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Penalty Function approaches for Ship
Multidisciplinary Design Optimization (MDO)

Abstract: This paper focuses on the solution of difficult Multidisci-
plinary Optimization formulations arising in ship design. The latter
schemes are by nature the result of the interaction among several opti-
mization problems. Each optimization problem summarizes the issues
related to a specific aspect (discipline) of the formulation, and it may be
hardly solved by stand-alone methods which ignore the other disciplines.
This usually yields very challenging numerical optimization problems,
due to the simultaneous solution of different schemes.
In particular, in our ship design applications we stress the strong in-
teraction between fluid-dynamics and optimization, in order to get re-
markable achievements. The ordinary stand-alone methods from math-
ematical programming prove to be often unsatisfactory on the latter
multidisciplinary problems. This scenario requires a specific integration
of both Fluid-dynamics and Optimization, where constrained optimiza-
tion schemes frequently arise. We give evidence that the proper use of
Penalty Methods, combined with Global Optimization techniques, may
both be a theoretically correct approach, and may yield a fruitful class
of techniques for the solution of Multidisciplinary problems.
We provide numerical results with different penalty functions, over dif-
ficult multidisciplinary formulations from ship design. Here, the intro-
duction of penalty methods proved to be a valuable tool since feasibility
issues strongly affect the formulation.

Keywords: Multidisciplinary Design Optimization; Fluid-Dynamics;
Constrained Optimization; Penalty methods; Global Optimization.

1 Introduction

Efficient solvers for Computational Fluid-Dynamics (CFD) play a key-role in ship
design problems, where both the number and length of experiments is a crucial is-
sue PeRoCa01, 2001. In addition, CFD analysis has been recently used in a larger
context, where different CFD solvers are combined in an optimization framework.
Indeed, traditional approaches to shape design often required only feasibility, rather
than focusing on the solution of a full optimization problem. As a consequence, in
case different disciplines were involved in the design problem, heuristic approaches
were applied to achieve each individual disciplinary feasibility AlHu97, 1997; Ra02,
2002. However, the application of heuristics risks to be unsatisfactory, since it may
be based more on human skills and experience, rather than on quantitative meth-
ods.
The latter facts motivate our interest for the systematic approach to numerical
MDO. In our problems the multidisciplinarity refers to the design of a ship, and
includes physical phenomena where hydrodynamics is coupled with structural me-
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chanics, and control. Furthermore, the coupling among disciplines might be es-
sential, in order to provide the convergence properties of the numerical techniques
adopted. Thus, typical issues from nonlinear programming as feasibility, optimality
conditions, sensitivity analysis, duality theory, require a suitable adaptation in our
MDO framework.

In particular we want to solve an MDO formulation of a sailing yacht keel fin
design problem, where the derivatives of the objective function and constraints are
unavailable. This problem is a hydroelastic design optimization problem for an
America’s Cup race yacht. The fin is used to hold the bulb, so that yacht stability
increases during a competition.
The keel fin design is both affected by the weight and the shape of the bulb (struc-
ture), as well as the hydrodynamic forces arising during the competitions (hydro-
dynamics). The interaction between the two disciplines yields an optimization
formulation, which is solved with a combined approach including Penalty Methods
and derivative-free techniques. We remark that, as in several MDO problems, the
derivatives are unavailable, since the functions involved are essentially obtained by
solving coupled PDE systems, by black-box tools. As a result, automatic differenti-
ation or adjoint methods may not be adopted. Moreover, each function evaluation
may be really time consuming, requiring up to one day of computation on a parallel
machine.

In particular, we apply an approach which encompasses the use of suitable
penalty methods and global optimization algorithms. The paper is organized as
follows. Section 2 describes some generalities of MDO. Then, in Section 3 we detail
our keel fin design problem. Section 4 addresses, with specific emphasis, the use
of suitable algorithms from nonlinear programming, in order to solve our MDO
formulation. Finally, Section 6 provides a numerical experience.

2 Generalities on MDO

In this section we introduce a formal description of a general MDO problem,
which includes several approaches from the literature AlHu97, 1997; AlLe09, 1999;
AlLe00b, 2000; AlLe00a, 2000. The section details the optimization framework and
the difficulties related to our fin design problem.

Let us consider the r disciplines D1, . . . , Dr, along with the vectors of design
variables xi ∈ IRni and state variables si ∈ IRmi , associated with the discipline
Di. With the latter positions, and introducing also the vector x0 ∈ IRn0 (design
variables shared by the r disciplines), we want to model a general MDO ship design
problem. On this purpose, let us consider the quantities

x = (xT0 xT1 ⋅ ⋅ ⋅ xTr )T ∈ IRn, n = n0 + n1 + ⋅ ⋅ ⋅+ nr,

s = (sT1 ⋅ ⋅ ⋅ sTr )T ∈ IRm, m = m1 + ⋅ ⋅ ⋅+mr,

and the following position (see also AlHu97, 1997; AlLe09, 1999; AlLe00a, 2000).

Assumption 2.1. Suppose the MDO problem involves the r disciplines Di, i =
1, . . . , r. Consider the vectors x ∈ IRn and s ∈ IRm; assume that for each discipline
Di:
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1. we can describe the feasible set Bi ⊆ IRn0×ni×m (possibly empty), through
equalities and inequalities, i.e.

Bi = {(x0, xi, s), x0 ∈ IRn0 , xi ∈ IRni , s ∈ IRm :
gi(x0, xi, s) ≥ 0, Ai(x0, xi, s) = 0},

where gi : IRn0×IRn1×IRm → IRini , with ini ≥ 1, and Ai : IRn0×IRn1×IRm →
IReqi , with eqi ≥ 1;

2. there exists the nonlinear function fi(x0, xi, s), with fi : IRn0 × IRni × IRm →
IR, such that the formulation associated with the discipline Di is

min
(x0,xi,s)∈Bi

fi(x0, xi, s);

3. there exist the set B = B(x, s) = {(x, s), x ∈ IRn, s ∈ IRm : g0(x, s) ≥
0, (x0, xi, s) ∈ Bi, i = 1, . . . , r}, and the functions f(x, s) = '[f1(x0, x1, s), . . . ,
fr(x0, xr, s)] and g0(x, s) (either explicitly or implicitly defined), with f :
IRn × IRm → IR and g0 : IRn × IRm → IRin0 , with in0 ≥ 1, such that the
ship design problem becomes

(1) min
(x,s)∈B

f(x, s).

Definition 2.1. Let the Assumption 2.1 hold; then, we say that (1) is a nonlinear

MDO formulation for the MDO problem.

In our ship design MDO problems the Assumption 2.1 holds; moreover, box con-
straints on a subset of the design variables may be also included. The latter con-
straints may be included in the block of inequalities g0(x, s) ≥ 0. The formulation
(1) is aimed to distinguish between tractable MDO problems (for which we say
that at least a nonlinear MDO formulation exists), and intractable MDO problems
(whose formulation is hardly described, either explicitly or implicitly, by a nonlin-
ear programming formulation).
We observe that though (1) is formally a nonlinear program, standard techniques
from numerical optimization are not immediately applicable for its solution. In-
deed, the main difficulty of solving (1) is often the fact that B includes the so
called MultiDisciplinary Analysis (MDA)

MDA =

⎧⎨⎩
A1(x0, x1, s) = 0

...
Ar(x0, xr, s) = 0.

Apparently MDA is a system of nonlinear equations. However, in practice the i-
th block of nonlinear equalities Ai(x0, xi, s) = 0 is often a black-box, which only
implicitly defines a map among x0, xi and s. Moreover, in ship design problems the
block of nonlinear equalities Ai(x0, xi, s) = 0 frequently corresponds to a discretized
PDE system. Thus, the implicit function theorem cannot be exploited to retrieve
s = s(x) from MDA, in order to solve (1) as

(2) min
x∈B(x,s(x))

f(x, s(x)).
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As a consequence, (1) may be hardly solved as a nonlinear program all at once.
Moreover, optimization techniques based on Karush-Kuhn-Tucker (KKT) condi-
tions for (1) may be of difficult application, since constraint qualification condi-
tions often do not hold. This proves the intrinsic difficulty to develop complete
convergence analysis along with effective algorithms for our ship design problem,
formulated as (1).

3 Our keel fin design problem

The MDO application we selected to apply our approach is the optimization of a
keel fin of a race sailing yacht. A sailing yacht is a ship which travels using the wind
power only. As a consequence, we have not a complete control of our propulsive
system, since the speed and direction of the wind are unpredictable to a large ex-
tent. Thus, the yacht often travels in a different direction than the wind, and this
causes lateral forces acting on the ship (see also PeMa05, 2005). This generates
the following two effects: the lateral forces tend both to roll the ship along the
longitudinal axis, and to shift it along the side direction. In order not to capsize,
an heavy body (usually called bulb, due to its streamlined shape) is placed in depth:
it is particularly heavy, since it is used to contrast the heeling moment generated
by the wind. The bulb is connected with the yacht by a thin fin, usually called
keel fin. When the wind comes from one side, the yacht tends to roll around the
longitudinal axis, as soon as an equilibrium position between the heeling moment
generated by the wind and the moment caused by the weight of the bulb is obtained.
As a consequence, the keel fin is subject to a strong bending moment due to the
large weight of the bulb. On the other hand, the keel fin also provides the lateral
forces contrasting the lateral forces produced by the wind: for this purpose, it is
shaped as a wing. A second equilibrium condition is required for these forces. The
shape of the keel fin is important because we need to obtain an high side force with
a moderate induced resistance. The shape of the keel is dynamically influenced
by the system of forces acting on it, and the hydrodynamic characteristics as well.
This is an example in which the solution of a multidisciplinary design optimization
problem is claimed. In Figure 1 a perspective view of a sailing yacht with a keel fin
and bulb is presented.
Since our objective is the design of a keel fin for a race sailing yacht, the perfor-
mances of the yacht are our primary goal. What we need to design is a keel fin
which is able to induce a side force, with a minimum expense in terms of resistance.
In fact, when a wing generates a lift force, this is payed by an induced drag. A cor-
rect shaping of the keel fin is expected to reduce the induced drag without loosing
lifting force. We want to solve the formulation (1), where our objective function F
is the cost of side force in terms of induced drag, say the ratio

(3) F =
Fside

Fforw
.

In (3) ‘side’ indicates the lateral direction and ‘forw’ the advancing direction. The
overall formulation will be detailed more widely in Section 6.
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Figure 1 Fisheye view of a typical sailing yacht with keel fin and bulb: global per-
spective view and detail view.

4 NonLinear Programming (NLP) for ship design MDO

In this section we consider some generalities for the solution of the following con-
strained optimization problem

(4) min
(x,s)∈B

f(x, s),

which arises in several MDO formulations of ship design, as described in Section 2.
The feasible set B ⊆ IRn×m is defined throughout equalities and inequalities, i.e.

B :

⎧⎨⎩ℎj(x, s) = 0, j = 1, . . . , p,

gi(x, s) ≤ 0, i = 1, . . . ,m.

Observe that (4) has a very general structure, where no specific assumption is
considered, e.g. any convexity/concavity assumption on f(x, s), or the feasible
set B. In particular, we also assume that the functions f(x, s), ℎj(x, s) = 0,
j = 1, . . . , p, gi(x, s) ≤ 0, i = 1 . . . ,m, are continuously differentiable over the set
B (though the derivatives are unavailable).

Further information on the feasible set B, as the convexity, allows for the use of
specific and efficient methods for the solution of problem (4) (e.g., feasible direction
methods BaShSh93, 1993; Be95, 1995). In the latter case, if f(x, s) is also convex
over B, then an interesting amenity holds: every local minimum of f(x, s) over B
is also a global minimum of f(x, s) over B. This would simplify the search of global
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minima over X, since most of the gradient-based algorithms for local optimization
could be fruitfully used.

In principle the solution of (4) requires the simultaneous solution of two separate
problems: the minimization of f(x, s) and the feasibility of the solution found (if
any exists).
Excluding the use of specific methods to solve (4), general approaches adopted in
the literature of numerical optimization may be essentially reduced to the following
categories (see Be95, 1995; NoWr06, 2006; FiMc68, 1968; Be82, 1982):

∙ Methods which solve a sequence of constrained subproblems, each of which
must be simpler than (4). In this class we find the well known SQP (Sequen-
tial Quadratic Programming) methods, which basically represent the natural
extension of Newton’s method to the constrained problem (4).

∙ Methods which solve a sequence K (possibly containing just one element) of
unconstrained subproblems. Under specific assumptions, the sequence {x∗k}K,
where x∗k solves the k-th unconstrained subproblem, converges to a solution
x∗ of (4).

In the latter class of methods we include the following subclasses:

1. Penalty Methods, where at once the sum of f(x) and a penalty term measuring
the infeasibility (constraints violation), is minimized. Thus, the minimization
of f(x) and the feasibility of the solution are simultaneously sought. The
penalty term always depends on a parameter � ∈ IR, which is often crucial for
the efficiency of the overall method. Depending on the nature of the penalty
function, we distinguish between two different approaches.

∙ Exact Penalty Methods: the sequence of subproblems for (4) includes a
unique unconstrained subproblem UN . There exists a value �̄ for the
parameter, such that if � ∈ (0, �̄], then a solution x∗ of UN is also a
solution of (4).

∙ (Sequential) Penalty Methods: we have an infinite sequence {UNk} of
subproblems, where the subproblem UNk corresponds to a different value
�k of the parameter �. Convergence may be proved when �k → 0.

2. Barrier Methods: here a sequence {x∗k} of points in the interior of B is gen-
erated. Under suitable assumptions {x∗k} → x∗, where x∗ is a solution of
(4).

3. Augmented Lagrangian Methods: in this class of algorithms, which may be
both Exact and Sequential, the idea of a penalty function is essentially com-
bined with the Lagrangian function associated with (4).

The next section will be devoted to describe and motivate the use of a proper
algorithm to solve (4), among the approaches described in this section.
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4.1 The proper NLP method for our ship design problem

Consider our ship design problem (1) in Section 3. A careful modelling of that
problem yields a formulation as in (4), where in particular we obtain for the feasible
set B the modified expressiona

(5) B̄ :

⎧⎨⎩
ℎH(x, s̄x) = 0,

ℎS(x, s̄x) = 0,

gi(x) ≤ 0, i = 1, . . . ,m.

The set of equality constraints ℎH(x, s) = 0 is obtained by discretization of a PDE
system, associated with the hydrodynamic properties of the fin. Similarly, the set
of equality constraints ℎS(x, s) = 0 is obtained by discretization of another PDE
system, associated with the structural properties of the fin. In the constraints
ℎH(x, s) = 0 and ℎS(x, s) = 0 we distinguish between the design variables x (which
affect the optimization) and the state variables s (which are shared just by the
equalities of the hydrodynamic and the structural blocks). Moreover, with s̄x we
indicate a specific value of the state variables, depending on ‘x’ obtained after
coupling the structural and hydrodynamic disciplines, as detailed in Section 2. Our
NLP formulation of the MDO problem becomes

(6) min
x∈B̄

f(x, s̄x)

with

B̄ :

⎧⎨⎩ ℎ̄(x, s̄x) = 0

gi(x) ≤ 0, i = 1, . . . ,m,
ℎ̄(x, s̄x) = 0 :

⎧⎨⎩ℎH(x, s̄x) = 0,

ℎS(x, s̄x) = 0,

and the optimization is performed only with respect to the design variables x. Now
we motivate the choice of the NLP techniques to be used for solving (6), according
with the description in Section 4. In particular, we describe both advantages and
drawbacks we met for each class of optimization methods listed in the previous
section. The latter analysis will motivate and support our choice for the penalty
methods.
We remark that since the source codes of PDE solvers are usually black-box solvers,
Automatic Differentiation cannot be adopted for computing derivatives (see also
Gr00, 2000).

4.1.1 SQP Methods

SQP Methods are iterative methods introduced since ’63 (Wi63, 1963), and widely
studied in the ’70s and ’80s (Po78, 1978; GPMa76, 1976; PoYu86, 1986). They

aWith a little abuse of symbols we use here the same letters m and n in (1), but possibly with
different meanings.



8 author

solve (6) by generating the sequence of iterates {xk}. At the k-th iteration they
compute the direction dk which solves the (simpler) quadratic constrained problem

(7)
min
d

1

2
dT∇2

xxℒ(xk, s̄xk
, �k, �k)d+∇xf(xk, s̄xk

)T d

Wx(xk, s̄xk
)d+ ℎ̄(xk, s̄xk

) = 0
Zx(xk, s̄xk

)d+ g(xk) ≤ 0,

where ℒ(xk, s̄xk
, �k, �k) is the Lagrangian functionb

ℒ(xk, s̄xk
, �k, �k) = f(xk, s̄xk

) + �Tk ℎ̄(xk, s̄xk
) + �T

k g(xk),

of the problem (6), �k ∈ IRp is the vector of multipliers associated with the equality
constraints ℎ̄(x, s̄xk

) = 0, �k ∈ IRm is the vector of multipliers associated with the
inequality constraints g(x) ≤ 0, and Wx(xk, s̄xk

), Zx(xk, s̄xk
) are the Jacobians of

the constraints at xk. Then, the direction dk is used to compute the new iterate
xk+1 = xk + dk. The main advantage of SQP methods is undoubtedly their ap-
pealing rate of convergence, which is under mild assumptions quadratic or at least
superlinear for the sequence {xk} (see NoWr06, 2006). On the other hand, several
disadvantages discourage us from the application of these methods.
First, the derivatives of both f(x, s̄x) and the constraints are required in (7), and
since we compute f(x, s̄x) along with the constraints by simulations, derivatives are
in general unavailable. Even when we tried to compute them by finite differences,
we faced other two problems:

1. in case f(x, s̄x), ℎ̄j(x, s̄x) and gi(x, s̄x) are noisy functions (the usual case),
finite differences suffered from serious inaccuracy and instability in the com-
putation;

2. the quadratic subproblem (7) may be infeasible or even unbounded from be-
low. This represents the main serious drawback of SQP, and may require the
introduction of additional trust region constraints to formulation (7).

4.1.2 Barrier Methods

Barrier methods, which are also addressed as Interior Point methods, are parameter
dependent techniques which generate a sequence of iterates {xk} in the interior
of the feasible set B̄. These methods are usually attractive for their simplicity
and easy implementation, along with their efficiency (primal-dual methods with
the predictor-corrector variant by Mehrotra NoWr06, 2006). However, apart from
possible instabilities which may arise when convergence comes up, these methods
require that the interior of B̄ is non-empty. Moreover, at least the starting feasible
point x0 should be provided by the user, which is often very difficult to generate.

bObserve that the Hessian matrix ∇2
xxℒ(xk, s̄xk , �k, �k) is often computed by Quasi-Newton

approximations, in order to reduce the computational effort. This leads to a wide range of SQP
methods.
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4.1.3 (Sequential) Penalty Functions

Penalty Functions were introduced for the first time by Courant (Co43, 1943), then
extended by Fiacco & McCormick (FiMc68, 1968). Given the problem (6), they
consider the solution of the unconstrained problem

(8) min
x∈IRn

P (x, s̄x; "), " > 0,

where

P (x, s̄x; ") = f(x, s̄x) +
1

"
p(x), p(x) :

⎧⎨⎩= 0, ∀x ∈ B̄,

> 0, ∀x ∕∈ B̄.

P (x, s̄x; ") is usually addressed as a Penalty Function, and the term p(x) substan-
tially measures the violation of the constraints by the vector x. Moreover, when
both f(x, s̄x) and p(x) are convex over IRn, then P (x, s̄x; ") is also convex, so that
its local minima coincide with its global minima.
To solve (6) we iteratively considered in (8) the sequence {"k} of the parameter ",
with "k → 0; then, for any "k the solution xk of (8) was computed. The function
P (x, s̄x; ") is also known as an Exterior Penalty Function for (6), since its mini-
mizer x̂ is often infeasible for (6), i.e. x̂ ∕∈ B̄. Among the simplest penalty functions
proposed in the literature, to solve our ship design problems we have considered
the Quadratic Penalty Function for (6):

(9) P (x, s̄x; ") = f(x, s̄x) +
1

"

{
∥ℎ̄(x, s̄x)∥2 + ∥max{0, g(x)}∥2

}
,

where

(10) max{0, g(x)} .=

⎛⎜⎝ max{0, g1(x)}
...

max{0, gm(x)}

⎞⎟⎠ ∈ IRm,

and ∥ ⋅ ∥ is the Euclidean norm. We sketch in Table 4.1.3 the algorithm we used
to implement the Quadratic Penalty Function approach. As regards the scheme in
Table 4.1.3, the following comments apply:

∙ in the scheme Alg Quadratic Penalty we test if the Karush-Kuhn-Tucker
(KKT) conditions are satisfied for (6), at the current minimizer yk of P (x, s̄x; "k).
However, since the Lagrangian function for (6) is hardly available in our
ship design problems, in the practical implementation of scheme Alg Quadra-

tic Penalty we stopped when either no significant progress was obtained, or
a fixed maximum number of iterations was performed.

∙ the parameter "k is updated so that if the condition ∥∇xP (yk, s̄x; "k)∥ ≤
�k is hardly met (which usually occurs when illconditioning arises, too),
then "k+1 is set according with "k+1 ≈ "k. Otherwise, when the condi-
tion ∥∇xP (yk, s̄x; "k)∥ ≤ �k is easily met (i.e. (12) is easily solved), then
"k+1 ≪ "k.

∙ illconditioning may arise when we try to satisfy ∥∇xP (yk, s̄x; "k)∥ ≤ �k (i.e.
when we minimize the penalty function P (x, s̄x; "k)). As a consequence, the
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Table 1 Our algorithm for the Quadratic Penalty Function: Alg Quadratic Penalty

Given {"k} → 0, "k+1 < "k, {�k}, �k > 0, ∀k ≥ 1.

Choose x0 ∈ IRn

FOR k = 1, 2, . . .

start from xk−1 and find

(12) yk = argmin
x∈IRn

P (x, s̄x; "k)

such that ∥∇xP (yk, s̄x; "k)∥ ≤ �k.

IF (yk satisfies KKT for (6)).OR.(a stopping rule holds) THEN

set xk = yk, STOP.

ELSE

choose "k+1 ∈ (0, "k)

set xk from yk (possibly xk = yk)

ENDIF

END FOR

efficiency of methods based on Penalty Functions relies on the proper tech-
nique we adopt to minimize P (x, s̄x; "k). These techniques should avoid to use
the illconditioned matrix ∇2

xxP (x, s̄x; "k) (e.g. Newton’s method, or even the
Gradient method whose progress depends on the ratio �M/�m, where �M [�m]
is the absolute value of the largest [smallest] eigenvalue of ∇2

xxP (x, s̄x; "k)).
In our optimization problem (6), first and second order derivatives are unavail-
able as recalled above. Furthermore, exact derivative-free methods as pattern
search, model-based or linesearch-based techniques (see MoWi07, 2007 for a
comparison) are definitely too expensive for our problems (we recall that on
our problems one function evaluation may take even one day of computa-
tion). Thus, Penalty Functions combined with heuristics to solve (12), are to
us appealing, since

1. they yield unconstrained formulations (which require simpler algorithms)

2. they do not suffer from infeasibility (unlike Barrier Methods or SQP)

3. when "k → 0 we can deflate the illconditioning of ∇2
xxP (x, s̄x; "k) by

choosing a derivative-free method to minimize P (x, s̄x; "k)

∙ in order to further reduce the effects of illconditioning, in Alg Quadratic Pe-

nalty we ‘set xk from yk’ by means of extrapolation techniques, which gen-
erate xk from the trajectory described by the iterates {x0, x1, . . . , xk−1}.

We decided to mainly focus on Penalty Methods for ship design, also for the fol-
lowing appealing result (see also Fl87, 1987).

Proposition 4.1. Consider the problem (6), with f , ℎ and g continuous on IRn;
consider the quadratic penalty function (9), where "k → 0. Let xk be a global
minimum of P (x, s̄x; "k) on IRn. Then, every limit point x̄ of the sequence {xk}
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generated by Alg Quadratic Penalty, is also a global minimum for the problem
(6).

The latter proposition substantially suggests that the global minima of (6), may
be detected by iteratively computing the global minima of (9), for "k → 0. To
the latter purpose, we used the heuristics Particle Swarm Optimization (PSO) for
derivative-free problems (see KeEb95, 1995; CaFaPi09, 2009). PSO proved to be
a satisfactory compromise between the computational burden and the accuracy to
find a global minimum of P (x, s̄x; "k).

4.1.4 Exact Penalty Functions

We have also considered Exact Penalty functions for solving (6), where a unique
unconstrained minimization problem was solved.
In the literature the term ‘Exact’ is used to indicate the precise correspondence
between the solutions of (6) and the minimizers of the Exact Penalty Function.
The latter correspondence holds as long as the parameter " satisfies " ∈ (0, "∗],
for a suitable (and usually unknown) threshold "∗. As detailed in Section 6 we
didn’t experience problems to set this parameter. A wide range of Exact Penalty
Functions has been introduced in the literature. We mainly focus on the so called
ℓ1 Exact Penalty Function, which is the following nondifferentiable penalty function
proposed by Zangwill (see Za67, 1967; Fl87, 1987)

(13) Φ(x, s̄x; ") = f(x, s̄x) +
1

"

{
∥max{g(x), 0}∥1 + ∥ℎ̄(x, s̄x)∥1

}
.

Clearly relation (13) is nondifferentiable because of the norm ∥ ⋅ ∥1. Thus, the
minimization of (13) requires a specific safeguard. Since in our ship design problem
(6) the derivatives are unavailable, we again minimized (13) by using Particle Swarm
Optimization (see Section 4.1.3). This choice had two remarkable advantages:

∙ for any " ∈ (0, "∗] PSO was applied to minimize the nondifferentiable function
(13), without being affected by possible illconditioning;

∙ PSO again provided a suitable compromise between the performance (i.e. a
satisfactory estimate of the minimizer for (13)) and the computational cost.

Under mild assumptions we can prove, also for Exact Penalty functions, a theoret-
ical result similar to Proposition 4.1.
Due to the nature of our ship design problem, we did not consider also the use of
continuously differentiable exact penalty functions defined in the literature (see for
example Fl70, 1970).

4.1.5 Augmented Lagrangian Functions

Augmented Lagrangian Functions are iterative methods introduced by Powell in
1969, for equality constrained problems (see Po69, 1969). Then, Rockafellar ex-
tended the approach to inequality constrained problems (see Ro73, 1973). These
methods have some similarities with the Penalty Functions and Exact Penalty Func-
tions, and proved to be even more efficient and less sensible to illconditioning. How-
ever, for our purpose at least a couple of motivations discourage from their use: they
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introduce an additional set of variables (dual variables), one for any constraint in
(6); they require the use of a Lagrangian function associated with problem (6), to
be minimized, in place of f(x, s̄x). Considering that the derivatives of f(x, s̄x),
ℎ̄(x, s̄x) and g(x) in (6) are unavailable, the latter choice could be a complica-
tion with respect to both Sequential and Exact Penalty Functions. Anyway, the
use of derivative-free techniques could possibly alleviate the latter drawback. The
adoption of Augmented Lagrangian Functions could be an interesting extension for
future work.

5 Notes on Particle Swarm Optimization (PSO)

Here we provide a brief description of the iterative heuristics Particle Swarm Op-
timization. It has been recently widely adopted for the approximate solution of
global optimization problems (see KeEb95, 1995). It belongs to the class of Evolu-
tionary Methods and was originally inspired by the flight of birds in a flock. The
basic idea of PSO (see also BlKeP07, 2007 for a tutorial) is an attempt to model
the behavior of flocks of birds when they cooperate to search for food.

In particular, the paradigm of a flying flock may be reformulated as the search of
a global minimum of a nonlinear function. For each member (namely a particle) of
the flock (or a swarm), a pair of vectors is considered: the position and the velocity.
More formally, suppose we apply PSO, where M particles are included, to solve
an unconstrained optimization problem in IRt, t ≥ 1. At the k-th step of the PSO
algorithm we introduce the following quantities for any particle j ∈ {1, . . . ,M}:
∙ xkj ∈ IRt, the current position;

∙ vkj ∈ IRt, the current velocity;

∙ pkj ∈ IRt, with pkj = argmin1≤ℎ≤k{f(xℎj )} (i.e., the best position visited in the
previous steps by the j-th particle);

∙ pbestk ∈ IRt, with pbestk = argmin1≤ℎ≤k,1≤ℓ≤M{f(xℎℓ )} (i.e., the best posi-
tion visited in the previous steps by all the particles).

A standard version of the PSO method is summarized by the following algorithm
(see also ClKe02, 2002)

1. Set k = 1. Set � > 0 and w ∈ [wmin, wmax], compute f(xkj ), j = 1, . . . ,M ,

and pbestk = +∞.

2. For any j = 1, . . . ,M , if f(xkj ) < pkj then set pkj = f(xkj ). Set

pbestk = argmin1≤ℓ≤M{pkℓ )}.

3. For any j = 1, . . . ,M update the position and the velocity of the j-th particle,
as

vk+1
j = �

[
wvkj + c1u1 ⊗ (pkj − xkj ) + c2u2 ⊗ (pbestk − xkj )

]
xk+1
j = xkj + vk+1

j

where u1, u2 ∈ IRt are uniformly randomly distributed vectors in [0, 1] (how-
ever, we set in our experiments u1 = u2 = 1 as detailed in Section 6), and the
symbol ⊗ denotes the component-wise product.
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4. If a convergence test is satisfied then STOP, else k = k + 1 and Goto 2.

For typical values of the constriction coefficient � see also BlKeP07, 2007 and
therein references. Roughly speaking, at step k the j-th particle updates its posi-
tion as subject to a pair of attractive directions: the vector heading its previous
best position (i.e. (pkj − xkj )) and the vector heading the swarm best position (i.e.

(pbestk − xkj )).

Since PSO is a heuristics it is not endowed with the standard convergence prop-
erties provided by exact Derivative Free Optimization methods like Pattern Search
methods, Polynomial Model-based methods, Linesearch-based methods, etc. How-
ever, it often provides a satisfactory approximation of a solution within a very few
iterations. In other words, PSO often yields a reasonable compromise between the
computational cost and the quality of the final approximate solution found.

6 Numerical results and conclusions

As previously recalled, our application is the optimization of the keel fin of a sailing
yacht. It is a slender body: at the end of the fin, an heavy body is connected,
namely the keel bulb. The keel bulb provides the stability of the yacht. The fin is
designed to provide the side force needed to contrast the lateral forces generated
by the sails (see Figure 1): this effect is obtained by adequately shaping the fin,
producing a non-symmetric pressure distribution on the two sides of the fin. The
pressure distribution on the fin is origin of the required side force, but also of a side
force and a bending moment on the fin itself, whose geometry is deformed under
these actions. Furthermore, the yacht travels in an oblique position, so that the fin
bends under the action of the keel bulb plus the pressure acting on the fin itself.
As a consequence of the unknown fin deformation, two different solvers are needed
for the evaluation of the performances of the fin: a fluid dynamic solver and a
structural solver. With the structural solver, the real geometry of the deformed fin
is computed, while the fluid dynamic solver computes the hydrodynamic pressure
on the fin, based on the real geometry computed. The final result is obtained by the
multidisciplinary interactions of the two different phenomena: the hydrodynamic
flow around the fin and the deformation of the fin. These two aspects are mutually
related, and this is classically the nature of a multidisciplinary problem.

The state variables (see Section 2) are taken into account in an indirect way.
In fact, the pressure and the deformation on each element of the fin, created after
a discretization of its surface, represent the state variables s̄x. Since the deformed
geometry of the fin is a function of the hydrodynamic actions plus the bulb weight,
an iterative procedure is used for the derivation of the real deformed geometry: a
first hydrodynamic solution is computed, the pressure on the fin is calculated and
it is passed to the structural solver as an input. The deformation is computed and
the new deformed geometry is analyzed by the fluid dynamic solver. At step k of
this iterative procedure, our objective function (3) will be different than at step
k − 1. We can now define the quantity

(14) � =
F k − F k−1

F k
,
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Figure 2 Keel fin geometry: on the left, side view of the adopted keel fin, on the
right, visualization of the geometrical constraint.

where F k is the value of the objective function (3) at step k, and � is an indicator
of the steady-state value of the objective function when performing the MDA. If
� → 0 the iterative procedure of the MDA converges, i.e. the equality constraints
in (4) are satisfied. The value of � is therefore an indicator of the degree of coupling
between the disciplines. In the current application we set a satisfactory value for
�, namely �̄, and stop the iterative procedure for the MDA if � < �̄.

The fin is substantially represented by a NACA (National Advisory Committee
on Aeronautics) profile with a large aspect ratio. A picture is reported in Figure 2:
on the left a side view of the fin is presented; on the right a representation of our
geometrical constraints is visible (i.e., the inequality constraints in (4)). In order
to allow the connection of the fin with the yacht hull, and also in order to include a
weak structural constraint (the fin sustains a heavy weight, and the section of the
fin cannot be too small), we define a minimum volume to be included into the fin
(the parallelepiped in Figure 2).

The parametrization of the fin is obtained by superimposing an analytical sur-
face to the original fin surface. Only one side of the fin is deformed, and then the
new geometry is mirrored. The fin can be enlarged/shrinked along the lateral direc-
tion, while the bottom section can be shifted forward and backward with respect to
the top section of the fin. Four parameters are needed to model this deformation.

The objective function selected for this application is the efficiency of the fin,
defined as the ratio between the side force generated by the fin and the total re-
sistance. Since we need a high efficiency of the fin, in this application we solve
a maximization problem, or equivalently we minimize the negative value of the
efficiency.

To this end, as motivated in Sections 4.1.3 and 4.1.4, PSO algorithm is applied
(see KeEb95, 1995; CaFaPi09, 2009), and 16 particles are randomly distributed at
the outset of the algorithm. Up to 100*NDV evaluations of the objective function
are allowed (computational cost), where NDV= 4 is the number of design variables
(i.e., the parameters used to model the fin deformation). Since the four unknowns
represent displacements of physical measurements, before applying PSO the objec-
tive function is also evaluated in the point (0, 0, 0, 0)T . The latter choice provides a
reference value for the objective function, corresponding to zero displacements. For
� in (14) we set a threshold value of �̄ = 10−3. As a consequence, the fulfilment of
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Figure 3 Comparison among different penalty methods for the minimization of the
objective function.

the MDA is achieved along with the convergence of the optimization problem (for
further details see also CaFaPePi07, 2007).

Different choices for the penalty function have been experienced on our problem.
According with Section 4.1 we chose: the ℓ1 non differentiable penalty function (13)
(addressed therein as ‘linear’, for short), with a fixed penalty parameter " = 10−2,
and a quadratic penalty function (9) with "start = 1 and " → 10−2. In addition,
for the quadratic penalty function we also experienced "start > 1 at the outset of
the procedure Alg Quadratic Penalty, then "→ 10−2, according with the theory
which requires "→ 0. At each step, the penalty parameter for the quadratic penalty
function is halved. Results of the comparisons are reported in Figures 3 and 4. The
ℓ1 non differentiable penalty function (bullets) yields a better value of the objective
function, using a fairly large value of the parameter " in (13). We remark that
much smaller values of " (say " < 10−6) may cause a possible numerical instability
when minimizing the ℓ1 penalty function in (13). Moreover, the quadratic penalty
function starting with " > 1 (squares) is not amenable, according with the theory.
Each symbol in the picture represents a particle of PSO. By observing the areas
of Figure 3 where the particles tend to cluster, we immediately deduce that the
objective function is likely nonlinear and nonconvex. Indeed, particles clusters are
associated with several local minima of the objective function. On the overall, the
ℓ1 penalty function provides the best approximation of a global minimum, using
the same number of function evaluations.
Observe that from Figure 4 the three penalty functions considered provide very
different final values for the 4 design variables, i.e. very different geometries of the
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Figure 4 Final values of the 4 design variables (i.e., the 4 parameters used to model
the deformation of the fin), adopting different penalty functions.

final fin. This reveals that unlike heuristic methods may suggest, feasible geometries
of the fin may be very different from the optimal geometries computed by ad hoc
nonlinear programming approaches. Each symbol in the picture again represents a
particle of PSO, and all the final geometries in Figure 4 are feasible.
For the PSO parameters we adopted the values c1 = 0.4, c2 = 0.8, w = 0.9, � = 1.
Moreover, we set u1 = u2 = 1 (see also CaLiLuPePiPi09, 2009) and unlike the com-
mon literature we did not consider u1, u2 uniformly randomly chosen in [0, 1]. The
latter partial modification of a PSO scheme has a twofold motivation. On one hand
we wanted to adopt PSO since it is relatively fast to locate a satisfactory approxi-
mation of a global minimum. On the other hand, the choice of random coefficients
for u1 and u2 would have required several reruns, in order to provide a significant
statistics of the numerical results. Since at the iterate xkj the computation of f(xkj )
may take several hours, on our problem setting u1, u2 uniformly in [0, 1] was not
allowed in practice (even using a simplified computation for f(xkj )).
We remark that other papers consider the implicit use of penalty functions for MDO
formulations (e.g. BeHaYuSi00, 2000). However, here we explicitly motivate, select
and compare different penalty function approaches, in order to match theoretical
results with the application, as detailed in Section 1.
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7 Conclusions

In this paper we have pursued a twofold purpose in a Multidisciplinary Opti-
mization framework. First, we have briefly listed some renowned approaches from
constrained nonlinear programming, which can represent useful tools for the so-
lution of complex multidisciplinary optimization schemes. Then, we have focused
on a specific application in ship design, where two disciplines are involved (namely
fluid dynamic and structural disciplines), each requiring a specific and different
solver. The strategy adopted to combine the two disciplines shows that the overall
scheme yields very challenging numerical optimization problems, which require a
fine and careful use of mathematical programming tools. In particular, considering
that the minimization of non-differentiable functions was required, we have also
integrated the heuristics PSO in our approach. Numerical results proved the ef-
fectiveness of our proposal, though further experiments may be fruitful to test the
robustness of the approach. On this guideline, we are also considering to include
robust optimization methods in our multidisciplinary optimization framework.
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