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1. Introduction 
 

Clustering and classifications are two topics extensively discussed in the statistical 

literature with applications in many areas, including Physics, Biometrics, Information 

Technology, Economics, Finance, and in general in the data mining literature. As 

pointed out by Everitt (2001), Xu and Wunsch (2009), among others, classifying an 

object in a homogenous category may help in inferring its properties and features by 

looking at the elements included in that category. 

Both clustering and classification methods have a common purpose: to split a large 

number of objects into smaller groups which are more homogeneous that the entire set, 

in such a way that the within group similarity is maximized and the between group 

similarity is minimized. The grouping of objects could follow different approaches, 

which are all based on a subjectively chosen measure of similarity or dissimilarity (in 

general terms a proximity measure). Note that the groups obtained from different 

clustering or classification approaches could vary in a sensible way, making the choice 

among alternative implementations very difficult. Unfortunately, the statistical literature 

does not yet contain a general criterion allowing a robust comparison among the 

outcomes of different clustering/classification algorithms. Despite this limitation, these 

grouping techniques have been proven to be useful in many disciplines, and using both 

cross sectional and time series data. 

Within this work, following Xu and Wunsch (2009), we make a clear distinction 

between clustering and classification. In fact, despite the two words could be considered 

as synonyms, we label as classification a procedure which is directly controlled by the 

user (a supervised classification system). Differently, clustering is a procedure which is 

governed by an algorithm (an unsupervised classification system). To make an example, 

grouping time series on the basis of their integration properties (trend-stationary against 

difference-stationary) is a classification because, for a given series and on the basis of a 

test, the user decides the group to which it belongs; moreover, the groups are defined a-

priori and clearly identified. Differently, the grouping of time series with respect to a 

similarity measure based, for instance, on the Pearson correlation coefficient, could be 

made by a numerical algorithm that produce a hierarchical structure across the objects, 

without the intervention of the user, and thus in an unsupervised case, giving a 
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clustering exercise. Notably, the groups created by an unsupervised classification could 

not be labelled as easily as in the case of the supervised classification. In other words, 

the supervised classification is based on a set of groups defined a-priori, while the 

unsupervised classification creates a set of groups data-driven which could be labelled 

only ex-post. We stress that labelling groups created by a clustering algorithm using the 

features of the objects included in each group may not be always possible, even if some 

help could come from other statistical approaches such as discriminant analysis. 

We also highlight that, in the data mining literature, the word classification is often 

matched with the use of algorithms that try to predict the class of an object using 

available information on other objects. This could be done by a number of algorithms 

and approaches including neural networks. Within this paper, we are not interested in 

the prediction aspects but rather in the creation of the groups. Nevertheless, neural 

networks and genetic algorithms are included in the following sections as tools within 

clustering approaches. 

The scientific literature already includes some surveys and books on clustering 

methods, Everitt (2001), Berkhin (2006), Xu and Wunsch (2009) among others, and, to 

our best knowledge, only one survey in the time series context, Liao (2005). This last 

contribution focuses on papers published in several scientific areas ranging from 

physics to finance, but the weight of economic and financial applications was really 

minor and many interesting contributions, most of them appeared in the last few years, 

were not included. Therefore, our work will fill the gap providing an extensive survey 

of time series clustering techniques which have been used or could be used for the 

grouping of economics and financial time series. As the reader may note, the references 

that will be cited are from journals belonging in the largest part to non-economic 

disciplines but tackling economic applications. This is a consequence of the 

development of clustering techniques as tools for data mining in areas related to non 

social sciences. 

However, within economics and financial applications, clustering and classification 

approaches could have very relevant applications as we will show in a following 

sections. To summarize the possible uses of clustering (some of them not yet appeared 

in the literature) we mention the following. In the economic context, time series 

clustering could be used to detect comovements within time series by means of 
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clustering methods that compare the evolution of time series levels with approaches 

derived from dynamic time warping (which is a proximity measure), or their dynamic. 

Series that commove could then be used as predictors one for the other or to create 

composite indices by extracting the principal components. Similarly, we could group 

time series defining a proximity with respect to a given indicator obtaining groups 

which could be identified as leading, lagging and coincident, giving a further tool for 

the construction of composite indices. The search for similarities could be performed 

both on the series levels as well as on their structural components, seasonal, trend-cycle 

and irregular, to create groups homogeneous in term of trend-cycle (useful for business 

cycle dating), or similar with respect to the seasonal filter. The last case would allow a 

simpler seasonal adjustment procedure that would apply the same filter over series 

belonging to the same cluster (as suggested by Focardi and Fabozzi, 2004). Combining 

series with similar patterns or components, with or without a reference to a given index, 

could be useful also in term of point forecast of economic series. Furthermore, 

clustering methods may allow the identification of economic sectors or geographical 

areas with similar character and this additional piece of information could be used to 

improve the effectiveness of policy decisions (Crone, 1999). 

In financial applications, time series clustering methods could be applied in the creation 

of classes of objects with similar credit rating, or market risk features. This would 

provide useful information for risk management purposes but also for investment 

management. In addition, clustering outcomes could supply a data driven segmentation 

of a number of financial instruments with relevant applications in asset management. 

Finally, data driven groups could be compared to a-priori groups associated to a 

classification for descriptive purposes that include the check for the degree of agreement 

and the possible impact on portfolio diversification (Pattarin et al., 2004). 

Within this survey we will not consider applications of time series subsequences 

clustering. In fact, despite the possible relevant approach in finance (subsequences 

matching may be associated to the identification of technical analysis “figures”), they 

cannot have a direct interpretation apart in very specific circumstances, Inniss (2006). 

Some discussion on these approaches can be found in Keogh et al. (2003) ad Chen 

(2007). 
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The report proceeds as follow. Section 2 provides a short description of the time series 

classification, or supervised classification. The subsequent sections are devoted to the 

clustering of time series, or unsupervised classification. Section 3 summarizes the main 

aspects of time series clustering and Section 4 surveys some empirical studies of time 

series classifications in economic and finance. Section 5 concludes. The report contains 

also a more technical appendix on time series clustering. 

 

 

2. Time Series Classification 
 

The classification of a time series could be done in many ways, for example by referring 

to its descriptive statistics or to the random process which constitutes its data generating 

process (DGP). In this section we refer to the second characterisation that gives the 

advantage to consider the time series as an episode of a more complete process (with 

respect to its stochastic features). As we previously argument, the following 

characterisations could be used to perform a supervised grouping of time series. 

For that reason it is convenient, first of all, to distinguish the time series which are 

originate by deterministic function of the time from that originated by a random 

process. 

 

2.1 Deterministic vs. Stochastic 
Most time series deal strictly with deterministic functions of time: ( ) ( )x t f t= . 

Consequently, the characterisation of a time series is determined by the choice of the 

function f(t). In a wider meaning, the function f(t) represents any mathematical 

expression, rule, or table. Because of this, future values of any deterministic time series 

can be calculated from past values. These time series are relatively easy to analyse as 

they do not change randomly, and we can make accurate assumptions about their past 

and future behaviour. 

The literature on random process also consider deterministic processes determined by 

the Wold decomposition theorem. Here we stress that this “deterministic” processes are, 
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in effect, random processes and coincide with the definition of singular processes 

originally given by Wold (1938). 

 

2.1.1 Deterministic Time Series 
In the class of deterministic time series we can distinguish some sub-classes as: 

 

2.1.1.1. Continuous-Time vs. Discrete-Time 
As the names suggest, this classification is determined by whether or not the time axis is 

discrete (countable) or continuous. A continuous-time series will contain a value for all 

real numbers along the time axis. In contrast to this, a discrete-time series comes from 

sampling at non-continuous time, sometime created by using the sampling theorem to 

sample a continuous time series, so it will only have values at equally spaced intervals 

along the time axis. 

 

2.1.1.2. Analog vs. Digital 
The difference between analog and digital is similar to the difference between 

continuous-time and discrete-time. In this case, however, the difference is with respect 

to the value of the function (y-axis). Analog corresponds to a continuous y-axis, while 

digital corresponds to a discrete y-axis. An easy example of a digital time series is a 

binary sequence, where the values of the function can only be one or zero. 

 

2.1.1.3. Periodic vs. Aperiodic 
Periodic time series repeat with some period T, while aperiodic, or nonperiodic, time 

series do not. We can define a periodic function through the following mathematical 

expression, where t can be any number and T is a positive constant: 

 

 ( )   (   ) f t f T t= +          (1) 

 
The fundamental period of function, f(t), is the smallest value of T that the still allows 

(1) to be true. 
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2.1.1.4. Causal vs. Anticausal vs. Noncausal 
Causal time series are time series with values zero for all negative time, while anticausal 

are time series with values zero for all positive time. Noncausal time series are time 

series that have nonzero values in both positive and negative time. 

 

2.1.1.5. Even vs. Odd 
An even time series is any time series f such that ( ) ( )f t f t= − . Even time series can 

be easily spotted as they are symmetric around the vertical axis. An odd time series, on 

the other hand, is a time series f such that ( ) ( )f t f t= − − . 

Using the definitions of even and odd time series, it can be shown that any time series 

can be written as a combination of an even and odd time series. That is, every time 

series has an odd-even decomposition. To demonstrate this, consider the following 

relation: 

 

1 1( ) ( ( ) ( )) ( ( ) ( ))
2 2

f t f t f t f t f t= + − + − −      (2) 

 
It can be seen that ( ) ( )f t f t+ − fulfils the requirement of an even function, while 

( ) ( )f t f t− −  fulfils the requirement of an odd function. 

 

2.1.1.6. Finite vs. Infinite Length 
As the name applies, time series can be characterized as to whether they have a finite or 

infinite length set of values. Most finite length time series are used when dealing with 

discrete-time time series or a given sequence of  values. Mathematically speaking, f(t) is 

a finite-length time series if it is nonzero over a finite interval 1 2( )t f t t< <  where 

1t > −∞  and 2t < ∞ . 

The same classification can applied to the stochastic time series. In the following only 

the stochastic time series will be considered. 
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2.1.2 Stochastic time series: Stationary vs. non stationary 
Stochastic time series is stationary if all its statistical properties do not vary with time. 

Processes whose statistical properties do change are referred to as non-stationary. 

Statistical properties of time series are completely described by its family of finite 

dimensional distributions or its family of moment-generating functions if it exists. Thus, 

stationarity can be defined in terms of invariance of this family with respect the shifts of 

the stochastic time series along the time axis (strict stationarity). Similarly, the family 

of moment-generating functions must be invariant with respect the shifts. As a 

consequence of this property all the moments are time invariant. 

A less strict definition of stationarity disregards the behaviour on the time of all the 

moments of the family of distributions and considers only those of the first and second 

moments (if they exist). 

The stochastic time series for which the first and second moments are time invariant are 

said to be stationary in wide sense or covariance stationary. In this case the correlation 

function ,t sρ , which generally depends on the choice of time t and time s, become 

dependent only on time lag ( )t s− .  

Examples of stationary time series in the discrete domain are given by iid sequences of 

random variables, white noise time series, and all the elements belonging to the class of 

general linear sequences (regular sequences in the sense of the Wold decomposition). 

This last includes the class of Autoregressive Moving Average sequences (ARMA). 

In the case of continuous time domain, we can have the example of time series 

constructed by superpositions of n periodic oscillations of different frequencies (time 

series with a discrete spectrum). The Bochner-Khinchin theorem provides the general 

(spectral) representation of any covariance stationary time series in continuous domain. 

One of the main advantages of the stationary property is given by the possibility to 

apply the ergodic theorem. According to the ergodic theorem, the mathematical 

expectation of both the time series tx  and the product t t kx x + , obtained by averaging 

the corresponding quantities over the whole space of experimental outcomes, can be 

replaced by the time averages of the same quantities. In other words, the ergodic 

theorem shows that it is possible, with probability one, to confine oneself (under 

specific conditions) to a single realisation of the time series and this constitutes a more 

favourable condition for applications to non experimental data. 
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2.1.2.1. Trend stationary vs. difference stationary 
Non stationary time series can be composed by a stochastic covariance stationary 

component and a non stationary deterministic component. On the other hand, a non 

stationary time series can be originated by violations of the stationary conditions. 

For example, let ( , )tu ARMA p q  and the linear trend ( )f t a bt= + , then the time 

series: 

 

( )t tx f t u= +           (3) 

 

is non stationary, because the first and the second moment depend on time. Also the 

process defined by: 
 

1t t tx x ε−= +           (4) 

 
where tε  is white noise, is non stationary because it is a random walk, with variance 

and correlation function which depend on time. 
In the recent literature a distinction between trend stationary (TS) and difference 

stationary (DS) is preferred. This distinction is justified by the potential cost of 

misspecification of the data generating process mainly in terms of forecasting. 

The two classes of non-stationary processes “have radically different implications for 

forecastability when the parameters of the processes are known: forecast-error variances 

grow linearly in the forecast  horizon for the DS process, but are bounded for the TS 

process.  This is unsurprising given that the unit root indefinitely accumulates previous 

disturbances, whereas in the TS process with known parameters, the conditional h-step 

ahead forecast error is simply that period’s disturbance term. Uncertainty plays an add-

on role in the TS process, but is integral to DS”. 

DS process is also named integrated process, indicated by I(d), where d is the power of 

difference operator ∆  applied to the process for obtaining stationarity. A stationary 

process is often named I(0) process, even though is more correct to say “process without 

unit root”. In fact, following the definition of Johansen (1995): 
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A stochastic process tY  which satisfies that 0( )t t i t iiY E Y C ε∞
−=

− =∑  is called I(0) if 

0 0iiC C∞
=

= ≠∑ . 

 

then we can have stationary process that are not I(0) as in the case of the simple 

example: 

 

1t t tY ε θε −= −           (5) 

 
which is I(0) only for 1θ ≠ . 

There are substantial differences in appearance between a time series that is I(0) and 

another that is I(1). In this respect a detailed discussion is given, for example, in Feller 

(1968) or in Granger and Newbold (1977). 

Here we summarise the most evident different behaviours of the two class components. 

(a) If (0)tx I  with zero mean then (i) the variance of tx , is finite; (ii) an innovation 
has only a temporary effect on the value of tx ; (iii) the spectrum of tx , ( )f ω , has the 
property 0 ( )f ω< < ∞ ; (iv) the expected length of times between crossings of 0x =  
is finite; (v) the autocorrelations, kρ , decrease steadily in magnitude for large enough 
k, so that their sum is finite. 

(b) If (1)tx I  with 0 0x = , then (i) variance tx , goes to infinity as t goes to infinity; 
(ii) an innovation has a permanent effect on the value of tx , as tx  is the sum of all 

previous changes; (iii) the spectrum of x, has the approximate shape 2( ) df Aω ω−
 , 

where d is the order of integration, for small ω  so that in particular (0)f = ∞ ; (iv) the 
expected time between crossings of 0x =  is infinite; (v) the theoretical 
autocorrelations, 1kρ →  for all k as t →∞ . 

Other effects of misspecification are linked to the spuriously detrending integrated time 

series. Nelson and Kang (1981, 1983) argue that the regression of a driftless random 

walk against a time trend will result in the inappropriate inference that the trend is 

significant. Further, detrended random walks will exhibit spurious correlation. 

Integrated processes also pose problems for the empirical worker because of the 

probabilistic properties of the time series. In particular, conventional strong laws and 

central limit theory do not apply to standardized sums of the realizations of an 
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integrated process. These probabilistic properties and their statistical implica- tions have 

been extensively analyzed in work by Phillips (1986, 1987a, 1987b) and Phillips and 

Durlauf (1986). 

 

2.1.2.2. With/without seasonal components 
Decomposition of a series into a set of non-observable or latent components may be 

useful in time series analysis. Following the pioneer work of Persons (1919) we can 

think a time series composed of four types of fluctuations: 

 

(1) A long-term tendency or trend. 

(2) Cyclical movements super-imposed upon the long-term trend. These cycles appear 

to reach their peaks during periods of prosperity and their troughs during periods of 

depressions, their rise and fall constituting the business cycle. 

(3) A seasonal movement within each year, the shape of which depends on the nature of 

the series. 

(4) Residual variations due to changes impacting individual variables or other major 

events such as wars and national catastrophes affecting a number of variables. 

 

Traditionally, the four variations have been assumed to be mutually independent from 

one another and specified by means of an additive or multiplicative decomposition 

model. 

In the econometric literature there is a perennial question about the modelling the 

seasonality or disregarding this component using seasonality adjust data: Why do we 

seasonality adjust economic time series? Arguments are abundant on both sides, namely 

those who oppose it and those who agree (see, e.g., Ghysels (1996), Ghysels and 

Osborn (2001) for further discussion and references). 

Ghysels (1988), among others, has argued that “economic theory” does not yield the 

decomposition used to seasonally adjust economic time series. Ghysels, in fact, showed 

that standard economic models do not yield orthogonal decompositions.  

Econometricians have an enormous interest in forecasting and modelling seasonal time 

series. They understood that the inclusion of explicit descriptions of a trend and of 

seasonality in an econometric time series model is appropriate from a modelling and 
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forecasting point of view. Excluding such a description would lead to senseless out of-

sample forecasts. Furthermore, often they are interested in common patterns across 

economic variables, including common trends and common seasonality. 

This is the reason why they claim from data providers to make available the original 

data against the quite recently common practice to provide only so-called seasonally-

adjusted data, obtained by . applying automatic filter routine to original data. 

Following Franses and Paap (2004) we can say that the mechanical seasonal adjustment 

“is rather harmful, at least if one intends to use the estimated adjusted data for 

subsequent modelling. This holds in particular for cases in which one is interested in (i) 

examining the trend and the business cycle, (ii) when one wants to see how innovations 

get propagated through the model, and (iii) when one wants to forecast time series…”. 

“If, in any case, one still is interested in separating seasonality from the time series, one 

seems better off using the so-called model-based methods, instead of the mechanical 

filtering methods of the Census Bureau. These methods also allow one to provide 

confidence bounds around the seasonally-adjusted data, thereby making it explicit that 

such data are estimates and should not be confused with the original data…”. 

The relevance to cluster time series through various synthetic characteristics as, for 

example, their variances or autocorrelation functions, arises from the fact that the recent 

proposal of so-called periodic time series models consider data which seem to have 

different time series properties across different seasons. These properties concern just 

the autocorrelations and the variances, as well as the links between two or more time 

series in a regression context. 

 

2.1.2.3. With/without cyclical (trend/cycle) components seasonal components 
Another time series decomposition often used for univariate time series modelling and 

forecasting: 

 

t t tX u ε= +            (6) 

 
where tu and are referred to as the “signal” and tε the “noise”. The signal comprises all 

the systematic components of models, i.e. trend-cycle and seasonal components, and tε  

is the noise component. This model is used in “signal extraction” where the problem is 
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to find the “best” estimates of the signal given the observations corrupted by noise . The 

“best” estimates are usually defined as minimizing the mean square error. 
Economists and Econometricians put a lot of attention to the trend component, which 

represents long-term smooth variations. The identification and estimation of long-term 

trend have encountered serious difficulties caused by the fact that the trend is a latent 

(non-observable) component. 

Dagum and Cholette (2006) consider “long-period” a relative concept “since a trend 

estimated for a given series may turn out to be just a long business cycle as more years 

of data become available. To avoid this problem statisticians have used two simple 

solutions. One is to estimate the trend and the business cycles, calling it the trend-cycle. 

The other solution is to estimate the trend over the whole series, and to refer to it as the 

longest nonperiodic variation”. 

A distinction between deterministic and stochastic trend is already discussed in the 

previous section. The same distinction can be done between deterministic and stochastic 

business cycle. 

Deterministic models may consist of sine and cosine functions of different amplitude 

and periodicities. Stochastic models, usually of the ARIMA type involving 

autoregressive models of order p with complex roots, have also been used to model the 

trend-cycle. 

The decomposition of economic time series into trend and cyclical components are very 

common in the applied works. The main reason is the attempt to distinguish between 

permanent and transitory behaviours for their important implications in monetary and 

fiscal policy. Examples are given by the measurement of potential output (permanent), 

output gaps (transitory) or the short-term or transitory link between inflation and real 

activity to smooth business cycle fluctuations pursued by the Central Bank. Nelson and 

Plosser (1982) are the precursors in investigating whether macroeconomic time series 

are better characterized as stationary fluctuations around a deterministic trend or as non-

stationary processes that have no tendency to return to a deterministic path. 

The way to formulate a dynamic model for such components is somewhat controversial 

issue. 
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A good discussion of the different issues which deal with the specification of a time 

series model for the trend-cycle component is exposed in Chapter 7 of Harvey and 

Proietti (2005). 

 

2.1.2.4. Lead/lag with respect to a given indicators (ex. business cycle phases) 
The use of lead-lag relations to predict business-cycle turning points dates back to the 

years immediately preceding World War I and the 1920s. In those periods, the US 

forecasting services considered mainly the tendency of stock prices to lead and short-

term interest rates to lag business activity. Later NBER adopted a more complete 

indicator system of coincident, leading, and lagging indicators proposed by the 

researchers Arthur Burns and Wesley Mitchell (Mitchell and Burns, [1938], 1961). This 

original designation of leading indicators was further investigated and refined until a 

composite index based on the 12 most promising leading indicators was first 

systematically released in 1968. Since that time, the composite leading index (CLI) has 

undergone a number of significant revisions. 

Hamilton and Quiros (1996)  summarised in the best way how the researchers tried to 

find what the leading indicators actually lead, from the use of spectral analysis to 

identify the phase shift relating the CLI, to the evaluation of the usefulness of the CLI 

for identifying turning points, until the discussion about their alternative definitions. 

They also test whether the CLI is most useful as a linear predictor or for identifying 

turning points. 

A classification of business cycle indicators may be useful. Conference Board lists the 

“most reliable” leading indicators that have been produced and revised from time to 

time. Cyclical indicators are classified into three categories—leading, coincident and 

lagging— based on the timing of their movements. 

Following the Conference Board descriptions, the coincident indicators, such as 

employment, production, personal income, and manufacturing and trade sales, are broad 

series that measure aggregate economic activity; thus, they define the business cycle. 

Leading indicators, such as average weekly hours, new orders, consumer expectations, 

housing permits, stock prices, and the interest rate spread, are series that tend to shift 

direction in advance of the business cycle. 
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The lagging indicators, in contrast to the leaders, tend to change direction after the 

coincident series. Among the three types of indicators the lagging series would seem to 

have little practical value for business cycles. On the contrary, they are helpful in 

warning us of structural imbalances that may be developing within the economy. 

“These indicators represent costs of doing business, such as inventory-sales ratios, 

change in unit labor costs, average prime rate charged by banks, and commercial and 

industrial loans outstanding. Consumer and social costs are also represented by lagging 

indicators, such as the ratio of installment credit outstanding to personal income, the 

change in consumer prices for services, and average duration of unemployment. Thus, 

an accelerated rise in the lagging indicators, which often occurs late in an expansion, 

provides a warning that an imbalance in rising costs may be developing. 

Moreover, the lagging indicators help confirm recent movements in the leading and 

coincident indicators, and thus enable us to distinguish turning points in these series 

from idiosyncratic movements”. 

Similarly, we can list the cyclical indicators looking at their direction relative to the 

business cycle. In this respect, they may be classified into other three categories— pro-

cyclical, counter-cyclical and acyclical. 

Pro-cyclical indicator is one that moves in the same direction as the economy. So if the 

economy is increasing, this indicator is also increasing, whereas if we are in a recession 

this indicator is decreasing. Gross Domestic Product (GDP), Consumption, Price 

Deflators of GDP, Personal Savings Rate, Employment - Payroll Jobs, Average Hourly 

Earnings, Employment Cost Index, Producer Price Index (PPI), Consumer Price is an 

example of a pro-cyclic economic indicator, are some examples of pro-cyclical 

indicators that are usually also coincident.  

(Fixed) Investment, Change in Inventories, National Association of Purchasing 

Managers, Index of Leading Economic Indicators, Consumer Confidence, are also pro-

cyclical indicators but usually of leading type. 

Countercyclical indicator is one that moves in the opposite direction as the economy. 

The unemployment rate gets larger as the economy gets worse so it is a counter-cyclic 

economic indicator. It is also of lagging type. Government Consumption, Net Exports, 

International Trade (Exports, Imports, Trade Balance) are counter-cyclical and usually 

coincident indicators. 



17 
 

An acyclic indicator is one that has no relation to the health of the economy and is 

generally of little use. 

 

2.2 Discriminant Analysis, Vector Support Machine and Cluster 
Analysis 
Following the interesting paper on Discriminant Analysis and Clustering by 

Gnanadesikan et al. (1989), we can distinguish two broad categories of classification 

problems. 

In the first, one has data from known or pre-specifiable groups as well as observations  

from entities whose group membership, in terms of the known groups, is unknown 

initially and has to be determined through the analysis of the data. In statistical 

terminology it falls under the heading of discriminant analysis. Discriminant analysis, 

also known as supervised classification, therefore uses known classifications of some 

observations (the training set) to classify others. The number of classes is assumed to be 

known. 

Recent advances in statistics, generalization theory, computational learning theory, 

machine learning and complexity have provided new methods for supervised 

classification. Among these new methods, Support Vector Machines have attracted 

most interest in the last few years. Support Vector Machine (SVM) is a novel learning 

machine introduced first by Vapnik (1995), an algorithm based on the maximization of 

the margin of confidence of the classifier (where the margin is related to the minimal 

distance between the points and the classifier in some Euclidean space). Some studies 

reported that SVM was competitive and outperformed other classifiers including neural 

networks and linear discriminant analysis in terms of generalisation performance. 

On the other hand there are classification problems where the groups are themselves 

unknown a priori and the primary purpose of the data analysis is to determine the 

groupings from the data themselves so that the entities within the same group are in 

some sense more similar or homogeneous than those that belong to different groups. 

This topic will be described in the following sections. 
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3. Time series clustering 
 

Following the introduction, the classification of time series using clustering approaches 

belongs to the “unsupervised classification schemes”. In this section we review the 

purposes and the approaches of time series clustering following the contributions of 

Liao (2005) and, Xu and Wunsch (2005, 2009) and with reference to a set of works 

appeared in the literature of different disciplines including economic and finance but 

also computer sciences and physic. 

In origin, clustering methods have been applied for the identification of latent structures 

on static data sets. More recently, the approaches focusing on organizing data using 

concepts of similarity and aiming at maximizing the within groups similarity and, at the 

same time, minimizing the between group similarity, have been applied to time series 

data sets for the purposes listed in the introduction. 

Following Han and Kamber (2001), and Liao (2005), clustering methods applied to time 

series data could be associated to three main categories: partitioning methods, 

hierarchical methods and model-based methods. Two other groups of clustering 

approaches cannot be easily extended to the time series domain: density-based methods 

and grid-based methods. For a description of these approaches see Han and Kamber 

(2001). 

This contribution will present a review of the most known and used clustering 

approaches but with a subtle distinction from the statistical literature. In fact, despite we 

will group clustering algorithms into the classical three sets previously mentioned 

(partitioning, hierarchical and model based), our definition of model based clustering 

methods is different from the standard one. We define as model based (or statistical) a 

clustering method that uses an algorithm possibly based on a statistical model, but 

which cannot be considered as a special case of partitioning or hierarchical methods. 

The distinction will become clear with an example: a hierarchical clustering based on 

the estimated coefficients of an ARMA model is a model based clustering in the 

traditional interpretation, while in this paper it is a hierarchical clustering. We think this 

alternative approach avoids possible confusion between the method to be used for 

creating the groups and the additional elements that need to be specified when 

considering a clustering exercise: the grouping quantity, or distance between objects, 
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and the inputs of the grouping method. Within the inputs, and again following Liao 

(2005), we may identify three possible groups of approaches: the one passing to the 

grouping method the entire time series (the raw data based case), the approaches passing 

some features of the time series (moments, correlations, periodograms etc.), and the 

cases where the inputs are coming from an estimated model or statistical procedure 

which are not labelled as features (such as the coefficients of ARMA models, a wavelet 

transformation or the forecast densities) which are called model based. Within our 

distinction of clustering methods (the grouping rules), model based features could be 

used as input for partitioning or hierarchical clustering while the traditional statistical 

literature classify all approaches using model based input as model based approaches. 

In this section we will review the clustering methods, the distances proposed by the 

literature, and then describe the possible different inputs that could be passes to a 

clustering algorithm. Furthermore, in the next subsection, we will also provide a general 

discussion on which are the problems one may face when dealing with a time series 

clustering case. Note that, unless differently and explicitly specified, clustering and 

classification will be used as synonyms within this section. 

 

 

3.1 Distance measures 
 

The purpose of cluster analyses is to determine a set of groups of objects which are 

similar or close with respect to a number of features. A central element is thus given by 

the criterion defining the similarity or dissimilarity between objects. Using a more 

general formulation, we could reason in term of proximity measures, as in Xu and 

Wunsch (2009), where proximity could be either similarity or dissimilarity. Within 

clustering analysis, groups are created in order to: 

 

maximize similarity within groups and/or minimize similarity between groups, 

 

or 

 

minimize dissimilarity within groups and/or maximize dissimilarity between groups. 
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Similarity and dissimilarity measures (or in one term proximity measures) have thus a 

central role. The literature on clustering and classification includes a large number of 

distance measures. Some of them are collected in Appendix A.2. At this point we 

introduce the most common distance, the Euclidean, which will be used in the empirical 

applications of the companion Technical Report on Classification Techniques for Time 

Series Data (GRETA 2009). 

Given two vectors iy  and iy  of dimension l  that may contain either a time series or one 

or more quantities derived from a time series, the Euclidean distance is defines as 

follows: 
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In the following, unless differently stated, we assume the Euclidean measure is used. 

However, the reader should note that other measures could be considered, taking into 

accounts the comments included in Appendix A.2. 

 

3.2 Clustering methods 
 

As we previously stated, from a general point of view, the approaches or methods which 

could be followed for clustering time series could be grouped into three main sets: 

partitioning methods, hierarchical methods and model-based methods. 

 

3.2.1. Partitioning methods 
 

Partitioning methods points at grouping a set of M time series into K≤M grou ps 

containing at least one element. The most known methods are the k-means and k-

medoids algorithms described in McQueen (1967) and Kaufman and Rousseeuw 

(1990), respectively. These approaches provide a crisp partition of the M time series 

(objects belong to just one single cluster). These approaches may be generalized 
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allowing objects to belong with a given probability to more than one cluster (or, in other 

words, the objects have a different degree of similarity with respect to more than one 

cluster). These extensions are given by the fuzzy c-means and fuzzy c-medoids 

algorithms, see Bezdek (1987) and Krishnapuram et al. (2001), respectively. 

The idea behind partitioning methods is also at the base of genetic algorithms 

implementing clustering methods. For examples on this literature see Estivill-Castro and 

Murray (1998), Hall et al. (1999), Krishna and Murty (1999) and, Meng et al. (2002). 

In Appendix A.3 we provide some details on two approaches: the K-means and fuzzy c-

means algorithm, and the Genetic Algorithm for Medoid Evolution (GAME). The K-

means method could find relevant applications in time series clustering given its 

purpose of grouping subjects by minimizing the distance with respect to the group 

centre. For instance, when the purpose of the clustering is the identification of series 

characterised by similar seasonal patterns, the input of the clustering algorithm could be 

either by the periodogram of the series at given frequencies, or the seasonal patterns 

extracted by appropriate models (for instance by TRAMO). The K-mean approach will 

provide groups which can be interpreted as series characterized by close seasonal 

behaviours. Note that the groups will not define a linkage structure across the series, 

this additional feature is given by the methods included in the following section. 

 

3.2.2. Hierarchical methods 

 

These methods create a tree-based structure which represents a sequence of nested 

partitions of the M series to be grouped.  Hierarchical methods could be further 

distinguished into agglomerative and divisive depending on the starting point of the tree 

structure. Agglomerative methods start from singleton clusters and end to a cluster 

including all series while divisive methods do exactly the opposite (from the entire set 

of objects to singleton clusters). 

Hierarchical approaches are generally graphically represented by dendograms or binary 

trees and the final clustering results are obtained by cutting at some level the 

dendrogram. 
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Figure 1: a Dendrogram 

 

From the computation point of view, divisive methods are more intensive given that for 

a collection of M objects they need to consider 2M-1-1 possible subsets. Agglomerative 

methods are thus generally preferred, even if they are still computational intensive 

methods requiring a number of objective function evaluations which is of order O(M2). 

Agglomerative methods are implemented through a sequence of merge operations that 

build up clusters of objects. The approach starts with a set of M singleton clusters which 

are then subsequently grouped on the basis of a distance measure. Then the approach 

ends when all objects are included in a single group. Appendix A.4 reports some 

technical details of the agglomerative approach. 

Hierarchical methods have been often used in economic and financial applications on 

time series clustering, see the following section for some examples. Inputs provided to 

hierarchical methods could be of different nature, starting from components capturing 

the dynamic of series (such as the correlation functions, the periodogram), or the series 

themselves. The resulting groups could be identified as set of series sharing common 

patterns or behaviours, with interpretations similar to those provided by partitioning 

methods. The additional element is given by the hierarchical structure, which contains 

information about the closeness of group of series. This could be of interest when the 
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classification based on the seasonal patterns include, for instance, industrial production 

indices extracted from the NACE classification up to some precision. The NACE 

classification has itself a hierarchical structure, and the clustering approach could 

evidence which component of a lower level precision in the NACE classification is 

closer to the upper level component. One question we could answer is, for instance: 

which industrial production index of the one digit NACE classification is closer in term 

of seasonal component to the total industrial production index? 

 

[TO BE COMPLETED with contributions from Everitt for a deeper comparison across 

methods and from Xu and Wunsch, section 3.4, for more advanced approaches] 

 

3.2.3. Model-based methods 
 

In this group we include clustering approaches based on neural networks and with 

specific algorithms generally based on estimated models and statistical approaches 

which are not included in the partitioning and hierarchical methods. The literature often 

includes in this group partitioning or hierarchical clustering exercises for which the 

inputs are given by the outcome of estimated statistical models, such as the coefficients. 

We do not follow this standard practice and we consider the previous as special 

hierarchical and partitioning approaches. 

 

3.2.3.1 Neural networks and Self-organizing maps 
 

Neural networks are one example of model-based approaches for clustering and 

classification of time series. A specific class which has proven to be useful in this 

framework is that of self organizing maps, Kohonen (1990), and more recently Kiang 

(2001). In these peculiar networks, the inputs are represented by the feature matrix and 

the outputs are given by a map of neighbourhood relations across objects. By 

construction, self organizing maps perform clustering with the same spirit of k-means 

algorithms, with the advantage of not requiring the a-priori definition of the number of 

clusters. 
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Given the peculiar features of self organizing maps and, in general, of neural networks, 

these methods are appropriate for clustering exercises defined over feature vectors with 

the same dimension across objects. Consequently, raw data approaches with neural 

networks are discouraged. Wang et al. (2004) includes an example on the use of self-

organizing maps where inputs are given by time series features. 

 

3.2.3.2 Model based approaches 
 

As we previously stated, we label as model based the clustering approaches which are 

using a specifically designed algorithm which is using model outcomes, or clustering 

approaches which are nested in a more general model estimation method. Due to the 

specificity of each algorithm, we will not present them in details but simply mention the 

works which are, in our opinion, the most interesting for economics and financial 

applications. 

An example of the first group of approaches, specific algorithms not included in the 

partitioning or hierarchical classes, is in Otranto (2008). His algorithm is based on a 

subsequence of tests and comparison of time series on which variance models have been 

fitted. The method could be considered as an variation of the approach in Corduas and 

Piccolo (2008) and is related to that in Maharaj (2000). 

Xiong and Yeung (2004), present an approach for clustering time series on the basis of 

mixture models following McLachlan and Basford (1988). They proposed an ARMA 

mixture approach with Bayesian elements to cluster a set of K time series into M groups 

whose components share a common data generating process. The main advantages of 

this class of methods are: the number of classes is identified by the model; they can 

handle series with different sample length given that the approach is based on a 

likelihood evaluation. A similar model based approach is in Oates et al. (2001) that 

combine Dynamic Time Warping and Hidden Markov Models for clustering of time 

series. 

Finally, Beran and Mazzola (1999) proposed an interesting model based approach based 

on the application of smoothing filters of different amplitude to a set of time series. We 

believe this method has some potential for applications in economics and finance. 
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3.3 Defining clustering inputs 
 

The grouping rules (the clustering method) and the distance measures are the two 

technical elements characterising a clustering exercise. A the third element is needed to 

complete from a methodological point of view the clustering application: the input of 

the clustering method, which, from a general point of view could be interpreted as a 

function of the empirical data. 

Following Liao (2005) we group the possible inputs into tree sets: i) Raw data based: 

these methods use the time series as an input; ii) Feature based: they convert the time 

series into a set of features such as moments, correlations or cross-correlations, 

periodograms, among others; iii) Model based: these approaches consider as inputs 

elements coming from an estimate of a statistical model. 

 

3.3.1 Raw data based methods 
Raw data based methods are generally subject to a curse of dimensionality in the time 

series context. In fact, each observation over time of all time series is considered as a 

distinctive and relevant element by the clustering algorithm. As a result, on the one side, 

raw data based methods will create groups of series with similar patters (which could be 

useful in some financial and economic applications, such as the extrapolation of 

seasonal patterns or of pattern regularities); on the other side, the computation 

complexity increases with the sample length. 

Raw data based methods are relevant if the purpose of the clustering is the identification 

of subsequences with multiple occurrences over time on a single time series. However, 

this has a limited applications in economics, but a far more relevant interpretation in 

finance where subsequences may be associated to the “figures” popularized by technical 

analysis. 

We note that, generally speaking, raw data based consider as inputs the entire series. 

However, the time series could be provided to the clustering algorithms in their levels, 

period growth rates or annual growth rates. As a consequence, clustering exercises 

could present group of time series characterised by similar patterns on the levels (with 

possible scale effects), or over the growth rates. In this last situation, the groups could 

contain some relevant information with respect to the evolution of the business cycle. 
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In addition, the inputs of raw data based method could be represented by the 

components of macroeconomic time series, that is, the trend-cycle, seasonal and 

irregular component. In this additional circumstance, raw data based approaches allows 

the creation of groups characterised by similar trend-cycle evolution (or trend-cycle 

growth rates) with relevant application in business cycle (growth cycle) dating and 

detection. Alternatively, we may group time series of business indicators characterised 

by similar seasonal patterns allowing the application of similar seasonal filters. 

Finally, raw data based methods represent the only case where the dynamic time 

warping measure could be used. In fact, dynamic time warping detects similarities 

between time series patterns irrespectively of scale effects. We also stress that raw data 

based approaches can be applied over a set of time series available over the same 

sample period and with the same sampling frequency. 

The literature has proposed some approaches trying to reduce the curse of 

dimensionality in raw data methods. An interesting example in finance is given by 

Pattarin et al. (2004) that overcome the curse by extracting the principal components 

from the observation matrix (of time series observations), or Gavrilov et al. (2000) that 

compress the time series into fewer points. 

We also include within the raw data based approaches all the studies suggesting the use 

of wavelet transformations of given time series, see Povinelli and Feng (1998), Chan 

and Fu (1999), Lin et al. (2004), and Zhang et al. (2006). A related approach we include 

within raw data methods is that of Beran and Mazzola (1999), that propose a 

hierarchical smoothing modelisation combining nonparametric kernel smoothing and 

parametric nonlinear regressions. They applied the proposed approach on musical time 

series but we believe interesting applications could be done also in economics and 

finance. In fact, within their framework, series may be represented as a combination of 

elements active at different time resolutions. This approach reminds the existence of 

global and local trends popularized in the technical analysis literature. 

 

3.3.2 Feature based methods 
An alternative and more effective approach to tackle the curse of dimensionality is to 

transform the time series into a smaller set of features. The possible choice of feature is 

quite extensive. We list here a set of the most appropriate for economic and financial 
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applications: i) Moments of the series (preferably over growth rates to avoid scale 

effects) up to orders 4 (higher orders could be used but with an increase in the 

uncertainty of their population values); ii) The Auto Correlation Functions or Partial 

Auto Correlation Functions that could be used to create groups of series characterised 

by similar dynamics. In this case a maximum lag should be fixed as a function of the 

sample length; iii) The periodogram evaluated at a common set of frequencies across all 

the time series considered; iv) The turning point dates associated to the time series. 

The elements in points ii) and iii) can be evaluated over time series levels and growth 

rates if the purpose of the analysis is an economic application involving macroeconomic 

non financial data. Differently, in finance or in economic applications involving 

financial data, elements in ii) and iii) should be determined over growth rates and 

squared growth rates. 

In addition, we note that the reliability (asymptotic properties) of features in i)-iii) is 

associated to the sample dimension, therefore calling for minimal sample dimension for 

robust and reliable clustering exercises. 

By construction, feature based methods could be applied to time series of different 

length, the only impact being the reliability of some of the features included in the 

feature matrix, but without strong impacts on the overall clustering procedure. 

Several papers proposed feature based clustering approaches with applications in 

economic and finance. Within the possible choices of moments and features 

characterizing the time series evolution, the variance plays a prominent role, in 

particular when dealing with financial variables. Among the studies dealing with the 

clustering of financial time series, we mention the approach of Micciché et al. (2003), 

one of the few classifying time series using a proxy of the variances, defined as 
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where the day t standard deviation is a function of the minimum and maximum price 

observed within the day. An interesting example combining different features is in 

Wang et al. (2004). 
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From a more general point of view, many contributions focused on the clustering of 

time series in the time domain, but some studies also considered the classification using 

frequency domain information. Those studies, starting from the contribution of Agrawal 

et al. (1993), are mainly based on the estimate of the power spectrum of a time series, 

which is made by the periodogram 
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where Ti is the sample dimension of series i and hω  is the frequency at which the 

periodogram is evaluated. Generally, the periodogram is computed for values of hω  

between 0 and π (or 0 and ½ in a normalized representation) which are generally fixed 

using the relation 
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where [ ]a  denotes the integer part of a. In this setup, features of the time series are 

represented by the periodogram values at a given set of frequencies. 

As we already argument, within the clustering framework, a time series database could 

include series of different length. The approaches based on the periodogram are flexible 

enough to allow the classification irrespectively of the sample length. In fact, the 

periodograms of two series i and j, characterised by different lengths could be evaluated 

at a common set of frequencies. For instance, as discussed in Caiado et al. (2006, 2007, 

2009), we could use the frequencies defined as in the previous equation using the 

smallest sample length, or add zeros to the shorter series to increase the sample length 

up to the desired value (the zero-padding procedure), or we could interpolate the 

periodograms at missing frequencies. In all cases, the feature vector would then include 

a set of periodogram values computed over a common set of m frequencies, and the 

distances could be determined, for instance, with the Euclidean metric as in Caiado et 

al. (2006, 2007, 2009), such as 
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An additional feature of the use of periodogram ordinates in the feature vector is the 

existence of an asymptotic distribution for the ordinates. This allows the construction of 

a test for the equivalence of two periodograms evaluated on a common set of 

frequencies and thus the construction of a clustering exercise similar to that in Corduas 

and Piccolo (2008). 

Caiado et al. (2006) contains an interesting comparison of clustering algorithms using 

different inputs, including raw data, features such as Auto Correlation Functions, Partial 

Auto Correlation Functions, Periodograms (standard and normalized), and estimated 

models (ARIMA models). They also consider a variety of distance measures from the 

Euclidean, the Mahalanobis, the AR metric of Piccolo (1990), and the Kullback-Liebler 

distance. Differently, Alonso et al. (2008) propose the use of the integrated periodogram 

to classify series 
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where m is again the total number of Fourier frequencies used for a series. The 

normalization of the integrated periodogram is not fundamental and may be excluded. 

The normalized version puts some emphasis on the shape while the un-normalized 

periofograms focus on the scale. The introduction of the integrated periodogram has 

many advantages: it provides smoother patters, it has good asymptotic properties and, 

its distribution always exists. In addition, it completely determines the underlying 

stochastic process. However, it also has a drawback: it does not work for non-stationary 

time series. Notably, Alonso et al. (2008) also introduce a distance measure based on 

integrals and two clustering algorithms for this periodogram based distance which are 

derivations of the K-medoid approach. 
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As noted in Caiado et al. (2009), the use of autocorrelations as components of the 

feature vector would produce similar results to the use of periodogram ordinates over a 

set of common frequencies. 

Despite the appeal of periodogram ordinates as clustering inputs, Wang and Wang 

(2000) point out this approach could not properly identify the dissimilarities across the 

time series. The suggest to overcome this limitation by smoothing the periodogram 

ordinates by moving averages or weighting functions. 

 

3.3.3 Model based methods 
This third set of clustering methods aims at passing to the clustering algorithm the 

outcome of an estimated model such as: the estimated coefficients, with or without their 

covariance, in a raw format or after a transformation, or the forecast densities of a 

model. 

Within a time series framework, the fitted models may belong to two large classes, the 

ARIMA models popularized by Box and Jenkins (1979) and the structural models by 

Harvey (1991). Both approaches provide as outputs of the estimation process a vector of 

estimated coefficients and a covariance matrix across estimated values. Passing these 

quantities to a hierarchical clustering algorithm may be combined with appropriately 

designed distance matrices, see section 3.2.7. 

A different, but related, approach is that in Piccolo (1990), and Corduas and Piccolo 

(1999, 2008). The authors propose to use as features of each time series the 

autoregressive coefficients of the AR(∞) expansion of the best fitted ARIMA model . 

They then consider the following Euclidean distance 
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where ,i kπ  is the lag k coefficient of the AR(∞) representation of the ARIMA model 

fitted on series i. Note that only K lags are used, allowing thus, by construction, to 

compare series of different lengths. Note that this distance is also called AR metric. The 

approach of Piccolo (1990) has a further advantage: the AR metric has an asymptotic 
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distribution allowing the construction of inferential procedures for the clustering of time 

series. Corduas and Piccolo (2008) apply such an approach, using a dichotomous 

variable derived from the AR metric and identifying pairs of time series that were 

accepting the null hypothesis of zero AR metric. In such a case, permutation algorithms 

have been used to create distance matrices which are block-diagonal. 

Finally, Corduas and Piccolo (2008) also note that the AR metric is similar to a 

clustering based on the forecasting functions of ARIMA models given the relevance of 

AR(∞) coefficients in the prediction from that model class. 

 

3.4. The optimal selection of group numbers and the comparison of 
alternative partitions 
 

In the previous sections we presented alternative approaches for clustering data, in 

particular dealing with hierarchical and partitioning methods, and allowing for different 

inputs. However, on the one side, partitioning methods requires a-priori the definition of 

the number of clusters in which the collection of objects has to be divided, while, on the 

other side, both methods call for approaches allowing a comparison of the groups 

created using different algorithms or different data input. 

The literature provides a number of methods for the comparison of clustering outcomes, 

distinguishing the case where the true classification is known, from the one where the 

true classification is unknown. Given the purposes of this report, we present in the 

following some criteria for the comparison of alternative classifications when the true 

groups are not known. Some details and references for criteria requiring the knowledge 

of the true classification could be found in Xu and Wunsch (2009). 

If we consider a hierarchical clustering exercise, the standard tool for its validation is 

the Cophenetic Correlation Coefficient, see Rohlf and Fisher (1968) and Jain and Dubes 

(1988), among others. This measure assumes values between -1 and 1, and values close 

to 1 suggest a good agreement between the hierarchical structure and the data. As a 

result, given two alternative hierarchical clustering outcomes, the one with higher 

Cophenetic Correlation should be preferred. 

Differently, when partitioning methods are compared, rules for the optimal choice of the 

number of clusters should be considered. In this case the literature contains several 
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methods than can be used. Without reporting them in details, we just mention that the 

basic idea is to construct a statistics that has to be maximized over the possible range of 

K, the number of groups. A survey of the methods, indicators and quantities could be 

found in Xu and Wunsch (2009), Milligan and Cooper (1985), and Gan et al. (2007). 

 

 

3.5 Time series clustering: problems and solutions 
 

The clustering of time series is affected by a number of problems that may limit its 

usefulness. Some elements have already been mentioned in the previous sections. Here 

we recall them providing some additional comments. 

In principle, clustering techniques requires that the objects of study have the same 

dimension. Within a time series framework, however, this may not be the case. In fact, 

many economic or financial time series may have either different lengths, or different 

sampling frequencies. The reasons for this different size of the objects could be of 

different nature: revisions of economic series, newly added economic indicators, or, 

simply, unavailability of old data (as an example, economic data are not available for 

eastern European countries for years before mid 80’s). 

However, despite the different sample length of frequency, a time series clustering 

exercise could be in any case of interest. In such a situation, some approaches are 

feasible others are not. In fact, raw data based time series clustering approaches cannot 

be applied, while feature or model based approaches are feasible since they convert 

series of different length into vectors of features or parameters which are comparable 

across the objects. 

Feature based and model based approaches should be also preferred when dealing with 

large datasets since they allow a relevant reduction of the computational burden behind 

any time series clustering method. 

A second aspect that needs to be mentioned is the clustering of multivariate data. This 

may apply when the objective is the clustering of subjects characterised by a collection 

of time series. As an example, this may realize when we are interested in clustering 

countries by using the time series data of many economic indicators. Unfortunately, the 



33 
 

literature on these approaches is limited and computationally demanding. Some result 

are included in Maharaj (1999 and 2000). 

The statistical literature considers also the clustering of entire time series paths for two 

main purposes: whole matching, that is grouping series with similar patterns, or 

subsequences matching, that is, searching for peculiar behaviours that repeat over time 

in the same series or in different series. However, subsequent matching may present 

some problem, see Keog et al. (2003), and Chen (2007) for a discussion on the 

interpretation problems of time series subsequences clustering. Further problems 

associated with whole range matching is given by the curse of dimensionality, time 

series may be quite long and create computational problems. These aspects favours the 

use of feature based approaches for time series clustering. 

 

 

4. Applications in the Literature 
 

We conclude this report with a section devoted to the economic and financial 

applications of time series clustering methods. Despite the possible applications are 

numerous, the literature includes a limited number of papers considering time series 

clustering of economic data. Many more contributions are related to financial data. 

References to applications in other areas of statistics are available in Liao (2005). 

 

4.1 In economics 
In Economics, most of the time series clustering applications available in the literature 

use Industrial Production data. 

Caiado et al. (2006) present a clustering example based on a set of US seasonally 

adjusted industrial production indices showing that the clusters may be associated to 

different average growth rates over the sample period used. Differently, Corduas and 

Piccolo (2008) report an empirical application of the AR metric of Picoolo (1990) over 

a set of Industrial Production Indices for Italy. Their classification is based on a distance 

matrix defined over the rejection of the null hypothesis of equal ARIMA structure of 

pairs of series. Then, to perform the clustering they used a permutation algorithm. 
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Caiado et al. (2007, 2009) analyse the seasonally adjusted industrial production indices 

of many European and industrialised countries using a frequency domain distance. 

Their study reports that the countries are clustered in groups homogeneous with respect 

to the countries degree of development. Finally, Vilar et al. (2009) extend Alonso et al. 

(2006) on the use of L-norms based forecast densities and present an example based on 

the industrial production indices of 21 countries. They note that the clusters based on L1 

norm should be preferred. A related work is that of Galbraith and Lu (2001) which 

propose and discuss the use of clustering techniques in the evaluation of industrial 

performances. 

Other authors consider general macroeconomic data for time series clustering. For 

instance Crone (1999) uses macroeconomic data to construct an index for the US 

continental contiguous states. The basic data could be considered as features 

characterizing the economy of each state. The index has been then used to cluster states 

into economic regions. 

Similarly to Corduas and Piccolo (2008), Maharaj (2000) considers the clustering of 

time series using an agglomerative model based approach which includes a hypothesis 

testing procedure. The paper includes an empirical examples on Australian dwelling 

units financed by all lenders. 

Few papers consider clustering exercises with a focus on seasonal patterns. Among 

these we cite Kumar et al. (2002) a study that propose a distance measures for series 

characterised by the presence of a seasonal pattern. They applied their methodology to 

the clustering of retail data classified by departments (shoes, shirts, jewellery...) and 

classes (men’s winter shoes, formal shirts...). They also include a comparison of their 

distance with traditional ones showing its superiority. 

Some authors consider different type of data. Di Matteo et al. (2004) perform a cluster 

analysis of US interest rates by using a correlation based distance and an ultra-metric 

distance for hierarchical clustering. Their results points at the presence of clusters 

characterised by interest rates with close maturities (a somewhat expected outcome). 

Alonso et al. (2006) consider an application to CO2 emissions using hierarchical 

approaches based on an L2 norm between forecast densities. Finally, Xiong and Yeung 

(2004) propose and apply a model based clustering approach on Personal Income and 

Population data of US states. They include a comparison of their outcome with those of 
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Kalpakis et al. (2001), that used the same dataset with more traditional methods. Similar 

data are also used in Zhang et al. (2006). 

 

4.2 In finance 
Financial applications of time series clustering are much more diffused in the scientific 

literature than economic examples. The main reason is given by the possible uses of 

clusters in the exploratory analysis of financial market data. Despite these applications 

are not the primary concern for Eurostat, we believe they represent interesting examples 

on the possible uses of time series clustering. In addition, the methodology here 

employed could be applied and generalized for the use with macroeconomic data, 

structural indicators, and short term business statistics. Some possible extensions of the 

methods to areas of interest of Eurostat are mentioned in the following. 

Panton et al. (1976), probably the first paper on clustering financial time series. They 

provide an application based on correlation distances across equity market returns. In 

the same field, the exploratory analysis of financial data, we include the Mantegna 

(1999) study the clustering of Standard and Poor’s 500 and Dow Jones Industrial 

Average components using a distance based on the correlation between asset returns. 

The results included in this paper show evidence of discrepancies between the minimum 

spanning tree derived from the clustering procedure and the classification of companies 

using economic sectors and subsectors. Notably, in the hierarchical clustering procedure 

the author uses the subdominant ultrametric distance presented in Appendix A.2. 

Techniques similar to those of Mantegna could be employed for the comparison of an a-

priori classification, for instance the NACE, and the hierarchical structure creating by a 

clustering exercise on economic time series. Approaches similar to that of Mantegna 

(1999) are those in Bonanno et al. (2000), that study the association between financial 

markets by means of a clustering of stock market indices. This paper considers 

minimum spanning trees based on a correlation-based distance and determine a 

hierarchical structure across a set of 51 world equity indices extracted from the Morgan 

Stanley Capital International database. Examples based on few time series could be 

easily replicated in the economic context by clustering the same time series (say GDP) 

across the EU member states. 
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An interesting example, for the methods used in comparing the clusters created by 

modifying the features provided to the grouping algorithm is the one in Gavrilov et al. 

(2000). The authors consider the clustering of S&P 500 components by mean of 

hierarchical approaches, they report the results for different features, and compare the 

outcomes. 

Few contributions considered the clustering of interest rates and bond indices time 

series. Bernaschi et al. (2002) classify US bond using a correlation based metric and 

show that clusters are given by bond with close maturities. Similar, and expected, 

results are provided by Di Matteo and Aste (2002), that classify Eurodollar forward 

rates using correlation based distances and ultrametric distances for hierarchical linkage 

of clusters. 

Financial applications also include model based clustering. Otranto (2004), Otranto 

(2008), and Otranto and Trudda (2008a,b) consider the classification of financial data 

using the metric proposed by Piccolo (1990) applied to GARCH parameters. Their 

results highlight that clustering approaches could be used for grouping time series 

characterised by similar variance dynamic patterns. The papers contain also some 

results associated with the comparison through statistical tests of the distances between 

assets and provide a specific agglomerative algorithm. The ideas included in the 

previous papers could be extended and applied to economic data with moderately high 

frequency (weekly) or with economic series strongly related to the financial markets 

(interest rates) that could present heteroskedasticity. 

Some authors consider financial applications for testing new distances or clustering 

methods. For instance, Bonanno et al. (2003) consider a minimum spanning tree derived 

from a clustering algorithm using the correlation distance defined in equation (A.15). In 

their analysis they focus on a set of more than one thousand stocks traded in the New 

York Stock Exchange and compare the minimum spanning tree clustering with the 

classification of companies based on the economic sector. They show evidence of the 

presence of a hierarchical structure not completely associated to the economic sectors. 

Similar approaches could be followed, for instance, in the clustering of sections of the 

Eurostat database containing a large number of series. This could be the case of the 

Labour Market data, or of the External Trade domain. 
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Micciché et al. (2003, 2004) focus on the clustering of highly capitalised stocks traded 

at the New York Stock Exchange by using a distance metric based on the correlations. 

This study has some relevant differences with respect to similar contributions. In fact, it 

uses the Spearman rank correlation instead of the standard Pearson correlation, it 

verifies the stability over time of the clusters composition, and it also focus both on 

asset returns and on asset volatilities identified from a proxy based on the range. The 

reported results point out the lower stability of clusters based on the volatility compared 

to those derived from returns. This study could be of interest in economic applications 

where series included in a domain are characterized by extremely different levels of 

volatility. 

Few examples consider clustering of managed financial products. Pattarin et al. (2004) 

present a GAME clustering for Italian mutual funds for the purposes of comparing an a-

priori declared investment style with a data-driven grouping. The results reported show 

evidence of a relevant agreement between the two classifications with some mutual 

funds sensibly deviating. A similar approach could be applied in the clustering of 

National Accounts of different countries. In fact, National Accounts as a whole for a 

single country could be considered as a portfolio of assets, and the GDP may represent 

the total portfolio value. 

In a framework similar to that of Pattarin et al. (2004), we mention Dose and Cincotti 

(2005), and Lisi and Corazza (2008). In particular, Dose and Cincotti (2005) introduce 

the clustering as a tool for passive portfolio management in the identification of index 

tracking stocks. Their purpose is to cluster assets in groups which are closely 

reproducing (or not reproducing) a reference index. In their analysis they consider both 

the correlation based distance as well as the distance based on the percentage difference 

across prices. They show, by mean of a complete linkage agglomerative approach, how 

the clustering allows a reduction in the tracking errors of passive management. This 

study could be of interest in business cycle applications where the business cycle itself 

could represent the reference index, and the purpose could be the identification of 

coincident, leading and lagging indicators. 

Basalto et al. (2006) use Hausdorff clustering for the stocks included in the Dow Jones 

Industrial Average index. As proximity measure they adopt the distance based on the 

linear correlation coefficient described in (A.15) and computed over the log-returns of 
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the assets. Their analysis, despite based on few variables (the index contains 30 

variables), contains some interesting results related to the cluster composition and their 

evolution over time. The most interesting aspect of this study is given by the attempt of 

checking the evolution over time of the clusters and of their components. Clearly, such 

a purpose could be of interest in economic applications where subject under study are 

member states and the interest could be in the identification of the stability of groups 

containing, for instance, developed markets and transition markets. The movement from 

transition to developed group may have relevant impacts on policy choices. 

Caiado and Crato (2007) used a model based clustering with distance measures defined 

over the periodogram and considering a set of stock market indices. Their approach is 

based on the estimate of GARCH models on series of different lengths. Notably, the 

authors point out how the distances based on the correlation completely fail in capturing 

the dynamics of the time series and is not suitable for series of different lengths. This 

last result deserves particular attention when considering business cycle applications of 

clustering, where the dynamic of series could play a relevant role. 

 

 

5. Conclusions 
 

This document summarizes some of the elements characterizing the clustering of time 

series. Beside the theoretical construction of clustering exercises, we devoted the largest 

part of our report to the possible definition of clustering inputs and to the examples 

already included in the statistical literature. In addition, we make a clear distinction 

between supervised classification, which has been discussed in Section 2, and 

unsupervised classification, or clustering, which was presented in Section 3. 
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Table 1: Lance and William’s parameter combination for agglomerative hierarchical clustering algorithms 

 

Clustering 

algorithm 
iα  jα  β  δ  Distance ( )( ), lijd y y  

Single linkage ½ ½ 0 -½ ( ) ( )( )min , , ,i l j ld y y d y y  

Complete linkage ½ ½ 0 ½ ( ) ( )( )max , , ,i l j ld y y d y y  

Group average 

linkage 
i

i j

n
n n+

 j

i j

n
n n+

 0 0 ( ) ( )( )1 , ,
2 i l j ld y y d y y+  

Weighted average 

linkage 
½ ½ 0 0 ( ) ( ), ,ji

i l j l
i j i j

nn d y y d y y
n n n n

+
+ +

 

Median linkage ½ ½ -¼ 0 ( ) ( ) ( )1 1 1, , ,
2 2 4i l j l j id y y d y y d y y+ −  

Centroid linkage i

i j

n
n n+

 j

i j

n
n n+

 
( )2

i j

i j

n n

n n
−

+
 0 ( ) ( )

( )
( )2, , ,j j ji

i l j l j j
i j i j i j

n n nn d y y d y y d y y
n n n n n n

+ −
+ + +

 

Ward’s methods i l

i j l

n n
n n n

+
+ +

 j l

i j l

n n
n n n

+

+ +
 l

i j l

n
n n n

−
+ +

 0 ( ) ( ) ( ), , ,j li l l
i l j l j j

i j l i j l i j l

n nn n nd y y d y y d y y
n n n n n n n n n

++
+ −

+ + + + + +
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Appendices 
 

A.1. Notation 
The object of this study is given by a set of M time series ,i tx , 1, 2,...t T= , 1, 2,...i M=  

which may not be always available over the T points of the sample. We presume that the 

time index is defined over months and that the time series could be observed with a 

monthly, quarterly or annual frequency. Series with a lower order frequency with 

respect to the month, will be associated to the monthly observation at the end of the 

measurement period and will have, by construction, a set of missing values. In addition, 

series could be characterised by further missing values not associated to the 

sampling/measurement frequency but rather to the complete unavailability of the data 

for part of the sample. We will make clear in the following when we refer to series 

measured at the monthly or at a different frequency. 

For each time series we will define an H-dimensional vector iy  that contain the inputs 

of the clustering. This vector could include some relevant features of the series ,i tx . The 

collection of all the iy  vectors define the pattern matrix Y which has dimension HxM. 

The possible content of Y will be described in an appropriate section. 

In principle, supervised classification systems could be imagined as systems based on a 

Y matrix composed by a single feature assuming values on a known and fixed scale 

which allows a direct creation of cluster. Differently, unsupervised classification 

systems use a pattern matrix containing at least one feature for which is sensible to 

compute ratios of observations between different series. Unsupervised classification 

systems derive a set of groups performing iterative steps or estimations on the Y matrix 

content. 
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A.2. A collection of distance measures 
 

This section contains a list of the most common distance measures used in time series 

classification, together with distance measures that could provide relevant insight for 

time series clustering. We assume that the main interest is the clustering or 

classification of M time series, each of them associated to a vector of features 

,  1, 2,...jy j M= with dimension H. The matrix containing the proximity measure 

computed over all pairs of clusters (where clusters may be composed even by a single 

time series) is defined as the proximity matrix and we will denote it as D if it is created 

using a dissimilarity measure, S if a similarity index is used, or P if we refer to a 

general proximity matrix (P will be used for properties or results valid both for 

similarity and dissimilarity measures). 

We also observe that the P matrix has dimension MxM while the pattern matrix Y (the 

matrix collecting all feature vectors) has dimension HxM, where H is the number of 

features included in the vectors jy . 

In general terms, distance measures are defined in order to satisfy a minimal number of 

properties. Let us denote by ( ),i jd y y  a generic distance (dissimilarity) between the 

feature vectors jy  and iy . The function ( ),i jd y y  is a distance metric if it satisfy the 

following properties: 

 

1 Symmetry: ( ) ( ), ,i j j id y y d y y= ; 

2 Positivity: ( ), 0i jd y y ≥  for , 1, 2,...i j M= ; 

3 Triangle inequality: ( ) ( ) ( ), , ,i l l j i jd y y d y y d y y+ ≥ ; 

4 Reflexivity: ( ), 0i jd y y =  if and only if i jy y= . 

 

Conditions 1) and 2) are required to define ( ),i jd y y  as a distance while 3) and 4) are 

needed for ( ),i jd y y  to become also a metric. 
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Differently, if we denote by ( ),i js y y  the similarity between jy  and iy , the function 

( ),i js y y  is a similarity metric if the following properties are satisfied: 

 

1 Symmetry: ( ) ( ), ,i j j is y y s y y= ; 

2 Positivity: ( ), 0i js y y ≥  for , 1, 2,...i j M= ; 

3 Triangle inequality: ( ) ( ) ( ) ( ) ( ), , , , ,i l l j i l l j i js y y s y y s y y s y y s y y ≤ +  ; 

4 Reflexivity: ( ), 0i js y y =  if and only if i jy y= . 

 

As for the dissimilarity or distance functions properties 1) and 2) are required for 

( ),i js y y  to be a distance while 3) and 4) to label it as a similarity metric. 

We now review the most common proximity measures used in the clustering literature. 

 

A.2.1 The Euclidean, Minkowsky, Manhattan and Sup distances 

 

Probably, these are the most commonly used and known distance metrics. Given two 

feature vectors jy  and iy , the Euclidean distance (or L2 norm) is defined as: 

 

( ) ( )2

, ,
1

,
H

j i i l j l
l

d y y y y
=

= −∑         (A.1) 

 

As noted by Duda et al. (2001) and Xu and Wunsch (2009), the Euclidean distance has 

the relevant feature of providing clusters invariant to rotations or translations in the 

spaced spanned by the pattern matrix Y. However, it has also some drawbacks: it is 

highly influenced by features that are dominant in absolute values (relatively to other 

features); linear or other transformations of the pattern matrix may manipulate the 

ordering relations between objects. To solve these aspects, features are generally 

standardised with respect to the rows moments of the pattern matrix Y: the  elements of 
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the H-dimensional feature vectors ,  1, 2,...jy j M=  are replaced by standardised values 

as follow 

 

,
, ,  1, 2,... ,  1, 2,...l j l

l j
l

y
y i H j M

µ
σ
−

= = =       (A.2) 

 

where  

 

,
1

1 M

l l j
j

y
M

µ
=

= ∑          (A.3) 

 

and 

 

( )2

,
1

1
1

M

l l j l
j

y
M

σ µ
=

= −
− ∑         (A.4) 

 

Differently, the features may be standardised with respect to their range as 

 

( )
( ) ( )
, ,

,
, ,

min
,  1, 2,... ,  1, 2,...

max min
l j l j

l j
l j l j

y y
y l H j M

y y

−
= = =

−
     (A.5) 

 

Note that the minimum and maximum quantities are determined over the rows of the 

pattern matrix Y. These quantities, as well as the mean lµ  and standard deviations lσ  

are feature-specific. 

The Euclidean distance may be generalised unrestricting the powers in equation (1) 

obtaining the Minkowsky distance (or Lp norm). 

 

( )
1

, ,
1

,
H pp

j i i l j l
l

d y y y y
=

 = −  
∑         (A.6) 
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Clearly, the Euclidean distance is obtained by setting p=2, whether two other popular 

distances are associated to the limiting cases p=1 and p=∞. When the parameter is equal 

to 1, the Minkowsky distance collapses onto the Manhattan distance or L1 norm 

 

( ) , ,
1

,
H

j i i l j l
l

d y y y y
=

= −∑         (A.7) 

 

while when p goes to infinity, we obtain the Sup distance of L∞ norm 

 

( ) 1 , ,, maxj i l H i l j ld y y y y≤ ≤= −        (A.8) 

 

 

A.2.2 The Mahalanobis distance 

 

This distance is defined as 

 

( ) ( ) ( )1,j i j i j id y y y y S y y−= − −        (A.9) 

 

where S is the covariance matrix across the features 

 

( )( )
1 1

1 1     
M M

i i i
i i

S y y y
M M

µ µ µ
= =

′= − − =∑ ∑                 (A.10) 

 

The Mahalanobis distance includes as special case the squared Euclidean distance, 

which is obtained when the features are not correlated. One drawback of this measure is 

its possible computational complexity for large values of H. 

 

A.2.3 The Point Symmetry distance 

 

Under the assumption of symmetry for the clusters, a different distance could be used. 
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( )
( ) ( )( )

( ) ( )

2

, , , ,
1

1,2... , and 
22

, , , ,
1 1

, min

H

k i k l k j k l
k

i l j M j i H H

k i k l k j k l
k k

y y y y
d y y

y y y y

=
= ≠

= =

− − −
=

− + −

∑

∑ ∑
             (A.11) 

 

Where ly  is a reference point such as a cluster centroid. This distance measure 

evaluates the distance of objects with respect to a given point given the other M-1 

objects. 

 

A.2.4 Measures based on correlations 

 

An alternative approach points at defining distance measures based on the Pearson 

correlation coefficient. Let us define the correlation coefficient as 

 

( )
( )( )

( ) ( )

, ,
1

22
, ,

1 1

,

H

i l i j l j
l

i j H H

i l i j l j
l l

y y y y
y y

y y y y
ρ =

= =

− −
=

− −

∑

∑ ∑
                (A.12) 

 

where  

 

,
1

1 H

i i l
l

y y
H =

= ∑  and ,
1

1 H

j j l
l

y y
H =

= ∑ .                 (A.13) 

 

Then a distance measure could be defined as 

 

( ) ( )1 ,
,

2
i j

i j

y y
d y y

ρ−
=                   (A.14) 

 

or 
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( ) ( )( ), 2 1 ,i j i jd y y y yρ= −                   

(A.15) 

 

or 

 

( ) ( )
( )

1 ,
,

1 ,
i j

i j
i j

y y
d y y

y y

β
ρ

ρ

 −
 =
 + 

                  (A.16) 

 

where β>0. 

An alternative approach uses the cross-correlations between two time series. Such an 

approach assumes that the features vectors iy  and jy   contain the entire time series 

(which we assume to be of the same length). If we define the cross correlation at lag k 

as 

 

( )
( )( )

( ) ( )

, ,

22
, ,

1

,

T

i t i j t k j
t k

k i j T T

i t i j t k j
t k l

y y y y
y y

y y y y
ρ

−
=

−
= =

− −
=

− −

∑

∑ ∑
                           (A.17) 

 

where jy  and iy are again the sample means, a distance based on cross-correlations 

may be 

 

( ) ( )
( )

2
0

2

1

1 ,
,

,

i j
i j K

k i j
k

y y
d y y

y y

ρ

ρ
=

−
=

∑
                  (A.18) 

 

see Liao (2005). The statistical literature contains other dissimilarity measures based on 

the cross-correlations, such as: 

 

( ) ( )( ), min 1 ,i j m k m k i jd y y y yρ− ≤ ≤= − ,                (A.19) 
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where m is the maximum lead/lag; 

 

( ) ( ) ( )( ), min 1 ,i j m k m k i jd y y w k y yρ− ≤ ≤= − ,                (A.20) 

 

where ( )w k  is an appropriate weighting function; 

 

( ) ( )
( ) ( )
( ) ( )0

, ,
,

1 , ,

m k i j k i j
i j

k k i j k i j

y y y y
d y y w k

y y y y

ρ ρ

ρ ρ
−

= −

−
=

+ −
∑ ;               (A.21) 

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0

, , , ,
,

1 , , , ,

m k i i k j j k i j k i j
i j

k k i i k j j k i j k i j

y y y y y y y y
d y y w k

y y y y y y y y

ρ ρ ρ ρ

ρ ρ ρ ρ
−

= −

−
=

+ −
∑ ,            (A.22) 

 

where ( ),k i iy yρ  denotes the autocorrelation function, see Baragona (2000) and therein 

cited references for additional details. 

 

A.2.5 Distance measures for discrete variables 

 

The previous distances are designed for continuous random variables. However, the 

statistical literature also includes distances which are more appropriate for variables or 

features assuming values in a discrete range such as binary variables or limited 

dependent variables. 

Given the purposes of this survey, the review of clustering methods and approaches for 

economics and financial time series, we do not present here the distance measures for 

discrete variables. The readers interested in this topic could find some information in 

Xu and Wunsch (2009), sections 2.5 and 2.6. 
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A.2.6 Dynamic time warping 

 

The Dynamic Time Warping distance is based on a generalization of the traditional 

algorithms for comparing two sequences one characterized by discrete observations and 

the other by continuous values. 

In general terms, given two feature vectors iy  and jy  formed by the time series 

observations (the two vectors in this case may have different length, call them T1 and 

T2), the Dynamic Time Warping search for an optimal alignment of the series such that 

the distance between observations is minimized. 

To determine the optimal Dynamic Time Warping path (the set of paired observations 

of the series), at first, we must determine the proximity matrix P whose entries are given 

by the Euclidean distance for each pair of observations in the feature vectors  iy  and jy  

 

( ) ( )2

, , , ,,j t i m i t j md y y y y= −  for 11, 2,...t T=  and 21, 2,...m T=              (A.23) 

 

Given this matrix, Dynamic Time Warping finds a path satisfying the following 

restrictions: 

 

1. Boundary condition: the path starts at the top left corner of the matrix (where the 

time index of both series is equal to 1, ( ),1 ,1,j id y y ) and ends and the bottom 

right corner of the matrix (where the time index of both series is at the final 

point in the corresponding samples ( )1 2, ,,j T i Td y y ); 

2. Continuity condition: the path considers moves over adjacent cells of the matrix 

P (from ( ), ,,j t i md y y  we could move to one of the following cells ( ), 1 ,,j t i md y y+ , 

( ), , 1,j t i md y y +  or ( ), 1 , 1,j t i md y y+ + ); 

3. Monotonicity condition: the path should move over cells in the matrix P which 

are monotonically spaced over time (that is the row index, or the column index 

or both indices of two cells representing two consecutive points in the path must 

always increase by 1). 
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The Dynamic Time Warping path is the one that minimize the distance between series 

and the Dynamic Time Warping distance is defined as  

 

( )
( )

( )

( )

, ,
,

,
, min

j t i m
t m A

j i A

d y y
d y y

card A
∈=
∑

                 (A.24) 

 

where A is a set of row and column indices (and by construction of time indices) 

satisfying conditions 1 to 3 above, card(A) is the cardinality of the set A (the number of 

elements). The Dynamic Time Warping distance thus search for the path associated to 

the minimum distance between the series observations. 

Note that the optimal solution could be found by following this recursion: 

 

a. Initialize the distance as ( ) ( )1,1 ,1 ,1, ,j i j id y y d y y=  

b. Update the distance as  

( ) ( ) ( ) ( ) ( ){ }, , , 1, , 1 1, 1, , min , , , , ,t m j i j t i m t m j i t m j i t m j id y y d y y d y y d y y d y y− − − −= +  

c. Stop at ( ) ( )
1 2, , ,T T j i j id y y d y y=  

 

A.2.7 Distances based on estimated features 

 

In some cases the feature vector could be composed by estimated quantities, such as 

sample moments or estimated coefficients. In such a case, the quantities included in the 

feature vectors could be associated to a multivariate density function with mean equal to 

the unknown population value of the estimated features and variance equal to the 

population variance of the features (P denotes population values): 

 

( )( )~ ,P P
j j jy D y yΣ .                   (A.25) 
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In a generalized approach, we may assume that the feature vector is associated to an 

estimate of the covariance matrix between the components of the vector (an estimate of 

( )P
jyΣ ). In this situation, we could design a distance measure taking into account both 

the feature vector and the covariance between its constituents, defined as 

 

( ) ( ) ( ) ( )( ) ( )1
,i j i j i j i jd y y y y y y y y

−′= − Σ +Σ −                (A.26) 

 

Such a measure have been proposed by Caiado, Crato and Pena (2007) and used in 

Caiado and Crato (2007). Note that this distance is similar to the Mahalanobis distance 

but is using a different weighting matrix. It is also similar to the test statistics for 

Hausman-type tests (reference to be included). 

 

A.2.8. Distances based on transformations of the time series 

 

Alonso et al. (2008) introduced a distance for the evaluation of the discrepance between 

the periodograms of two different time series. We generalize their distance to the case 

where the feature vector includes the estimates of a monotonic function based on the 

underlying time series. The distance could be defined as 

 

( ) ( ) ( )( ),
b

i j i j
a

d y y F w F w dw= −∫                  (A.27) 

 

where ( )iF w  is an monotonic function in [ ],a b . Following Alonso et al. (2008), this 

function could be the integrated periodogram, or, generalising their approach, the 

cumulative density function. 

A similar approach has been presented in Alonso et al. (2006) and Vilar et al. (2009). 

Given two time series i and j available up to time T, and their forecast density for time 

T+h, they suggest the use of an L-norm distance across densities 

 

( ) ( ) ( ), ,,
a

i j i T h j T hd y y f w f w dw+ += −∫                            (A.28) 
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where ( ),i T hf w+  is the forecast density for series i, a is the order of the norm which was 

set to 2 by Alonso et al. (2006) and to 1 in Vilar et al. (2009). The authors provide also a 

proof of the consistency of the sample estimator of the distance and note that the L-

norms offer computational advantages with respect to alternative measures that could be 

used to compute the distance between densities. They also highlight that their approach 

requires stationarity of the underlying time series. We note that the forecast density 

could be derived using different methods, including the bootstrap approach proposed by 

Alonso et al. (2006). 

 

A.2.9. Distances based on time series paths and quantities 

 

Kumar et al. (2002) propose a variation of the Euclidean distance to cluster the 

seasonality patterns of time series taking also into account the different dispersion of the 

time series around the seasonal component. They propose the following distance 

 

{ } { }( ) ( )
( ) ( )

2

, ,
, , , , 2 21 1

1 , , , ,

, , ,
TTT i t j t

i i t i t j j t j tt t
t j t j t i t i t

s s
d y x s y x s

x s x s= =
=

−
= = =

− + −
∑              (A.29) 

 

where the feature vectors contain the original time series ( ,j tx  and ,i tx ) and an estimate 

of the corresponding seasonal patterns ( ,j ts  and ,i ts ). The distance is then composed as 

a ratio between the Euclidean distance among the seasonal patterns standardised by the 

squared deviation between the original series and the seasonal pattern. As a result, the 

denominator could be considered as a pooled local estimate of the error variance. Under 

the assumption of normality of errors, the distance is distributed as a Chi-square density 

with T-1 degrees of freedom and thus it could also be used to test for the equivalence 

across series. Kumar et al. (2002) also notes that this distance is scale invariant. 

We note that the distance proposed by Kumar et al. (2002) could be further generalized 

to take into account the possible contemporaneous presence of a trend-cycle and 

seasonal component. In fact, the seasonal pattern in the previous equation could be 
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replaced by either the trend-cycle component or by the combination of the seasonal 

pattern and trend-cycle. Note that the classification based over trend-cycle could be 

used to extract subsets of series characterized by similar business cycle phases which 

could be later labeled as coincident, leading or lagging with respect to the true 

underlying and dated business cycle. 

A different distance was proposed by Dose and Cincotti (2005) and based on the 

percentage difference across series. Their distance is defined as 

 

{ } { }( ) { }, , 1 21 1

2

, ,
1

1 ,

2

, ,
2

1 ,

, min ,

1min

1min

TT
i i t j j tt t

T
i t j t
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t i t

T
j t i t
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t j t

d y x y x d d

x ax
d

T x

x ax
d

T x

= =

∈
=

∈
=

= = =

  − =    
   
  − =       

∑

∑





                (A.30) 

 

Note that the Dose and Cincotti’s distance was designed to create clusters of time series 

with close patterns over their levels, with an emphasis of financial asset prices. We note 

that the approach could be applied over macroeconomic series levels or over their 

components such as trend-cycle or seasonal patterns. In this alternative interpretation, 

the distance could be used to cluster macroeconomic time series characterized by 

similar seasonal component or similar business cycle phases as in the case of the Kumar 

et al. (2002) distance. 

 

A.2.10. Probabilistic distance measures 

In this set we include a number of distances that share a common feature: they depend 

on the density function of the feature vector or on a transformation of this density 

function. Two examples are given in Liao (2005) that mention the Kullback-Liebler 

divergence and the Chernoff information divergence. A related approach is in Vilar et 

al. (2009) that consider a divergence based on the periodograms of two time series. A 

detailed discussion of probability based distances is included in Kakizawa et al. (1998). 
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A.3. Technical details on partitioning clustering methods 
 

A.3.1 K-means and fuzzy c-means 
 

This methods perform a clustering of M time series by iterating on two main steps: the 

distribution of the M objects into the K clusters and the update of the cluster centres (or 

cluster membership). 

Given M time series ,i tx , 1, 2,...t T= , 1, 2,...i M=  and the M H-dimensional vectors iy  

containing the inputs for the clustering (the possible form of the inputs will be described 

in a following section), the K-means method starts by fixing the number of clusters, K, 

to be determined (sections 5 will consider the issue of the appropriate choice of K), by 

an arbitrary selection of K cluster centres jc , 1, 2,...j K=  (the K-dimensional vector of 

cluster centres is called C). Note that cluster centres have the same dimension of iy . 

The second relevant element is the objective function of the method which could be 

represented as follow: 

 

( ) ( )2

1 1
, ,

K M

ji i j
j i

J U C u d y c
= =

=∑∑                   

(A.31) 

 

where { }0,1iju ∈ ,
1

1
K

ji
j

u
=

=∑  for 1, 2,...i M= , { }, 1, 2,.. , 1, 2,...jiU u j K i M= = = and 

( ),d a b  is one of the distance measures defined in section 3.4. Note that U is a selection 

matrix assigning each series to a given cluster. Finally, a small number ε  should be 

chosen in order to define a stopping criteria. 

Then, the method proceeds following this iterative scheme: 

 

1) Assign the M series to the K clusters and evaluate the function ( ),J U C ; 

2) Minimize the function ( ),J U C  with respect to U conditionally to a choice for 

the vector C; 
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3) Update cluster centres by minimizing ( ),J U C  with respect to C conditionally 

to the U vector define at step 2) or by determining cluster centres as 

 

1

1

,      1, 2,...

M

ji i
i

j M

ji
i

u y
c j K

u

=

=

= =
∑

∑
                 (A.32) 

 

4) Stop if the change in C is smaller than ε  otherwise repeat steps 2) and 3). 

 

Step 1) basically initialize the whole procedure while step 2) reassign the time series to 

clusters in order to minimize the within groups distances. Step 3) recomputed cluster 

centres once series reallocation has been performed. 

Fuzzy c-means are generalizations of the K-means algorithms where the matrix U is 

allowed to assume values between 0 and 1, see Dunn (1974). In this case U (we define it 

as membership matrix) must satisfy 0 1iju≤ ≤ ,
1

1
K

ji
j

u
=

=∑  for 1, 2,...i M= , and 

1
0

M

ji
i

u M
=

< <∑  for 1, 2,...j K=  while the objective function becomes  

 

( ) ( ) ( )2

1 1
, ,

K M

ji i j
j i

J U C u d y c
δ

= =

=∑∑                  (A.33) 

 

with 1δ ≥ . In this case the clusters may be identified using the following iterative 

procedure for given values of m, ε  and K. 

 

1) Assign the M series to the K clusters and initialize the matrix U; 

2) Evaluate cluster centres using 

 

1

1

,      1, 2,...

M

ji i
i

j M

ji
i

u y
c j K

u

=

=

= =
∑

∑
                 (A.34) 
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3) Update the membership matrix as 

 

( ) ( )

11 1
1 1

2 2
1

1 1 ,     1, 2,... ,    1, 2,...
, ,

m mK

ji
ji j i j

u j K i M
d y c d y c

−

− −

=

 
       = = =          

∑  (A.35) 

 

 if i jy c≠  otherwise set 1jiu =  for j i= , and 0jiu =  for j i≠ ; 

 

4) Stop if the Euclidean distance between two subsequent evaluations of the 

membership matrix differ for less than ε , otherwise repeat steps 2) and 3). 

 

The k-means method could be generalised in many ways by supplying different kind of 

inputs extrapolated from time series. Some examples are the series components (Trend-

Cycle, Seasonal and Irregular), the Fourier transformation, or the Wavelet 

decomposition. An interesting approach based on the Wavelets is given in Lin et al. 

(2004). 

 

A.3. 2 Genetic Algorithm for Medoid Evolution (GAME) 
 

In this approach, Genetic Algorithms are used in combination with the definition of 

cluster centers (the medoids). The GAME approach aims at determining both the 

number of cluster, their composition and the number of features (within the H supplied) 

which are relevant in the classification. 

Within the GAME clustering, the objective function to be optimized is a mathematical 

transposition of the classification objective: minimizing the within group variance and 

maximize the between group variance. 

In general, this is equivalent to minimize the within group covariance of the features 

and maximize the between groups covariance of the features. Recalling that the feature 

vectors iy  contain each H features, and assuming the existence of G groups, the within 

groups covariance is 
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( )( )
1 1

gmG

i g i g
g i

W y c y c
= =

 ′= − −  
 

∑ ∑                  (A.36) 

 

where gc  is the cluster centroid computed as 

 

1

1 gm

g i
ig

c y
m =

= ∑                     (A.37) 

 

gm  is the dimension of group g and 
1

G

g
g

m M
=

=∑ . 

In a similar way, we define the between group covariance as 

 

( )( )
1

G

g g g
g

B m c c c c
=

′= − −∑                   (A.38) 

 

where c  is the total centroid. 

Given that the total covariance matrix is given by the sum of W  and B , two ratios 

could be used as objective functions: 

 

i) the Variance ratio criterion ( ) ( )
( ) ( )

/ 1
/

tr B G
tr W M G

−
−

, which, by construction, does 

not take into account the covariance between features. the optimum is 

associated to a maximized variance ratio; 

ii) the Marriott’s criterion 2 B
G

W
 which associates optimal partitions to its 

minimum value. 
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A.4. Technical details on agglomerative methods 
 

The method may be represented by the following set of steps 

 

1) Start with M clusters and compute the proximity matrix P whose entries are the 

distances for all pairs of objects (is an MxM matrix at the initialization); 

2) Identify the minimum distance ( )1 , , min ,i j M i j i jd y y≤ ≤ ≠  and combine the two 

objects jy  and iy  into a new cluster ( )ijy ; 

3) Update the proximity matrix P computing the distances between ijy  and all 

other clusters; 

4) Iterate 2) and 3) until a single cluster remains. 

 

The critical element of agglomerative algorithms is given by step 3), where the new 

cluster is used to determine distance measures with respect to the other existing clusters. 

There exist a number of methods for the computation of these distances, and most of 

them could be represented with a recursive representation due to Lance and Williams 

(1967). Given two objects iy  and jy  which are merged in the cluster ( )ijy  and a third 

object ly  the distance ( )( ), lijd y y can be represented as follow: 

 

( )( ) ( ) ( ) ( ) ( ) ( ), , , , , ,l i i l j j l j i j l i lijd y y d y y d y y d y y d y y d y yα α β δ= + + + −          (A.39) 

 

where the values of iα , jα , β  and δ  depend on the weighting scheme adopted. The 

most used parameter designs are reported in Table 1 which also appeared in Murtagh 

(1983), Jain and Dubes (1988), Everitt et al. (2001), and Xu and Wunsch (2009). 

 

[INSERT HERE TABLE 1] 

 

Table 1 assumes that the objects can be replaced by clusters of dimension ni, nj and nl, 

respectively. The last column report the form of the composed distance. 
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The single linkage algorithm proposed by Sneath (1957) and then analysed by Jain and 

Dubes (1988), Johnson (1967) and Everitt et al. (2001) defines the distance as the 

smallest one across the elements included in the two combined clusters. For this reason, 

the method is also called nearest neighbours. As stated by Everitt et al. (2001), the 

single linkage algorithm works well when clusters are clearly separated one from the 

other. Single linkage nearest neighbour clustering could be alternatively represented by 

dendograms or by minimum spanning trees. 

The complete linkage approach (Sorensen, 1948, Jain and Dubes, 1988, Everitt et al., 

2001, Xu and Wunsch, 2009) use the farthest distance in combining clusters. As a 

result, it is most suited for the identification of small compact clusters. 

The group average linkage (Sokal and Michener, 1958, Jain and Dubes, 1988, Everitt et 

al., 2001, Xu and Wunsch, 2009), as its name suggests, take the average of distances, 

while the weighted average linkage (McQuitty, 1966, Jain and Dubes, 1988, Xu and 

Wunsch, 2009) weights distances with cluster dimensions. 

The centroid linkage (Sokal and Michener, 1958, Jain and Dubes, 1988, Everitt et al., 

2001, Xu and Wunsch, 2009) provides a combination based on the cluster centres and 

can be considered a generalized version of the median linkage algorithm (Gower, 1967, 

Jain and Dubes, 1988, Everitt et al., 2001, Xu and Wunsch, 2009). The last assign equal 

weight to the combined clusters while the former weight clusters using their dimension. 

Finally, the minimum variance method or Ward’s method (Ward, 1963, Jain and Dubes, 

1988, Everitt et al., 2001, Xu and Wunsch, 2009) implements a minimization of the 

within-class sum of squared deviations from cluster centres. 

A further case not included in Table 1 is given by the Hausdorff clustering (Basalto et 

al., 2007) which can be considered an intermediate solution between the single linkage 

and the complete linkage approaches. In fact, given two clusters composed by I and J 

elements, respectively, and using a notation similar to that in Table 1, single and 

complete linkage correspond, respectively, to the following rules for determining the 

distance between the two clusters 

 

( ) ( )( ) ( ),, min ,   1, 2,... ,   1, 2, ,...i j i jI Jd y y d y y i I j J= = =               (A.40) 
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( ) ( )( ) ( ),, max ,   1, 2,... ,   1, 2, ,...i j i jI Jd y y d y y i I j J= = = .              (A.41) 

 

Differently, the Hausdorff clustering uses 

 

( ) ( )( ) ( ) ( ){ }, max max min , ,max min ,   1, 2,... ,   1, 2, ,...i j i j j i i jI Jd y y d y y d y y i I j J= = = .

                     (A.42) 

 

In section 3.2.9 we introduced a distance function proposed by Kumar et al. (2002) 

which was designed for series characterized by seasonal patterns. Kumar et al. (2002) 

suggest the use of such a distance within hierarchical clustering and also proposed an 

alternative way of combining series into a cluster. They introduced the following 

distance 
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                 (A.43) 

 

where , , ,l t l t l te x s= − is the deviation between the observed series and the estimated 

seasonal pattern, and the cluster composed by at least two elements is characterised by 

the combination of the seasonal patterns and the combination of the discrepancies of the 

component series and the corresponding estimated seasonal patterns. The combined 

seasonality patterns could then be interpreted as average seasonality within each cluster. 

 

Within hierarchical clustering a further rule for determining the distances between 

objects belonging to different clusters has been defined in Di Matteo and Aste (2002) 

and called ultrametric distance. The distance is used within an iterative linkage 

procedure and for each pairs of objects i and j belonging to clusters I and J, respectively, 

is defined as  
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( ) ( ){ }, max , , ,i j l md y y d y y l I m J= ∈ ∈                 (A.44) 

 

which is the maximum distance between all couples of elements in the two clusters. 

A related approach was used by Mantegna (1999), the subdominant ultrametric 

distance. In this case, the dendogram (or the minimum spanning tree) is used to identify 

the distance between two objects i and j. The subdominant ultrametric distance is the 

maximum distance detected between two objects in the path between i and j. As an 

example, assume that moving from i to j we cross objects l and m (from i we move to l, 

then to m and finally to j) than, the distance between i and j is the maximum between 

the following distances ( ),i ld y y , ( ),l md y y  and ( ),m jd y y . 
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