
Proximity-structured multivariate volatility
models for systemic risk

M. Billio*, M. Caporin⋆, L. Frattarolo*, and L. Pelizzon*

Abstract By describing the dependence structure through Granger Causality net-

works, we use the weights to define proximity matrices and accordingly we estimate

a proximity structured BEKK model and derive a latent stability variable that could

be interpreted as Systemic Risk indicator.
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1 Introduction

The financial crisis has sparkled a renewed interest in understanding systemic risk.

The approach considered in this paper is to link systemic risk with the stability of

the financial system. We focus on estimating a latent variable that drives the stabil-

ity of financial markets, and we describe them as a system with different interacting

sectors. Due to the scarcity of publicly available data, we consider as a proxy of the

dependence structure of the US financial system, a Granger causality network de-

fined among financial stocks returns. The starting point of our effort are the results

obtained in [1], since their measures are readily applicable, and they show a sta-

tistical relationship between them and anomalous market losses. To consider their

networks, let us to build a model in which the dependence structure varies trough

time. This is a key feature since different dependence structures can lead to stability

or instability. This approach obliges us to face the curse of dimensionality problem if

we want to consider a model including the whole set of institutions included in their

study. For this reason we limit our analysis to Equally Weighted indexes for each

of the four sectors considered, adjusting their connectedness measures accordingly.

In addition, we use them as a series of weights matrices in a proximity structured

volatility model [3] to reduce further the number of parameters, while retaining the

possibility of spillovers. To properly discuss these kind of stable-unstable models
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it is crucial to ensure an ergodicity condition that allows statistical inference. By

considering the s-BEKK model introduced in [3] and generalizing the ergodicity re-

sults obtained in [2], for the case with time varying parameters, it turns out that this

condition could be imposed in a non trivial way, that allows the process to become

unstable and for short time period the covariance matrix could experience exponen-

tial growth. The coincidence of those periods with anomalous market conditions

allows us to interpret the latent stability variable as a systemic risk indicator and, its

proximity to one, as an early warning for an incoming systemic event. The paper is

structured as follows: in Section 2 we briefly review results in [1] and discuss how

to define sector proximity matrices. In Section 3, we introduce our s-BEKK model

with time varying parameters, discuss our main approximation and obtain ergodic-

ity conditions. In Section 4 we report our empirical findings. Section 5 concludes

with the interpretation of our stability variable as a systemic risk indicator, that can

be helpful in the construction of an early warning system.

2 Granger causality networks as Sector proximity matrices

As detailed in [1], among all the measures proposed for connectedness, Granger

Causality Network measures are the most concordant with losses and the ones that

clearly show a dramatic increase during crisis periods. The implementation of a

more statistically sounded technique considering a multivariate GARCH is difficult

due to the rapidly increasing number of parameters depending on the number of

series. For this reason we reduce the dimensionality of the problem by aggregating

sectors in equally weighted indexes, but summarize the dependence structure in the

sector proximity matrices, obtained from characteristics of all the series. Among the

network measures used in [1] we focus on the following ones:

• Out Degree: number of outgoing edges/causalities from the node/institution

• Closeness: the inverse of the average shortest causality path from one node to

each of the other

and introduce the sector-wide corresponding measures:

• Out Degree: number of outgoing edges/causalities from one sector to another one

• Closeness: the inverse of the average shortest causality path from all nodes of

one sector to all the nodes of another one

These measures are two different ways of expressing how much the past of one sec-

tor is close to the present of the other, and thus can be interpreted as measure of

similarity between sectors movements. By row-normalizing and zeroing the diago-

nal, we can construct proximity weights matrices (Wt ) from them, that become the

input of our proximity structured GARCH.
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3 Proximity structured BEKK with time varying coefficients

Since we are going to use time varying weights matrices, we need to be careful to

constrain them in order to be sure that the estimated model is ergodic.This is needed

because we cannot obtain central limit theorems and reliable statitical inference pro-

cedures without this property.

In [3], the weights matrix W is constant and they introduce constant proximity ma-

trices A and B:

A = diag(a0) I + diag(a1)W

B = diag(b0) I + diag(b1)W (1)

where I is the identity matrix. Among all the volatility specifications presented in

[3] and for which they study identification and asymptotics, we choose the 1-lag

s-BEKK:

Σt = Ω +ARt−1R
′

t−1A
′+BΣt−1B

′ (2)

In a recent paper [2] is found that, in the case of the ordinary 1-lag BEKK, with

constant A and B matrices,a unique and strictly stationary and geometrically ergodic

solution exists if the classical stability condition is met:

ρ ((A⊗A)+ (B⊗B))< 1 (3)

Here ρ (·) is the spectral radius (the eigenvalue with the maximum absolute value)

and ⊗ is the outer product. The cornerstone of their demonstration is the existence

of the fixed point:

Σ = E [Σt ] = Ω +AE
[

Rt−1R
′

t−1

]

A
′+BE [Σt ]B

′ = Ω +AΣA
′+BΣB

′ (4)

In our case, as already said, we have time varying weights matrices Wt and so also

non constant proximity matrices At and Bt . Eventhough, those matrices come from

the same dataset of the indexes, our working hypothesis would be that they repre-

sents different aspects of those series so that they can be considered uncorrelated to

the covariances. To better express this proposition, it is convenient to introduce the

vec representation of the model:

Σt = Ω +AtRt−1R
′

t−1A
′

t +BtΣt−1B
′

t ⇔

vec(Σt) = vec(Ω)+ (At ⊗At)vec
(

Rt−1R
′

t−1

)

+(Bt ⊗Bt)vec(Σt−1) (5)

With this representation, our working hypothesis could be re-written as follows:

E
[

(At ⊗At)vec
(

Rt−1R
′

t−1

)]

≃ E [(At ⊗At)]vec
(

E
[

Rt−1R
′

t−1

])

(6)

E [(Bt ⊗Bt)vec(Σt−1)] ≃ E [(Bt ⊗Bt)]vec(E [Σt−1])
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If we call Ã = E [(At ⊗At)] we can show that it is possible to construct a matrix

Ā such that Ã = Ā⊗ Ā. This result comes from the properties of the vec operator

that allows us to write: vec[−1]
(

Ãvec(I)
)

= ĀĀ
′ so that Ā can be obtained by the

Cholesky decomposition of vec[−1]
(

Ãvec(I)
)

.

Since the same is true for a matrix B̄ coming from Bt , we can obtain the new fixed

point:

Σ = E [Σt ] = Ω +E
[

At−1Rt−1R
′

t−1A
′

t−1

]

+E
[

Bt−1ΣtB
′

t−1

]

= Ω + ĀΣ Ā+ B̄Σ B̄

and the results in [2] could be extended to time variyng uncorrelated A and B, im-

plying the condition:

ρ
((

Ā⊗ Ā
)

+(B̄⊗ B̄)
)

< 1. (7)

In addition, since in our case A and B are proximity structures, our hypothesis re-

duces on the following three conditions on outer products of Wt

E
[

(I⊗Wt)vec
(

Rt−1R
′

t−1

)]

≃ E [(I⊗Wt)]E
[

vec
(

Rt−1R
′

t−1

)]

E
[

(Wt ⊗ I)vec
(

Rt−1R
′

t−1

)]

≃ E [(Wt ⊗ I)]E
[

vec
(

Rt−1R
′

t−1

)]

E
[

(Wt ⊗Wt)vec
(

Rt−1R
′

t−1

)]

≃ E [(Wt ⊗Wt)]E
[

vec
(

Rt−1R
′

t−1

)]

(8)

The interesting feature of this ergodicity constraint, that we will call long run con-

straint, is that the stability condition

ρ ((At ⊗At)+ (Bt ⊗Bt))< 1 (9)

can be locally violated for short periods of time, even if the global long run con-

straint is satisfied, thus leading to a temporary exponential growth of the whole

covariance matrix, mimicking what we can find during anomalous market condi-

tions. This philosophy of modelling is in line with the econometric literature on the

stochastic unit root models proposed by Granger [4] and also with the literature on

early warnings signals for critical transitions [5]. In the following the parameter es-

timation and inference are conducted optimizing a Lagrangian obtained from the

constrained likelihood and treating the Lagrange multiplier as a nuisance parameter.

4 Empirical Results

We used the same data as in [1], that consists in 25 monthly stock returns with the

highest average market value for each period of US Banks Prime Brokers and In-

surances taken from CRSP database, and returns of the 25 top AUM Hedge Funds

for the same period taken from TASS database. The sample period goes from Jan-

uary 1994 to December 2008. The same dataset with the same frequency was used

for computing the weights matrices and constructing the equally weighted indexes
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on which the BEKK is estimated. As an euristic justification for our working hy-

pothesis, we compute the empirical percentage variation for each of the three outer

products in (8). Consider for example (Wt ⊗Wt) the empirical variation is:

D(Wt⊗Wt) =
1
T

∑T

t=1

[

(Wt ⊗Wt)vec
(

Rt−1R
′

t−1

)]

−
1
T

∑T

t=1 [(Wt ⊗Wt)]
1
T

∑T

t=1

[

vec
(

Rt−1R
′

t−1

)]

1
T

∑T

t=1

[

(Wt ⊗Wt)vec
(

Rt−1R′

t−1

)]

The maximum absolute value for the variations are in table 1, from which we see

that the approximation works better for the Out degrees measure. In table 2 we

report the results of our estimations. As we can see the Out Degree weights bring a

higher log-likelihood and a lower long run spectral radius.

Table 1 Maximum absolute value for D(I⊗Wt ), D(Wt⊗I) and D(Wt⊗Wt )

Out Degree Closeness

D(I⊗Wt ) D(Wt⊗I) D(Wt⊗Wt ) D(I⊗Wt ) D(Wt⊗I) D(Wt⊗Wt )

max absolute value 0.01 0.01 0.03 0.50 0.50 0.25

Table 2 Main parameters likelihood estimation and long run spectral radius for the two sets of

matrices. Boldface means significance at the 0.01 level

Out Degree Closeness

Parameter Pvalue Parameter Pvalue

a01 0.46 0.016 0.58 0.001

a02 -0.43 0.476 0.37 0.001

a03 0.26 0.001 0.31 0.001

a04 0.07 0.582 0.33 0.001

a11 -0.37 0.001 -0.05 0.441

a12 -0.09 0.119 0.3 0.902

a13 -0.51 0.001 0.32 0.001

a14 -0.49 0.545 0.24 0.001

b01 0.04 0.385 0.8 0.001

b02 -0.24 0.001 0.85 0.001

b03 -0.79 0.001 0.91 0.001

b04 1.11 0.001 0.91 0.000

b11 0.2 0.000 -0.02 0.834

b12 0.43 0.008 -0.33 0.001

b13 0.99 0.001 -0.31 0.001

b14 -1.17 0.001 -0.07 0.921

log-likelihood 1676.3 1655.5

ρ
(

Ā⊗ Ā+ B̄⊗ B̄
)

0.89 0.96
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5 Spectral Radius as a Systemic Risk indicator

According to previous discussion, we consider Out Degree radius more reliable and

the only one for which it is worth trying an economic interpretation. In particular in

figure 1 we plot the spectral radius coming from the Out Degrees, pointing out the

main historical market events. Most of the times, when the spectral radius is over

one, and so when the covariance experiences an exponential growth, it can be seen

to correspond to important market events. Moreover, when it is not the case as the

LTCM crisis the radius has a dramatic increase. So it seems that our latent spectral

radius can be used as a Systemic Risk indicator and its proximity to one could be

useful to develop an Early Warning signal of systemic events.

The next step in this modelling methodology would be to assume a particular

matrix-valued data generating process for our weight matrices and try to forecast

the radius and compute the probability that it becomes greater or equal to one. This

is left for future research. Finally, we stress that this kind of methodology could be

applied also to other models in which ergodicity and stability condition are different,

opening new ways of modelling anomalous market conditions.
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Fig. 1 Out Degree spectral radius and historical market events
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