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ABSTRACT. This paper deals with prediction for time series models and, in particular, it presents a
simple procedure which gives well-calibrated predictive distributions, generalizing the calibrating ap-
proach proposed by Beran (1990). The associated prediction intervals have coverage probability equal
or close to the target nominal value. Although the exact computation of the proposed distribution is usu-
ally not feasible, it can be easily approximated by means of a suitable bootstrap simulation procedure.
This new predictive solution is second-order equivalent to those ones based on asymptotic calculations,
but it turns out to be much simpler to compute. Applications of the bootstrap calibrated procedure to
AR, ARCH and MA models are presented.

1 INTRODUCTION

In the statistical analysis of time series, a key problem concerns prediction of future values.
Although, in the literature, great attention has been received by pointwise predictive solutions,
in this paper we deal with the notion of prediction intervals, which explicitly takes account
of the uncertainty related to the forecasting procedure. In particular, we assume a paramet-
ric statistical model and we follow the frequentist viewpoint, with the aim of constructing
prediction intervals having good coverage accuracy.

It is well-known that the estimative or plug-in solution, though simple to derive, is usually
not adequate. In fact, it does not properly take account of the sampling variability of the esti-
mated parameters, so that the (conditional) coverage probability of the estimative prediction
intervals may substantially differ from the nominal value.

Improved prediction intervals based on complicated asymptotic corrections have been
proposed in a general framework by Barndorff-Nielsen and Cox (1996) and, for the case of
time series models, by Giummolè and Vidoni (2010) and Vidoni (2004). A calibrating ap-
proach has been suggested by Beran (1990) and applied, for example, by Hall et al. (1999),
using a suitable bootstrap procedure. Indeed, simulation-based prediction intervals for au-
toregressive processes are considered by Kabaila and Syuhada (2007). Finally, there is an
extensive literature on non-parametric bootstrap prediction intervals for autoregressive time
series (see, for example, Clements and Kim, 2007 and references therein).



In this paper we consider, for time series prediction, a simple procedure proposed by
Fonseca et al. (2010), which gives well-calibrated predictive distributions. The associated
prediction intervals have coverage probability equal or close to the target nominal value. Al-
though the exact computation of the proposed distribution is usually not feasible, this can be
easily approximated by means of a suitable bootstrap simulation procedure. This new predic-
tive solution is second-order equivalent to those ones based on asymptotic calculations, but it
turns out to be much simpler to compute. Applications of the bootstrap calibrated procedure
to AR, ARCH and MA models are presented.

2 CALIBRATED PREDICTIVE DISTRIBUTION FOR TIME SERIES

Suppose that {Yt}t≥1 is a discrete-time stochastic process with probability distribution spec-
ified by the unknown d-dimensional parameter θ ∈ Θ ⊆ Rd , d ≥ 1; Y = (Y1, · · · ,Yn), n > 1,
is observable, while Z = Yn+1 is a future or not yet available observation. We assume that
(Y,Z) is a continuous random vector with joint density g(y,z;θ). In some cases, as for au-
toregressive processes, there exists a transitive statistic (Barndorff-Nielsen and Cox, 1996)
U =U(Y ), with a fixed dimension independent of the sample size n, so that Y and Z are con-
ditionally independent given U . We shall indicate with g(z|y;θ) and G(z|y;θ) the conditional
density and distribution function of Z given Y = y, respectively; in the presence of a transitive
statistic U , y is substituted by the observed value u of U .

Given the observed sample y = (y1, . . . ,yn), an α-prediction limit for Z is a function cα(y)
such that, exactly or approximately,

PY,Z{Z ≤ cα(Y );θ}= α, (1)

for every θ ∈ Θ and for any fixed α ∈ (0,1). The above probability is called coverage proba-
bility and it is calculated with respect to the joint distribution of (Z,Y ). When there exists a
transitive statistics, it is natural (see, for example, Kabaila and Syuhada, 2007) to require that
the conditional coverage probability is such that, exactly or approximately,

PY,Z|U{Z ≤ cα(Y )|U = u;θ}= α, (2)

where the probability is calculated with respect to the conditional distribution of (Z,Y ) given
U = u. Obviously, conditional solutions satisfying (2) also satisfy condition (1), and they are
in some settings much easier to find. On the other hand, when we can not find a transitive
statistic, the conditional approach is meaningless.

The calibrating approach proposed by Fonseca et al. (2010) extends that one suggested
by Beran (1990) and it provides a predictive distribution function which gives, as quantiles,
prediction limits with well-calibrated (conditional) coverage probability. This proposal is here
applied to the case of time series models.

Consider the maximum likelihood estimator θ̂ = θ̂(Y ) for θ, or an asymptotically equiva-
lent alternative, and the estimative prediction limit zα(y; θ̂), which is obtained by substituting
θ with θ̂ in the α-quantile zα(y;θ) = G−1(α|y;θ), where G−1(·|y;θ) is the inverse of the
distribution function G(·|y;θ). The associated coverage probability is

PY,Z{Z ≤ zα(Y ; θ̂);θ}= EY [G{zα(Y ; θ̂)|Y ;θ};θ] =C(α,θ)



and, although its explicit expression is rarely available, it is well-known that it does not match
the target value α even if, asymptotically, C(α,θ) = α+O(n−1), as n→ +∞. As proved in
Fonseca et al. (2010), function

Gc(z|y; θ̂,θ) =C{G(z|y; θ̂),θ}, (3)

which is obtained by substituting α with G(z|y; θ̂) in C(α,θ), is a proper predictive distribu-
tion function, provided that C(·,θ) is a sufficiently smooth function. Furthermore, it gives, as
quantiles, prediction limits zc

α(y; θ̂,θ) which coverage probability equals the target nominal
value α, for all α ∈ (0,1).

The calibrated predictive distribution (3) is not useful in practice, since it depends on the
unknown θ and a closed form expression for C(α,θ) is rarely available. However, a suitable
parametric bootstrap estimator for Gc(z|y; θ̂,θ) may be readily defined. Let y j

∗, j = 1, . . . ,B,
be parametric bootstrap samples generated from the estimative distribution of the data and
let θ̂

j
∗, j = 1, . . . ,B, be the corresponding maximum likelihood estimates. Since C(α,θ) =

EY [G{zα(Y ; θ̂)|Y ;θ};θ], we define the bootstrap-calibrated predictive distribution as

Gb
c(z|y; θ̂) =

1
B

B

∑
j=1

G{zα(y j
∗; θ̂
∗
j)|y j
∗; θ̂}|

α=G(z|y;θ̂). (4)

The corresponding α-quantile defines, for each α ∈ (0,1), a prediction limit having coverage
probability equal to the target α, with an error term which depends on the efficiency of the
bootstrap simulation procedure.

In the presence of a transitive statistic U , a similar procedure may be considered. In this
case, y is substituted by u and the conditional coverage probability of the estimative prediction
limit zα(u; θ̂) is

PY,Z|U{Z ≤ zα(U ; θ̂)|U = u;θ}= EY |U [G{zα(U ; θ̂)|U ;θ}|U = u;θ] =Cu(α,θ).

Indeed, the calibrated predictive distribution, giving prediction limits with conditional and
unconditional coverage probability equal to α, corresponds to (3) with Cu(·,θ) instead of
C(·,θ). Finally, the associated parametric bootstrap estimator is similar to (4), but it is based
on simulated samples from the conditional distribution of Y given U = u, assuming θ = θ̂.
In this context, it could be convenient to apply the simulation technique proposed by Kabaila
(1999) for estimating conditional expectations or, whenever possible, to use the backward
representation of stationary autoregressive processes.

3 AUTOREGRESSIVE MODELS

Let {Yt}t≥1 be a first-order Gaussian autoregressive process with

Yt = µ+ρ(Yt−1−µ)+ εt , t ≥ 1,

where µ and ρ are unknown parameters and {εt}t≥1 is a sequence of independent Gaussian
random variables with zero mean and unknown variance σ2. We assume |ρ| < 1 so that the



process is stationary. The unknown parameter is θ = (µ,ρ,σ2) and likelihood inference is
conditioned on Y0 = y0, with y0 known. The observable random vector is Y = (Y1, . . . ,Yn) and
the next realization of the process is Z = Yn+1. The conditional distribution of Z given Y = y
is Gaussian with mean µn+1 = µ+ρ(yn−µ) and variance σ2

n+1 = σ2. Indeed, Yn is a transitive
statistic and, as explained in the previous section, we evaluate the performance of a prediction
limit by means of its coverage probability conditioned on the observed value yn of Yn.

An approximated solution to this problem has already been considered by Vidoni (2004),
using complicated asymptotic calculations. An alternative easier solution is given by the
parametric bootstrap estimator (4), where the bootstrap samples are generated keeping the
observed value of the transitive statistic fixed. A simulation study shows the performance
of this predictive solution. Conditional coverage probabilities for estimative, asymptotically
approximated and bootstrap calibrated prediction limits of level α = 0.9,0.95 are calculated
by means of the simulation technique presented in Kabaila (1999), keeping the last observed
value fixed to yn = 1,0,−1 and y0 = 0. The results are collected in Table 1 and show that
both the approximated asymptotic solution and, in particular, the bootstrap solution remark-
ably improve on the estimative one. Thus, the bootstrap estimator can be fruitfully considered
as a valid and simpler alternative to asymptotic methods.

α n yn Estimative Approximated Bootstrap
0.9 25 -1 0.868 0.889 0.893

0 0.871 0.884 0.900
1 0.860 0.883 0.898

50 -1 0.884 0.895 0.897
0 0.887 0.894 0.900
1 0.882 0.893 0.900

0.95 25 -1 0.924 0.944 0.946
0 0.925 0.940 0.950
1 0.918 0.939 0.949

50 -1 0.937 0.947 0.949
0 0.939 0.946 0.950
1 0.936 0.946 0.950

Table 1. AR(1) Gaussian model. Conditional coverage probabilities for estimative, approximated and
bootstrap calibrated prediction limits of level α = 0.9,0.95, conditioned on yn = −1,0,1; ρ = 0.5,
µ = 0, σ2 = 1, y0 = 0 and n = 25,50. Estimation is based on 5,000 Monte Carlo replications. Bootstrap
procedure is based on 2,000 bootstrap samples. Estimated standard errors are always smaller than 0.005.

4 ARCH MODELS

Let {Yt}t≥1 be a first-order autoregressive conditional heteroscedastic Gaussian process with

Yt =
√

β+ γY 2
t−1εt , t ≥ 1,



where β and γ are unknown parameters and {εt}t≥1 is a sequence of independent standard
Gaussian random variables. We assume β > 0 and γ ∈ [0,3.56] to ensure strict stationarity.
The unknown parameter is θ = (β,γ) and likelihood inference is conditioned on Y0 = y0, with
y0 known. The observable random vector is Y = (Y1, . . . ,Yn) and the next realization of the
process is Z =Yn+1. The conditional distribution of Z given Y = y is Gaussian with zero mean
and variance β+ γy2

n. Indeed, Yn is a transitive statistic and we evaluate a prediction limit by
means of its coverage probability conditioned on the observed value yn of Yn.

As for autoregressive models, an approximated solution to this problem, based on asymp-
totic calculations, has already been considered by Vidoni (2004). However, it is possible to
obtain an alternative simpler solution by means of the parametric bootstrap estimator (4).
A simulation study shows the performance of this predictive solution. Here, the bootstrap
samples are generated keeping the observed value of the transitive statistic fixed. Conditional
coverage probabilities for estimative, asymptotically approximated and bootstrap calibrated
prediction limits of different levels are calculated by means of the simulation technique pre-
sented in Kabaila (1999). The results are collected in Table 2 and confirm the superiority of
the bootstrap calibrated prediction limits over the estimative and the approximated ones.

α n yn Estimative Approximated Bootstrap
0.95 25 0 0.934 0.965 0.950

1 0.929 0.943 0.944
2 0.926 0.932 0.941

50 0 0.943 0.955 0.950
1 0.940 0.947 0.949
2 0.937 0.941 0.949

0.99 25 0 0.976 0.986 0.991
1 0.977 0.980 0.985
2 0.972 0.963 0.981

50 0 0.984 0.988 0.990
1 0.985 0.986 0.990
2 0.981 0.978 0.990

Table 2. ARCH(1) Gaussian model. Conditional coverage probabilities for estimative, approximated
and bootstrap calibrated prediction limits of level α = 0.95,0.99, conditioned on yn = 0,1,2; β = 0.5,
γ= 1, y0 = 0 and n= 25,50. Estimation is based on 5,000 Monte Carlo replications. Bootstrap procedure
is based on 2,000 bootstrap samples. Estimated standard errors are always smaller than 0.005.

5 MOVING AVERAGE MODELS

Let {Yt}t≥1 be a first-order Gaussian moving average process where

Yt = µ+ εt +ρεt−1, t ≥ 1,

with εt ∼ N(0,σ2), t ≥ 0, independent Gaussian distributed random variables. We want to
predict Z = Yn+1 on the basis of an observed sample y = (y1, . . . ,yn) from Y = (Y1, . . . ,Yn).



Here the unknown parameter is θ = (µ,ρ,σ2), with σ ∈ R+ and |ρ|< 1. The conditional dis-
tribution of Z given Y is Z|Y ∼ N(µn+1,σ

2
n+1), where µn+1 = µ+∑

n
i=1(−1)i+1ρi(Yn+1−i−µ),

and σ2
n+1 = σ2. Since we work conditionally on ε0 = 0 and |ρ|< 1, the effect of conditioning

vanishes as the sample size n increases.
An asymptotic solution to this problem, involving tedious calculations, has already been

considered by Giummolè and Vidoni (2010). Also in this case, it is possible to obtain an alter-
native simpler solution by means of the parametric bootstrap estimator (4). Table 3 shows the
results of a simulation study for comparing coverage probabilities associated to estimative,
asymptotically approximated and bootstrap calibrated prediction limits of different levels. In
this case, the approximated and the bootstrap calibrated solutions behave similarly and both
improve the estimative one.

α n Estimative Approximated Bootstrap
0.9 25 0.859 0.870 0.886

50 0.889 0.898 0.900
0.95 25 0.915 0.933 0.938

50 0.940 0.948 0.949
0.99 25 0.971 0.984 0.983

50 0.984 0.989 0.988

Table 3. MA(1) Gaussian model. Coverage probabilities for estimative, approximated and bootstrap
calibrated prediction limits of level α = 0.9,0.95,0.99; µ = 1, σ2 = 1, ρ = 0.5, ε0 = 0 and n = 25,50.
Estimation is based on 5,000 Monte Carlo replications. Bootstrap procedure is based on 2,000 bootstrap
samples. Estimated standard errors are always smaller than 0.005.
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