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I. INTRODUCTION

Recently, there has been an increasing interest in using quantum walks as a primitive

for designing novel quantum algorithms1–4 on graph structures. Quantum walks on graphs

represent the quantum mechanical analogue of the classical random walk on a graph. Despite

being similar in their definition, the dynamics of the two walks can be remarkably different.

This is mainly due to the fact that while the state vector of the classical random walk is

real-valued, in the quantum case the state vector is complex-valued. This property allows

different paths of the walk to interfere with each other in both constructive and destructive

ways. In the classical case the evolution of the walk is governed by a double stochastic

matrix, while in the quantum case the evolution is governed by a unitary matrix, thus

rendering the walk reversible. This in turn implies that the quantum walk is non-ergodic

and, most importantly, it does not have a limiting distribution. Quantum walks have been

extensively studied on a wide variety of graphs5,6, such as the infinite line, cycles, regular

lattices, star graphs and complete graphs. Because of these properties, quantum walks have

been shown to outperform their classical analog in a number of specific tasks, leading to

polynomial and sometimes even exponential speedups over classical computation7,8. For

example, Farhi and Gutmann8 have shown that if we take two co-joined n-level binary trees

that are connected at their leaves, a quantum walk commencing from the root of the first

tree can hit the root of the second tree exponentially faster than a similarly defined classical

random walk. The major contribution of Farhi and Gutmann’s work8 is to show that one

may achieve an exponential speedup without relying on the quantum Fourier transform.

In the case of the co-joined trees graph described above, the presence of a symmetrical

structure is of key importance to the speedup. Given a graph G = (V,E), an automorphism

is a permutation τ of the set of vertices V of the graph which preserves the adjacency

relations, i.e. if (u, v) ∈ E then (τ(u), τ(v)) ∈ E. The set of symmetries of G can thus be

represented by its automorphism group Aut(G). Figure 1 shows an example of a symmetric

graph. Whenever the graph possess some kind of symmetry, the constructive interference

between certain paths will lead to faster hitting times. A number of recent works have

further investigated the connection between the structural symmetries of the graph and

the evolution of the quantum walk. For instance, Krovi and Brun9 have proved that the

phenomenon of infinite hitting times is generally a consequence of the symmetry of the
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graph and its automorphism group. Emms et al.10 showed that there is a link between

symmetries in the graph structure and a quasi-quantum analogue of the commute time.

Specifically, the authors define a quasi-quantum analogue of the commute time associated

with the continuous-time quantum walk and then explore the possibility of using it to embed

the nodes of the graph into a low dimensional vector space. Their work reveals that the

symmetries of the graph correspond to degenerate directions in the quantum commute time

embedding space. However, their analysis is not based on a principled observable and is hence

semi-classical. Finally, Rossi et al.11 have recently proposed a way to detect approximate

axial symmetries in networks by measuring the interference patterns of continuous-time

quantum walks. However, their analysis requires the observation of each of the possible

states, and thus is semi-classical too.

The classical Jensen-Shannon divergence12 is a measure of similarity between probabil-

ity distributions that has its routes in information theory. Unlike the Kullback-Liebler

divergence13, it is both symmetric and is directly linked to a metric (it is the square of

a metric). Moreover, it can be used to define positive semi-definite kernels. As a result,

the underlying metric space of probability distributions can be isometrically embedded in

a real valued Hilbert-space. The quantum Jensen-Shannon divergence has recently been

developed as a generalisation of classical Jensen-Shannon divergence to quantum states by

Majtey, Lamberti and Prato14–16. For mixed quantum states they show that the quantum

symmetry-eps-converted-to.pdf

FIG. 1. An example of a graph displaying a symmetrical structure, where we highlighted the pairs

of symmetrical vertices. Note that by permuting the pairs of linked nodes the adjacency relations

are preserved.
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Jensen-Shannon divergence has good distinguishability properties. The QJSD is defined

in terms of the Von Neumann entropy, and as such is not directly a quantum-mechanical

observable, i.e., there is no operator whose expected value is the QJSD. However, it can be

computed from density matrices whose entries are indeed observables.

In this work, we intend to investigate further the connection between quantum walks and

graph symmetries, and, in particular, we study the quantum Jensen-Shannon divergence15,16

between the evolution of two quantum walks on a graph with suitably defined initial states.

Note, however, that while this analysis is fully based on observable properties and is not,

thus, semi-classical like the one by Emms et al., it is not meant to provide an algorithm

exhibiting quantum speedup with respect to classical counterparts, but rather to highlight

how quantum walks can be used to provide information about the symmetric structure of a

network.

The paper is organized as follows: Section II provides a brief introduction to continuous-

time quantum walks, while Section III reviews the concepts of Von Neumann entropy and

quantum Jensen-Shannon divergence. In Section IV we introduce the link between graph

symmetries and quantum walks, and then propose a method to quantify the presence of sym-

metries in a graph based on the quantum Jensen-Shannon divergence. Section V illustrates

the experimental results, while the conclusions are presented in Section VI.

II. CONTINUOUS-TIME QUANTUM WALKS

The continuous-time quantum walk8 is a natural quantum analogue of the classical ran-

dom walk. Classical random walks model a diffusion process on a graph, and have proven

to be a useful tool in the analysis of its structure. Let G = (V,E) be an undirected graph,

where V is a set of n vertices and E = (V × V ) is a set of edges. Diffusion on the graph

is modeled as a Markovian process defined over V , with transitions restricted to adjacent

vertices. More formally, we define the general state for the walk at time t as a probabil-

ity distribution over V , i.e., a vector, pt ∈ Rn, whose uth entry gives the probability that

the walk is at vertex u at time t. Recall that the adjacency matrix of the graph G is the

symmetric matrix with elements

Auv =

 1 if (u, v) ∈ E

0 otherwise
(1)
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and let D be the diagonal matrix with elements du =
∑n

v=1A(u, v), where du is the degree

of the node u. Then, the continuous-time random walk on G will evolve according to the

equation

pt = e−Ltp0 (2)

where L = D−A is the graph Laplacian, a combinatorial analogue of the Laplace-Beltrami

operator17.

The continuous-time quantum walk, i.e., the quantum counterpart of the continuous-time

random walk, is similarly defined as a dynamical process over the vertices of the graph. By

contrast to the classical case where the state vector is constrained to lie in a probability

space, here the state of the system is defined through a vector of complex amplitudes over

V whose squared norm sums to unity over the nodes of the graph, with no restriction on

their sign or complex phase. These phase differences allow interference effects to take place.

Moreover, in the quantum case the evolution of the state vector of the walker is governed

by a complex valued unitary matrix, whereas the dynamics of the classical random walk is

governed by a stochastic matrix. Hence the evolution of the quantum walk is reversible,

implying that quantum walks are non-ergodic and do not possess a limiting distribution.

As a result, the behaviour of classical and quantum walks differs significantly, and quantum

walks possess a number of interesting properties not exhibited by classical random walks.

More formally, using the Dirac notation, we denote the basis state corresponding to the

walk being at vertex u ∈ V as |u〉. A general state of the walk is a complex linear combination

of the basis states, such that the state of the walk at time t is defined as

|ψt〉 =
∑
u∈V

αu(t) |u〉 (3)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex.

At each instant in time the probability of the walker being at a particular vertex of the

graph is given by the square of the norm of the amplitude of the relative state. Let X t be

a random variable giving the location of the walker at time t. Then the probability of the

walker being at the vertex u at time t is given by

Pr(X t = u) = αu(t)α
∗
u(t) (4)

where α∗u(t) is the complex conjugate of αu(t). Moreover
∑

u∈V αu(t)α
∗
u(t) = 1 and

αu(t)α
∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R+.
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The evolution of the walk is then given by the Schrödinger equation, where we take the

time-independent Hamiltonian of the system to be the graph Laplacian, yielding

∂

∂t
|ψt〉 = −iL |ψt〉 . (5)

Given an initial state |ψ0〉, we can solve Equation (5) to determine the state vector at time

t

|ψt〉 = e−iLt |ψ0〉 . (6)

Finally, we can compute the spectral decomposition of the graph Laplacian L = ΦΛΦ>,

where Φ is the n× n matrix Φ = (φ1|φ2|...|φj|...|φn) with the ordered eigenvectors φjs of L

as columns and Λ = diag(λ1, λ2, ..., λj, ..., λn) is the n× n diagonal matrix with the ordered

eigenvalues λj of L as elements, such that 0 = λ1 ≤ λ2 ≤ ... ≤ λn. Using the spectral

decomposition of the graph Laplacian and the fact that exp[−iLt] = Φexp[−iΛt]Φ> we can

then write

|ψt〉 = Φe−iΛtΦ> |ψ0〉 . (7)

The observation process for a quantum system is defined in terms of projections onto or-

thogonal subspaces associated with operators on the quantum state space called observables.

Let O be an observable of the system, with spectral decomposition

O =
∑
i

aiPi (8)

where the ai are the (distinct) eigenvalues of O and the Pi the orthogonal projectors onto the

corresponding eigenspaces. An observation of a quantum state |ψ〉 is one of the eigenvalues

ai of O, which is observed with probability

P (ai) = 〈ψ|Pi |ψ〉 (9)

leaving the system in the state ∣∣ψ̄〉 =
Pi |ψ〉
||Pi |ψ〉 ||

, (10)

where || |ψ〉 || =
√
〈ψ |ψ〉 is the norm of the vector |ψ〉.

The density operator (or density matrix) is introduced in quantum mechanics to describe

a system whose state is an ensemble of pure quantum states |ψi〉, each with probability pi.

The density operator of such a system is defined as

ρ =
∑
i

pi |ψi〉 〈ψi| . (11)
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Density operators are positive unit-trace matrices directly linked with the observables of

the (mixed) quantum system. The expectation value of the measurement can be calculated

from the density matrix ρ:

〈O〉 = tr (ρO) , (12)

where tr is the trace operator. Similarly, the observation probability of ai can be expressed

in terms of the density matrix ρ as

P (ai) = tr(ρPi) (13)

Finally, after the measurement, the corresponding density operator will be

ρ′ =
∑
i

PiρPi (14)

III. QUANTUM JENSEN-SHANNON DIVERGENCE

In this paper we intend to investigate how the presence of symmetries in the graph struc-

ture can alter the behavior of the quantum walker. To this end, for each walk we would

like to study how the probability distribution over the state space varies with time. Unfor-

tunately, when a measurement is made the wave function collapses and, with a probability

equal to the squared norm of its amplitude, only one of the possible basis states is observed.

In other words, if the state |u〉 is observed, after the measurement the new state of the quan-

tum walk will be |ψ〉 = |u〉. This implies that all further information previously contained in

the state is lost and further measurements will not yield any additional information about

the pre-measurement state. Hence we need to design an experiment that will allow us to

analyse the behaviour of the quantum walk without causing the wave function collapse. In

this section we will review the quantum Jensen-Shannon divergence (QJSD)14–16, a recently

introduced distinguishability measure between quantum states. In Section IV we will use

the QJSD to investigate the relation between graph symmetries and quantum walks.

The von Neumann entropy18 HN of a mixture is defined in terms of the trace and loga-

rithm of the density operator ρ

HN = − tr(ρ log ρ) = −
∑
i

ξi ln ξi (15)

where ξ1, . . . , ξn are the eigenvalues of ρ. If 〈ψi| ρ |ψi〉 = 1, i.e., the quantum system is a pure

state |ψi〉 with probability pi = 1, then the Von Neumann entropy HN(ρ) = − tr(ρ log ρ) is

7



zero. On other hand, for a mixed state described by the density operator σ we have a non

zero Von Neumann entropy associated with it.

With the Von Neumann entropy to hand, the quantum Jensen-Shannon divergence be-

tween two density operators ρ and σ is defined as

DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN(ρ)− 1

2
HN(σ) (16)

This quantity is always well defined, symmetric and positive definite.

It can also be shown that DJS(ρ, σ) is bounded, i.e., 0 ≤ DJS(ρ, σ) ≤ 1. Let ρ =
∑

i piρi

be a mixture of quantum states ρi, with pi ∈ R+ such that
∑

i pi = 1, then one can prove

that

HN(
∑
i

piρi) ≤ HS(pi) +
∑
i

piHN(ρi) (17)

where HS indicates the Shannon entropy and the equality is attained if and only if the states

ρi have support on orthogonal subspaces. By setting p1 = p2 = 0.5, we see that

DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN(ρ)− 1

2
HN(σ) ≤ 1 (18)

Hence DJS is always less than or equal to 1, and the equality is attained only if ρ and σ

have support on orthogonal subspaces.

Our interest in the quantum Jensen-Shannon divergence lies in the fact that it verifies

several interesting properties which are required for a good distinguishability measure be-

tween quantum states15,16. The problem of discriminating between two quantum states |φ〉

and |ψ〉 of a given physical system is of central importance in quantum computation and

quantum information, and it is based on the definition of a suitable distance measure. Recall

that a function

d = X× X −→ R (19)

defined over a set X is a distance if, for every x, y ∈ X,

d(x, y) ≥ 0 with d(x, y) = 0⇐⇒ x = y (20)

and it is symmetric, i.e.,

d(x, y) = d(y, x) (21)

Moreover, d is said to be a metric for X if it satisfies the triangle inequality

d(x, y) + d(y, z) ≥ d(x, z) (22)
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for every x, y, z ∈ X.

In his seminal paper, Wootters19 investigates the problem of distinguishability and defines

the concept of statistical distance between pure quantum states. Here the distance between

two different preparations |φ〉 and |ψ〉 of the same physical system is computed by counting

the number of distinguishable states between |φ〉 and |ψ〉. The main result of Wootters’

work is to show that this distance is equal to the angle in Hilbert space between |φ〉 and

|ψ〉. As a consequence, Wootter’s distance is defined as

dW (|φ〉 , |ψ〉) = arccos(| 〈φ |ψ〉 |) , (23)

where | 〈φ |ψ〉 | denotes the modulus of the inner product for φ and ψ. It can be proved that

this distance satisfies the triangle inequality and is thus a metric.

Wootters’ work is fundamentally based on the extension of a distance over the space of

probability distributions to the Hilbert space of pure quantum states. Similarly, attempts

to define a distance measure between pure and mixed quantum states are typically based on

the generalization of divergence or distance measures commonly used in the space of prob-

ability distributions. This is the case of the relative entropy20, which is a generalization of

information theoretic Kullback-Leibler divergence. However, the relative entropy is neither

a distance, as it is not symmetric, nor does it not satisfy the triangle inequality, and, most

importantly, it is unbounded.

The square root of the QJSD, on the other hand, is bounded, it is a distance and, as

proved by Lamberti et. al16, it satisfies the triangle inequality. In particular, the authors

give a formal proof for the case of pure states, while for the case of mixed states they support

their claim with numerical evidence. Note that alternative metrics have been proposed in

the literature, such as the Bures distance25, which is defined as

B(ρ, σ) =
√

2
[
1− tr

(
(ρ1/2σρ1/2)1/2

)]1/2

. (24)

The Bures distance and the QJSD require the same number of observations, since they both

need the full density matrices to be computed. However, the QJSD turns out to be faster

to compute than the Bures distance. In fact, the latter involves taking the square root of

matrices, usually computed through matrix diagonalisation which scales as O(n3), where n

is the number of vertices in the graph. On the other hand, to compute the QJSD only the

eigenvalues of ρ, σ and ρ+σ
2

are needed, which can be computed in O(n2). In the next section
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we propose to use the QJSD to measure the distance between suitably prepared quantum

states so as to highlight the presence of symmetries in the structure of a graph.

IV. MEASURING SYMMETRIES

Given a pair of nodes u ∈ V and v ∈ V in an undirected graph G = (V,E), we define

two independent quantum walks with starting states

∣∣ψ−0 〉 =
|u〉 − |v〉√

2

∣∣ψ+
0

〉
=
|u〉+ |v〉√

2
, (25)

where, and to recap our earlier definition, the basis state corresponding to the walk being at

vertex u ∈ V is denoted as |u〉. Intuitively, by setting the initial amplitude on the two nodes

to be respectively in anti phase and in phase, we allow the walk to highlight the presence

of destructive and constructive interference patterns on the graph. We then let the two

quantum walks evolve under Equation 6 until a time T and we define the average density

operators ρT and σT over this time as

ρT =
1

T

∫ T

0

∣∣ψ−t 〉 〈ψ−t ∣∣ dt σT =
1

T

∫ T

0

∣∣ψ+
t

〉 〈
ψ+
t

∣∣ dt (26)

In other words, our system has equal probability of being in any of the pure states
∣∣ψ−t 〉

(
∣∣ψ+

t

〉
respectively) defined by the quantum walk evolution.

Given this setting, we are now able to compute the quantum Jensen-Shannon divergence

DJS(ρT , σT ) between the two walks using Equation 16. Due to the interference effect, we

expect the mixed states for the two walks to have maximum divergence when the two initial

nodes are symmetrically located in the graph. This is a consequence of the way in which we

have initialised the two walks. Specifically, we aim to use the destructive and constructive

interference effect by setting the initial node amplitudes to be respectively in anti phase and

in phase. On the other hand, when the two nodes are not symmetrically located then we

expect the two resulting mixed states to be similar, thus yielding a low value of DJS(ρT , σT ).

In the following theorem we prove that when u and v are symmetrically placed, then ρT and

σT have support on orthogonal subspaces, which implies DJS(ρT , σT ) = 1.

Theorem 1. Let ρT and σT be defined as in Equation 26. If u, v are symmetrically placed

and
∣∣ψ−0 〉 and

∣∣ψ+
0

〉
are defined as in Equation 25, then DJS(ρT , σT ) = 1.
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Proof. We start by noting that if ρT and σT have support on orthogonal subspaces then

(ρT )†σT =
1

T 2

∫ T

0

ρt1 dt1

∫ T

0

σt2 dt2 = 0 (27)

where 0 is the matrix of all zeros, ρt =
∣∣ψ−t 〉 〈ψ−t ∣∣ and σt =

∣∣ψ+
t

〉 〈
ψ+
t

∣∣. Note that if

ρ†t1σt2 = 0 for every t1 and t2, then (ρT )†σT = 0. We can hence go on to show that if u and

v are symmetric, then
〈
ψ−t1
∣∣ψ+

t2

〉
= 0 for every t1 and t2. Let U t = e−iLt. If t1 = t2 = t, then〈
ψ−0
∣∣ (U t)†U t

∣∣ψ+
0

〉
= 0 (28)

since by definition (U t)†U t is the identity matrix (since U is unitary) and the initial states

are orthogonal by construction.

On the other hand, if t1 6= t2, we need to prove that when u and v are symmetrical then∣∣ψ−t1〉 and
∣∣ψ+

t2

〉
are still orthogonal. In other words,〈

ψ−0
∣∣U∆t

∣∣ψ+
0

〉
= 0 (29)

where ∆t = t2 − t1. Recall that ψ−0 = 1/
√

2(|u〉 − |v〉) and ψ+
0 = 1/

√
2(|u〉 + |v〉). Then, if

we denote by U t
ij the ij-th element of U t, we have that〈

ψ−0
∣∣U∆t

∣∣ψ+
0

〉
= U∆t

uu − U∆t
vv + U∆t

uv − U∆t
vu (30)

which further reduces to 〈
ψ−0
∣∣U∆t

∣∣ψ+
0

〉
= U∆t

uu − U∆t
vv (31)

since the matrix U t is symmetric.

To conclude the proof, we prove that when u and v are symmetrical we have U t
uu = U t

vv.

Recall that U t = e−iLt, where L is the graph Laplacian. If u and v belong to a symmetry orbit

(a group of vertices where v1 and v2 belong to the same orbit if there is an automorphism

τ ∈ Aut(G) such that τ(v1) = v2), then there exists an automorphism of the graph with a

corresponding permutation matrix P such that

L = P>LP (32)

and

P |u〉 = |v〉 (33)

In other words, the graph Laplacian is invariant to symmetries. As we will show later,

the same holds for the unitary operator of the quantum walk. In fact, given the spectral
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decomposition of the graph Laplacian L = ΦΛΦ>, we can see that the following equality

holds

ΦΛΦ> = P>(ΦΛΦ>)P (34)

and thus

Φ = P>Φ (35)

Let us now write the unitary operator in terms of the Laplacian eigendecomposition, which

yields

e−iLt = Φe−iΛtΦ> (36)

From Equations 35 and 36 it follows that

Φe−iΛtΦ> = P>Φe−iΛtΦ>P (37)

This in turn implies that if u and v are symmetrically placed, then U t
uu = U t

vv, which

concludes the proof.

We should stress, however, that the converse of Theorem 1 does not hold. Note, in fact,

that if we were able to prove the converse then we could give a polynomial-time solution to

the graph isomorphism problem.

The proof of Theorem 1 basically relies on the fact that whenever two nodes u and v are

symmetrical, then U t
uu = U t

vv for each time t, where U t
xx is the wave kernel signature of x at

time t. However, our analysis relies only on computing the divergence between two density

operators, while directly observing the wave kernel signature would cause a collapse of the

wave function. Note also that a similar analysis can be done by comparing the heat kernel

signature21 h(x) = (H t1
xx, H

t2
xx, · · · , H tk

xx) of u and v, where we denote by H t
xx the solution of

the heat equation at point x at time t. On a manifold, it can be shown that if H t
uu = H t

vv for

each t, then the two points have the same global geometry, which means they either are the

same point or symmetrically placed, with respect to the intrinsic geometry. Note, however,

that this only holds for points on a manifold.

Figure 2 shows the value of DJS(ρT , σT ) for all the possible pairs of nodes with initial

non-zero amplitude on a 7 × 7 grid with reflecting boundary conditions. In the remainder

of the paper we will refer to this matrix as the QJSD matrix. As expected, the QJSD

matrix clearly reveals the presence of several perfect symmetries, i.e., pair of nodes for
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FIG. 2. The QJSD between pairs of walks initialised according to Equation 25. Here the color

indicates the value of the QJSD between two walks and the axes are indexed by the nodes, where

the 49 nodes of the grid are numbered from 1 to 49 from left to right, from top to bottom. Note

that the QJSD of the two walks is maximum (equal to 1) when the two walks are initialized on

symmetrically placed nodes. If the symmetry is broken by deleting one edge 2(b), the QJSD

remains considerably higher on approximately symmetrically placed nodes.

which DJS(ρT , σT ) = 1. Note that if we randomly delete an edge the symmetries are very

likely to be broken, as we observe in Figure 2(b). Although we don’t observe any perfect

symmetry, the value of DJS(ρT , σT ) remains higher on some pairs which were previously

identified as being symmetrical, suggesting a connection between approximate symmetries

and high values of the quantum Jensen-Shannon divergence.

To further support this claim, in Figure 3 we show the value of the QJSD for a star graph

with four nodes and a noisy version of it, where the noise is represented by an additional

edge joining nodes #3 and #4. Clearly, in the original star graph the three leaves are all

symmetric with respect to the root node. However, if we alter the structure of the graph

by adding an edge between #3 and #4, this results in breaking the symmetries between

#2 and #3 and between #2 and #4 and, as a consequence, the QJSD between these nodes

decreases. Interestingly, however, the QJSD for these pairs remains higher than the QJSD
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FIG. 3. A star graph with 4 nodes and a modified version where two leaves are connected by

an extra edge representing structural noise. The bar graph shows that although the symmetry

between nodes 2-3 and nodes 2-4 is broken with the addition of an extra edge, the QJSD is still

sensibly higher for those pairs of nodes, suggesting the presence of an approximate symmetry.

between #1 and #2, which is exactly what we would expect given the original symmetry.

A. Efficient computation of the QJSD

In this sub-section we show how to compute the solution to Equation 26 analytically.

Let Pλ =
∑µ(λ)

k=1 φλ,kφ
>
λ,k be the projection operator on the subspace spanned by the µ(λ)
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eigenvectors φλ,k associated with the eigenvalue λ of the graph Laplacian. The evolution

operator of the quantum walk can be then expressed in terms of this set of projectors, i.e.,

U t =
∑
λ

e−iλtPλ (38)

Recall that |ψt〉 = U t |ψ0〉. According to Equation 38, we can rewrite the density operator

ρt associated with the pure state |ψt〉 as

ρt = U tρ0(U t)† =
∑
λ1∈Λ

∑
λ2∈Λ

e−i(λ1−λ2)tPλ1ρ0P
>
λ2

(39)

As a consequence, we can reformulate Equation 26 as

ρT =
1

T

∫ T

0

ρt dt =
∑
λ1∈Λ

∑
λ2∈Λ

Pλ1ρ0P
>
λ2

1

T

∫ T

0

e−i(λ1−λ2)t dt (40)

Solving the integral in Equation 40 finally yields

ρT =
∑
λ1∈Λ

∑
λ2∈Λ

Pλ1ρ0P
>
λ2

−i(eiT (λ2−λ1) − 1)

T (λ2 − λ1)
(41)

Note that if we let T → ∞, then the integral in Equation 40 reduces to the Dirac delta

function δ(λ1 − λ2). Hence, Equation 40 simplifies to

ρ∞ =
∑
λ∈Λ̃

Pλρ0P
>
λ (42)

where Λ̃ is the set of distinct eigenvalues of the graph Laplacian, i.e. the eigenvalues λ with

multiplicity µ(λ) = 1. A consequence of Equation 42 is that the infinite-time limit of the

average density matrix is commutes with the graph Laplacian L, in fact

Lρ∞ =

∑
λ∈Λ̃

λPλP
>
λ

∑
λ∈Λ̃

Pλρ0P
>
λ

 =
∑
λ∈Λ̃

Pλλρ0P
>
λ =

=

∑
λ∈Λ̃

Pλρ0P
>
λ

∑
λ∈Λ̃

λPλP
>
λ

 = ρ∞L . (43)

Hence, given the spectral decomposition of the graph Laplacian L = ΦΛΦ>, the density

matrix, expressed in the eigenvector basis given by Φ, assumes a block diagonal form, where

each block corresponds to an eigenspace of L corresponding to a single eigenvalue. Thus,

if L has all eigenvalues distinct, then ρ∞ expressed in the unique eigenbasis of L will be
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FIG. 4. The average QJSD as a function of the structural (edge) noise for a 5 × 5 grid and a

complete graph. Adding by randomly deleting (inserting) edges has the effect of breaking the

symmetries of the original graphs and as a consequence the average QJSD decreases. Here the

solid line indicates the mean, while the dashed lines indicate the standard deviation.

diagonal and its diagonal entries will directly correspond to its eigenvalues. More generally,

to compute the eigenvalues of ρ∞, we need to solve independently for the eigenvalues of each

diagonal block, resulting in a complexity O
(∑

λ∈Λ̃ µ(λ)2
)
, where µ(λ) is the multiplicity of

the eigenvalue λ.

V. EXPERIMENTAL RESULTS

In this section we intend to use the QJSD matrix to measure the degree of symmetry

possessed by a graph. The basic requirements of this measure should be a) that its value

increases (decreases) as the number of approximate symmetries of the graph increases (de-

creases), b) that it is permutation invariant and c) possibly easy to compute. Here we choose

to use the average of the QJSD matrix as a simple yet effective means of characterising the

degree of symmetry possessed by a graph. Although it is known that as a statistic the aver-

age lacks robustness, since it is significantly affected by outliers, our experiments show that
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it provides a fast and permutation invariant way of measuring the degree of symmetry of a

graph. More precisely, we investigate how the average QJSD over the pair of nodes varies

for increasing time intervals. To this end, we numerically simulate the evolution of the two

quantum walks with starting states as defined in Equation 25 using the software package

MATLAB.

In our first experiment, we take a 5x5 grid with reflecting boundary conditions and a

complete graph of size 10 and we iteratively add structural noise by deleting an increasing

number of edges at each step. The procedure is repeated 100 times, and for each level of

noise we compute the mean over the 100 trials of the average QJSD on the noisy graphs,

where for each pair of nodes the QJSD is computed as in Equation 42. Figure 4 shows

the result, where the structural noise affects from 0% to 25% of the graph edges. Here the

solid line indicates the mean, while the dashed line indicates the standard deviation over

the 100 repeated trials. Note that as the noise increases, the graphs become less and less

symmetric, and at the same time the average QJSD rapidly decreases. This seems to fit

with our hypothesis that the average QJSD can be used as a simple indicator of the degree

of symmetry of a graph.

As a second experiment, we take the same 5x5 grid and we randomly create noisy versions

of it by adding or deleting up to 3 edges at random locations. We then compare the average

QJSD (over all pairs of nodes) on these graphs with that of a set of Erdös-Rényi random

graphs. Figure 5 shows the average of the QJSD matrix for time intervals of increasing

length. Again the solid line indicates the mean, while the dashed line indicates the standard

deviation over 100 trials. As we can see, we are able to completely discriminate between

the noisy versions of the 5x5 grid and the Erdös-Rényi graphs. This seems to confirm our

intuition that the average QJSD matrix is able to capture the presence of (approximate)

symmetrical patterns in a graph. We repeat the same experiment, but this time we perturb

the 32-cycle graph where we have added a central axis of symmetry which connects an

opposite pair of vertices. Again, the perturbed versions of the modified 32-cycle graph have

a higher average QJSD when compared to Erdös-Rényi random graphs.

As a third experiment, we select three different random network models, namely the

Watts-Strogatz22, the Barabási-Albert23 and the Erdös-Rényi24 models. The Erdös-Rényi

random graphs are generated by connecting pairs of nodes in the graphs with a uniform prob-

ability p. The Watts-Strogatz model produces small-world networks with a high clustering
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FIG. 5. The average of the QJSD matrix clearly distinguishes between a random graph and a

symmetrical graph where artificial noise is added. Here the solid line indicates the mean, while the

dashed lines indicate the standard deviation.

coefficient and a short average path length. Finally, the preferential attachment algorithm

of Barabási and Albert generates scale-free networks. In this type of random graph the

degree distribution of the vertices follows the power-law distribution, which is a property

observed in many real-world networks. In Figure 6, we show some examples of Erdös-Rényi,

small-world and scale-free random graphs. We add to these three network models a set of

strongly regular graphs. A regular graph with ν vertices and degree k is said to be strongly

ER-eps-converted-to.pdf

(a)Erdös-Rényi

SW-eps-converted-to.pdf

(b)Small-World

SF-eps-converted-to.pdf

(c)Scale-Free

FIG. 6. Examples of graphs generated by the Erdös-Rényi, Watts-Strogatz and Barabási-Albert

models respectively.
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FIG. 7. The effects of noise on the mean of the QJSD matrix on different type of networks, for time

intervals of increasing length. Note that here the solid line indicates the mean, while the dashed

lines indicates the standard error.

regular if there are two integers ε and θ such that every two adjacent vertices have ε com-

mon neighbours and every two non-adjacent vertices have θ common neighbors. We choose

strongly regular graphs because they are known to be highly symmetric and this should be
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reflected in the value of the QJSD.

We can see from Figure 7 that we are able to discriminate these three types of random

graphs by observing the average QJSD. In particular, due to their nature, the small-world

graphs seem to have more symmetries than the two alternative models. In fact, the small-

world network is constructed by randomly linking the nodes of a regular ring lattice, thus

yielding an interpolation between an Erdös-Rényi graph and a regular graph. Note also

that the average QJSD is reduced by adding or deleting random edges, since this amounts

to hiding the symmetrical patterns under increasing levels of noise. Although reduced, the

average QJSD for the small-world networks remains considerably higher than that of the

Erdös-Rényi and scale-free graphs, where the addition of random noise does not seem to

alter the average QJSD. As expected, the high number of symmetries possessed by strongly

regular graphs is reflected in the higher value of the average QJSD, which remains clearly

distinct from the three random networks even in the presence of Erdös-Rényi noise. Note also

that if the graph structure of the strongly regular graph is not perturbed, the QJSD between

each pair of nodes is maximum, i.e. each pair of nodes is in a symmetrical relation. Finally,

although the behaviour of the scale-free and Erdös-Rényi graphs is somewhat similar under

noise, it is still possible to distinguish between them. In other words, the average QJSD of

a scale-free graph is generally lower than that of an Erdös-Rényi graph.

VI. CONCLUSIONS

Much recent research in the quantum walks domain has shown the existence of a link

between the interesting properties shown by quantum walks on graphs and the presence

of symmetrical motifs in the graphs structure. This particular structure, in fact, can lead

to remarkable interference effects, both constructive and destructive. In this paper we have

proposed a way to measure the presence of symmetries in a graph using the quantum Jensen-

Shannon divergence. This in turn has allowed us to design an experiment to analyse the

behaviour of the quantum walk without causing the wave function collapse. We showed

how to define two mixed states based on two different quantum walks on the graph, and

we used the resulting density operators to measure the distance between the two quantum

states. In particular, we proved that when the graph possess a symmetry, the QJSD between

the two quantum states is maximum. Our experiments show that a simple measure such
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as the average of the QJSD matrix is able to capture the structural difference between a

symmetrical graph and an Erdös-Rényi random graph, even in the presence of moderate

Erdös-Rényi noise, as well as to distinguish between different random network models.
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