, an intermolecular contact
interaction energy of ε ≈ −σd ≈ −0.246kBT /bp, by using the DNA
persistence length βκb = 50 nm, diameter b = 2 nm, and the
interaxial spacing d = 2.8 nm. The energy ε roughly agrees with
that for the CoHex3+ mediated DNA-DNA interaction obtained by
the osmotic stress method (−0.21 ± 0.02kBT /bp) [29].

By comparing E∗
tor with E∗

rod, we constructed the phase
diagrams of the ground states in the κ-L plane (Fig. 2). For a
given L, one observes a transition from rodlike or spheroidal
to the toroidal condensate on increasing κ . For very large
stiffness, there is another transition from the toroidal to an
open straight conformation (not shown in Fig. 2). It can be
shown that the ratio E∗

rod/E
∗
tor is a function of σ/κL(2x−1)/3, so

the only way to make it equal to 1 while changing L and
κ is to have σ/κL(2x−1)/3 = const. Thus, at the transition
line between the toroidal and the rodlike condensate, one
has

κ

σ
∼ L

2x−1
3 . (4)

For x = 1, one recovers the power law of L1/3 [19]. For x =
0.5, the transition line would become independent of L, but for
this limiting case, both the toroid phase and the rodlike phase
disappear (see below).

Coexisting toroidal and rodlike condensates of similar
volume and dimensions have been observed in experi-
ments [14,15], suggesting that those condensates were close to
a phase transition between the two kinds of structures. Figure 2
shows that fitting the experimental data to the phase diagram
yields a reasonable energy for a DNA-DNA interaction. The
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FIG. 3. (Color online) Dependence of the toroidal mean radius
R and the toroidal thickness radius � on the total contour length L

of DNA in toroidal condensates. Experimental data points are fitted
to the theoretical results for the WLC model (x = 1) as R ∼ L1/5

(solid line) and � ∼ L2/5 (dashed line) in (a) and (b), respectively.
Experimental data are taken from Ref. [14] for condensation of
plasmid DNA fragments of lengths 2700 bp (squares) and 1350 bp
(circles) with [DNA] = 10 μg/mL. The condensation was induced by
150 μM CoHex3+ and the sizes of the condensates were measured at
2 h and at 24 h after polyvalent salt addition. The volume of an average
toroid was found to increase by ∼50%, between 2 and 24 h. R and �

are calculated based on the measured average toroid outer radius R1

and inner radius R2 given in the captions of Figs. 3 and 4 of Ref. [14]
as R = (R1 + R2)/2 and � = (R1 − R2)/2, respectively. The DNA
contour length in a condensate is determined as L = 8πηR(�/b)2

by assuming a hexagonal close packing of DNA in the condensate
with the volume fraction η = (π/

√
12)(b/d)2, where d = 2.8 nm is

the DNA-DNA interaxial spacing, and b = 2 nm is the diameter of
DNA.

relatively larger volume seen for spheroidal condensates with
respect to toroidal ones, as observed in T4 DNA condensation
using protamine sulfate as the condensing agent [16], agrees
with our phase diagram. The observation of the spheroidal
condensates also suggests that the highly charged protamines,
when bound to DNA major grooves [30], strongly modify
the DNA elasticity making it incompatible with the WLC
model. Our generalized elasticity model is applicable also
to multimolecular condensates, since due to a strong sticky
hydrophobic interaction between the exposed ends of DNA
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FIG. 4. (Color online) (a) Dependence of geometrical parameters
α and γ on the chain length L for toroidal (left) and rodlike (right)
condensates. At L = Lc the chain undergoes a transition from a
toroidal to rodlike conformation. The data shown are obtained for
x = 1 (solid), x = 1.2 (dashed), and x = 1.6 (dotted), as indicated.
The dependence of the maximum values αmax and γmax of the
parameters α and γ on the exponent x are shown in (b) and (c),
respectively. The arrow indicates the result for the WLC model
(x = 1), for which αmax ≈ 0.808 and γmax ≈ 1.45. αmax increases
from zero at x = 0.5 and reaches unity at x ≈ 1.264, whereas γmax

becomes zero only at x = 1.5.

fragments, there is no significant free energy contribution from
linear aggregation of the molecules [31].

Interestingly, the geometrical parameters α∗ and γ ∗ are also
found to be functions of σ/κL(2x−1)/3, and thus are constant
along the transition line for a given x. For both types of
condensates, the size can be normalized by Lc, the length of the
polymer at the transition line. For toroidal condensates it then
follows α∗ ∼ (L/Lc)

2x−1
4x+1 when α∗ < 1, whereas for the rodlike

condensates, the dependence of γ ∗ on L is not trivial. For large
lengths (L � Lc), we remain with γ ∗ ∼ (L/Lc)

1−2x
3 . It is also

straightforward to show that the toroid mean radius R depends
on the chain length as R ∼ L

1
4x+1 , and the toroid’s thickness

scales with its mean radius as � ∼ R2x . For x = 1 one finds
that � ∼ R2, meaning that a big toroid is also much thicker
than a small toroid, as commonly observed in experiments.
Figure 3 shows that the scaling of R and � with L also
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FIG. 5. (Color online) Toroid thickness vs toroid diameter as
obtained by experiments at various conditions (data points). The
data points were extracted from Fig. 2 of Ref. [17]. For a given
condensation condition (see legend), we take only the point with
the maximum thickness to diameter ratio. The lines show the slopes
corresponding to the maximum aspect ratios αmax as predicted from
our model on changing the parameter x. For the wormlike chain
(WLC), αmax = 0.808 (dotted line).

agrees with available experimental data for the condensation
of plasmid DNA [14].

Figure 4(a) shows the dependence of α∗ and γ ∗ on L away
from the transition line. At L = Lc, both α∗ and γ ∗ have
maximum values αmax and γmax, respectively, that strongly
depend on x. For a given stiffness on an increase of L the toroid
condensate becomes fatter and attains its maximum thickness
at the transition line. For x > 1.246 the toroid then attains its
maximum thickness with the ratio α = 1 even before L reaches
Lc—the doughnut has no hole [see the curve for x = 1.6 in
Fig. 4(a)]. As L becomes larger than Lc, the rodlike condensate
becomes the ground state, and eventually its length to thickness
ratio γ ∗ starts decreasing. As L → ∞, γ ∗ becomes zero and
the rodlike condensate turns into a globule.

At the transition line, both L and κ can be renormalized and
the maximum values αmax and γmax become functions of the
parameter x only. Figures 4(b) and 4(c) show the dependence
of αmax and γmax on x, for x ∈ [0.5,1.5]. For x = 0.5, αmax = 0,
while γmax diverges, indicating that both the toroidal and the
rodlike phases disappear in this limit. αmax increases with
x to unity at x ≈ 1.246, while γmax decreases to zero as
x approaches 1.5. This again confirms that for x � 1.5 the
rodlike condensate becomes a globule for all lengths. For the
WLC model (x = 1), αmax ≈ 0.808 and γmax ≈ 1.45.

It has been suggested that deviations from WLC occur at
length scales less than 100 nm [3]. In Fig. 5, we show some
experimental data for the maximum thickness to diameter
ratio (data extracted from Ref. [17]) under various solution
conditions. Experimental points correspond to αmax varying
between 0.7 and 0.9 corresponding to x in the range from 0.9
to 1.1. Thus, our analysis suggests that the solution conditions
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may be captured through the exponent x in the generalized
elastic potential of DNA inside the condensate, but the
bending elasticity remains essentially that of the WLC, i.e.,
x ≈ 1 ± 0.1. This suggests that DNA compaction does not
involve high deformation kinking of the chain, consistent with
various experimental studies on the looping of DNA (see, e.g.,
Ref. [32]), which indicated that the wormlike chain model

is a reasonable model for the elastic nature of DNA at short
lengths.
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