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Abstract Polyamine transport across the mitochondria

membrane occurs by a specific, common uniporter system

and appears controlled by electrostatic interactions as for

polyamine oxidative deamination by bovine serum and

mitochondrial matrix amine oxidases was found. In fact in

all the cases, while the catalytic constants or the maximum

uptake rate values show little changes with the number of

the positive charges of the substrates, Michaelis–Menten

constant values demonstrate exponential dependence,

confirming that electrostatic forces control the docking of

the substrate into the enzyme active site or polyamine

channel. By the treatment of the kinetic data in terms of

Gibbs equation or Eyring theory, the contribution of each

positive charge of the polyamine to the Gibbs energy val-

ues for the oxidative deamination of polyamines by two

mammalian amine oxidase and for polyamine transport, are

obtained. These values were comparable and in good

accordance with those reported in literature. Previous

studies demonstrated that two negative functional groups in

the active site of bovine serum and mitochondrial matrix

amine oxidases interact electrostatically with three positive

charges of the polyamines in the formation of the enzyme–

substrate complex. Remembering the structure–function

relationship of proteins, our results suggest analogous

interactions in the polyamine transporter and, as a conse-

quence, a partial structural similitude between two pro-

teins. It follows that the primary sequences of the amino

oxidases and the mitochondrial transport may, in part, be

conserved.

Keywords Amine oxidases � Mitochondrial polyamines

uniporter � Polyamines

Abbreviations

BSAO Bovine serum amine oxidase

MMAO Mitochondrial matrix amine oxidase

Cu-AO Copper-containing amine oxidases

TPQ 2,4,5-Trihydroxyphenylalanine quinone

DW Membrane potential

MPT Mitochondrial polyamine transporter

BUA Butylamine

PUT Putrescine

SPM Spermine

SPD Spermidine

S Substrate

X Mitochondria channel

J Transport rate for polyamine

kc Catalytic constant for BSAO

Kt Michaelis–Menten constant for transport

K Generic equilibrium constant

DG Gibbs free energy

DG� Activation Gibbs free energy

kn Uptake rate constant

R.C Reaction coordinate

D.M. Depth membrane

R Gas constant

kB Boltzmann constant
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Introduction

Bovine serum (BSAO) and mitochondrial matrix (MMAO)

amine oxidases are members of a heterogeneous class of

enzymes-containing copper as cofactor and so denoted as

copper-containing amine oxidases (Cu-AO) EC 1.4.3.6

[amine:oxygen oxidoreductase (deaminating) (copper-con-

taining)] (Boyce et al. 2009; Agostinelli et al. 2010). Amine

oxidases are widely distributed in mammals, plants and

microorganisms (prokaryotic and eukaryotic) (Pietrangeli

et al. 2004; Medda et al. 2009; Okajima and Tanizawa

2009) being involved in polyamine metabolism and on

many physio-pathological processes (Boyce et al. 2009).

Despite their wide distribution, the physiological role of

Cu-AOs is still unclear; however, in mammals Cu-AOs

activity appears to be altered in some pathological condi-

tions (Boomsma et al. 2009).

In general, they are glycosylated homodimers of subunit

size of 70–95 kDa, depending on the source. In addition to

a copper ion, each monomer contains one quinone cofactor

that has been identified as 2,4,5-trihydroxyphenylalanine

quinone (TPQ) (Janes et al. 1990).

Amine oxidases catalyze the oxidative deamination of

primary amines producing the corresponding aldehyde,

ammonia and hydrogen peroxide, according to the fol-

lowing scheme of reaction:

R� CH2 � NH2 þ O2 þ H2O

! R� CHOþ NH3 þ H2O2

In the case of BSAO and MMAO, it has been reported

that electrostatic interactions play a fundamental role in the

polyamines–enzyme complex formation (Stevanato et al.

1994; Di Paolo et al. 2003), but the different specificity

toward (poly)amine molecules of amine oxidases purified

from different sources (Vianello et al. 1993, 1999; Di Paolo

et al. 1995) suggests that this is a general behavior for this

class of enzymes.

The naturally occurring polyamines, spermine, spermi-

dine and putrescine, which are preferential substrates of the

amine oxidases, are transported into the matrix space of

mitochondria by a specific, common uniporter system. This

transport process is dependent on the membrane potential

(DW), thus demonstrating an electrophoretic behavior, and

exhibits a non-ohmic flux–voltage relationship. In other

words, polyamine transport happens by electrostatic inter-

actions and the transport rate increases with increasing

charge number of the transported species with an activation

enthalpy of about 12 kJ/mol per charge at DW ^ 175 mV

(Toninello et al. 1988, 1992). Force-flux analyses provide

evidences that the polyamine transporter is a suitable

channel having two asymmetrical energy barriers with an

energy well, in which is located the binding site, near the

membrane surface, with spermine bound to the site in rapid

equilibrium with the external spermine (Toninello et al.

2000).

These results obtained in independent manner, from

functionally different protein structures and by different

analytical and kinetic methods, show that in both cases

electrostatic interactions control the protein functionality

toward the same substrates.

The aim of this work is to compare experimental data in

order to obtain further information on possible common

mechanisms of oxidative deamination and transport pro-

cess of these polyamines functionally dependent proteins.

Materials and methods

All chemicals were reagent grade and used without further

purification.

Bovine serum and mitochondrial matrix amine oxidases

were purified following the procedures of Vianello and

Cardillo, respectively (Vianello et al. 1992; Cardillo et al.

2009). Protein concentration was measured according to the

Bradford method, using bovine serum albumin as a standard.

Activity parameters by initial rate measurements were

carried out spectrophotometrically, using the peroxidase-

coupling assay previously reported (Stevanato et al. 1994).

Rat liver mitochondria were isolated as previously

reported (Toninello et al. 1992) and the mitochondrial

protein concentration was assayed by the biuret method

with bovine serum albumin as a standard. Kinetic param-

eters of the transporter were obtained measuring the uptake

of labeled polyamines ([14C]spermine, [14C]spermidine,

[14C]putrescine, 50 lC/mmol) by a centrifugal filtration

method as previously described (Toninello et al. 1988).

Results

Polyamine transport across the mitochondrial membrane is

a saturable process and the data of polyamine uptake rate

can be treated following the theory of simple enzyme

kinetics, according to the scheme of reaction:

X þ So �

k1

k�1

XS!k2
X þ Si

where So is the polyamine at the outer side of the mem-

brane, Si is that at the inner side, X is a binding site in the

channel and XS is the polyamine-binding complex. kn

represents the uptake rate constant of the n step.

Consequently, the experimental data of transport rate J

can be treated according the Michaelis–Menten equation:

J ¼ Jmax½S�=ðKt þ ½S�Þ

where Jmax is the maximum rate at [S] � Kt, and Kt cor-

responds to the Michaelis–Menten constant.
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Table 1 reports the kinetic parameters referred to (1) the

polyamines transport by a mitochondrial polyamine trans-

porter (MPT), and (2) the oxidative deamination of poly-

amines by two amine oxidases purified from bovine serum

(BSAO) and rat liver mitochondria matrix (MMAO),

respectively.

Plotting the data related to the maximum transport rate

(Jmax for the polyamine transporter) and to the catalytic

constants (kc in the case of BSAO and Vmax in the case of

MMAO) versus substrate charge (Fig. 1), it clearly appears

a slight linear dependence with a good linear correlation

coefficient. In all the cases, the transport rate and the cat-

alytic constant values decrease in function of the positive

charge from 4 to 1, corresponding to percentage values

variable from about 20 to 60%, depending on the specific

protein.

In contrast, the plot of the Michaelis–Menten constant

values (Kt in the case of the mitochondria channel, Km for

the amine oxidases) versus substrate charge shows identical

exponential behavior (Fig. 2a). Michaelis–Menten constant

values increase of about 25–30 times decreasing the posi-

tive charge of substrate from 4 to 1. The logarithmic form

plot of the experimental data (Fig. 2b) selects three straight

lines with a good linear correlation coefficient character-

ized by slope values of -1.1, -1.2 and -1.9 for MPT,

BSAO and MMAO, respectively. The intercepts on the

Y-axis determine the Michaelis–Menten constant values for

a hypothetical neutral substrate: 8.2 mM for the MPT and

BSAO and 30 mM for MMAO.

Similarly, the plots of the natural logarithm of the

maximum rates on Michaelis–Menten constants values

versus substrate charge (Fig. 3) show straight lines, so

indicating that the slight linear dependence of the catalytic

constant with substrate charge does not affect the behaviors

of the process at the first-order conditions, i.e. when the

polyamine concentration values are much more lower than

Km or Kt.

From the Michaelis–Menten equation, Km = (kc ? k-1)/

k1, if kc � k-1, the Michaelis constant is Km = k-1/k1 =

Ks, i.e. the dissociation constant of the protein–polyamine

complex into the two components protein and polyamine.

In this case, the contribution of a polyamine’s single charge

to the Gibbs free energy of the complex polyamine–protein

formation can be determined.

In fact, DG = -RT ln K, from which

DDG ¼ RT½ln Kn�1 � ln Kn�

where the suffix n indicates the positive charge number of

the polyamines.

In Table 2 line (a), these data for the three polyamine–

protein complex taken into consideration are reported.

In contrast, if kc � k-1, kc/Km = k1, i.e. the ratio

between the catalytic constant or maximum transport

rate and the Michaelis–Menten constant corresponds to the

rate constant of formation of the complex protein–

polyamine.

Applying the Eyring equation, k ¼ ðkBT=hÞe�ðDG�=RTÞ,
where DG� is the activation Gibbs free energy for the

complex polyamine–protein formation, and developing we

obtain

DDG� ¼ RT ½ln kn�1 � ln kn�:

In Table 2 line (b), the contribution of each positive

charge to the activation Gibbs free energy for the three

complexes polyamine–protein formation taken into

consideration are reported.

These values are similar to those reported by Gerstner

et al. (1994) related to the Gibbs free energy of adsorption

of several amino acids, peptides and proteins in a cation-

exchange system and comparable to the bond energies for

lysozyme toward a charged surface (Roth and Lenhoff

1993).

In other words, in the first hypothesis, i.e. for kc � k-1,

experimental data indicate that the increase of a positive

Table 1 Kinetic parameters of polyamines transport by a mitochondria channel and oxidative deamination by amine oxidases from bovine

serum and rat liver mitochondria matrix, respectively

Amine Amine charge MPT BSAO MMAO

Jmax

(lM/mg

prot min)

Kt

(mM)

Jmax/Kt

[1/mg prot min

(910-3)]

kcat (1/min) Km

(mM)

kcat/Km

[1/min

(910?4)]

Vmax [M/mg

prot min

(910-5)]

Km

(mM)

Vmax/Km

[1/mg prot min

(910-1)]

BUA 1.00 56 2.40 2.33

PUT 1.99 1.14 1.00 1.14 4.00 0.749 0.534

SPD 2.98 1.23 0.26 4.73 114 0.28 40.7 6.80 0.108 6.30

SPM 3.86 1.41 0.13 10.8 139 0.076 183 10.9 0.023 47.4

All measurements were run in triplicate and SD values for Jmax and Vmax were B13%, while SD values for Kt and Km were B19%

MPT mitochondrial polyamine transporter, BSAO bovine serum amine oxidase, MMAO mitochondrial matrix amine oxidase
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charge in the polyamine substrate causes an increase of the

Gibbs energy of the equilibrium constant relative to the

polyamine–protein complex dissociation (or formation);

i.e. the increase of a positive charge in the polyamine

molecule stabilizes the polyamine–protein complex of a

Gibbs energy value comparable to that of a single-charge

electrostatic interaction due to the absorption of proteins

into a cation-exchange system.

1,10E-06

1,20E-06

1,30E-06

1,40E-06

1,50E-06

0 1 2 3 4

charge (z)

Jm
ax

5,00E+01

7,00E+01

9,00E+01

1,10E+02

1,30E+02

1,50E+02

0 1 2 3 4

charge (z)
kc

at

3,00E-05

5,00E-05

7,00E-05

9,00E-05

1,10E-04

1,30E-04

0 1 2 3 4

charge (z)

V
m

ax

a b c
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In the second case, i.e. for kc � k-1, the results indicate

that the increase of a positive charge in the polyamine

substrate decrease the activation energy of polyamine–

protein complex of a Gibbs energy value comparable to

that above cited. These differences of Gibbs energy are

visualized in Fig. 4.

Discussion

Previous papers (Di Paolo et al. 2003; Stevanato et al.

1994, 2011) reported that two negative functional groups in

the active site of bovine serum and mitochondrial matrix

amine oxidases interact electrostatically with three positive

charges of the polyamines in the formation of the enzyme–

substrate complex. In the present paper we report that in

both the cases, while the catalytic constant values show

little changes with the number of the positive charges of the

substrates, Michaelis–Menten constant values evidence

strong exponential dependence, so confirming that elec-

trostatic forces control the docking of the substrate into the

enzyme active site.

By the treatment of the kinetic data in terms of Gibbs

equation or Eyring theory, the contribution of each positive

charge of the polyamine to the Gibbs energy values for the

oxidative deamination of polyamines by two mammalian

amine oxidases are obtained.

The treatment of the experimental values of Jmax and Kt

referred to the MPT, obtained according to the Michaelis–

Menten theory applied to ion transport across leaks and

channels, evidences a behavior very similar to that found

for the two amine oxidases. The values of the Gibbs free

energy decreasing, due to one positive charge increasing in

the polyamine molecule, were comparable, compatibly

with the different experimental conditions of measurement,

in both cases: kc � k-1 and kc � k-1. Furthermore, these

values were in good accordance with those reported in

literature.

Remembering the structure–function relationship of

proteins, these results suggest the hypothesis that also in

the polyamine transporter two negatively charged groups

must interact with the positive charges of the polyamines.

In this hypothesis, the interacting groups must be sterically

located in such a way as to maximize the electrostatic

Table 2 Contribute of a positive charge of the polyamine to: (a) the Gibbs free energy of the complex polyamine–protein formation and (b) the

activation Gibbs free energy for the complex polyamine–protein formation

Hypotheses DDG DDG (kJ/mol)

MPT BSAO MMAO

(a) kc � k-1 RT [ln Kn-1 – ln Kn] 2.74 2.96 4.65

(b) kc � k-1 RT [ln kn-1 – ln kn] -2.94 -3.68 -5.88

Fig. 4 Contribute of one

positive charge of the

polyamine to the Gibbs free

energy, a of the complex

polyamine–protein formation

(in the case kc � k-1) and b of

the activation complex for the

complex polyamine–protein

formation (for kc � k-1). R.C
and D.M. indicate reaction

coordinate or depth in

membrane, respectively
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interactions with the well determinate positions of the

positive charges of the substrate such as in the amine

oxidases active site it happens.

In particular, in the case of BSAO, two negatively

charged aspartic residues interact electrostatically with the

first and the third amino group of spermine or spermidine

in the docking of the substrate into the active site. The

aspartic residue farthest from the TPQ cofactor, interacting

with the third amino residue, is located at the end of a

flexible hairpin of a second subunit of the enzyme and is

characterized by a high mobility that permits the docking

of different substrates characterized by different chain

length and charge distribution. This structure is substan-

tially conserved in at least other five structurally charac-

terized amine oxidases, although the dissimilarities in the

architecture and charge distribution of the cavities leading

to the active site could explain the differences in substrate

specificity (Lunelli et al. 2005). The results here reported,

suggest that a similar mechanism could regulate the

introduction of the polyamines in the mitochondrial chan-

nel. In this hypothesis, a similar structural topology must

be invoked, and, as a consequence, also the primary

sequence of the polyamine-binding domains of the amine

oxidases and the transporter may be conserved.

Recently, four complete genes were identified and

characterized in the pig genome, each encoding amine

oxidase copper-containing with different roles (diamine

oxidase, retina-specific amine oxidase, vascular adhesion

protein-1, serum amine oxidase), where two of these are

membrane-associated proteins (Schwelberger 2010). By

virtue of the identical exon–intron organization and of the

degree of sequence conservation, a common evolutionary

origin for the four genes has been hypothesized. These

results further support the hypothesis of a high degree of

sequence conservation in the proteins acting on poly-

amines, in particular in the step of polyamine docking. This

structure could originate from an ancestral protein poly-

amine-recognizing gene.

In order to give consistence to this stimulating hypoth-

esis, further experiments on mitochondria purified from

bovine liver are in progress.
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