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Abstract

Ellipses are a widely used cue in many 2D and 3D ob-
ject recognition pipelines. In fact, they exhibit a number
of useful properties. First, they are naturally occurring in
many man-made objects. Second, the projective invariance
of the class of ellipses makes them detectable even without
any knowledge of the acquisition parameters. Finally, they
can be represented by a compact set of parameters that can
be easily adopted within optimization tasks. While a large
body of work exists in the literature about the localization of
ellipses as 2D entities in images, less effort has been put in
the direct localization of ellipses in 3D, exploiting images
coming from a known camera network. In this paper we
propose a novel technique for fitting elliptical shapes in 3D
space, by performing an initial 2D guess on each image fol-
lowed by a multi-camera optimization refining a 3D ellipse
simultaneously on all the calibrated views. The proposed
method is validated both with synthetic data and by mea-
suring real objects captured by a specially crafted imaging
head. Finally, to evaluate the feasibility of the approach
within real-time industrial scenarios, we tested the perfor-
mance of a GPU-based implementation of the algorithm.

1. Introduction
Among all the visual cues, ellipses offer several advan-

tages that prompt their adoption within many machine vi-

sion tasks. To begin with, the class of ellipses is invariant to

projective transformations, thus an elliptical shape remains

so when it is captured from any viewpoint by a pinhole cam-

era [4]. This property makes easy to recognize objects that

contain ellipses [11, 8] or partially elliptical features [18].

When the parameters of one or more coplanar 3D ellipses

that originated the projection are known, the class of homo-

graphies that make it orthonormal to the image plane can be

retrieved. This is a useful step for many tasks, such as the

recognition of fiducial markers [1, 13], orthonormalization

of playfields [7], forensic analysis of organic stains [20] or

any other planar metric rectification [2]. Furthermore, el-

Figure 1. Schematic representation of a multi-camera system for

industrial in-line pipes inspection.

lipses (including circles) are regular shapes that often ap-

pear in manufactured objects and can be used as optical

landmarks for tracking and manipulation [22] or measured

for accurate in-line quality assurance [16].

Because of their usefulness and broad range of applica-

bility, it is not surprising that ellipse detection and fitting

methods abound in the literature. In particular, when points

belonging to the ellipse are known, they are often fitted

through ellipse-specific least square methods [6]. In order

to find co-elliptical points in images, traditional parameter-

space search schemas, such as RANSAC or Hough Trans-

form, can be employed. Unfortunately, the significantly

high dimensionality of 2D ellipse parametrization (which

counts 5 degrees of freedom) makes the direct application

of those techniques not feasible. For this reason a lot of ef-

ficient variants have appeared. Some try to reduce the num-

ber of samples for a successful RANSAC selection [17, 21].

Others attempt to escape from the curse of dimensionality

that plagues the Hough accumulator [12, 3]. If high accu-

racy is sought, point-fitted ellipses can be used as an initial

guess to be refined through intensity-based methods. Those

approaches allow to obtain a sub-pixel estimation by ex-

ploiting the raw gradient of the image [14] or by preserv-
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ing quantities such as intensity moments and gradients [9].

Multiple view geometry has also been exploited to get a

better 3D ellipse estimation. In [19], multiple cameras are

used to track an elliptical feature on a glove to obtain the es-

timation of the hand pose. The ellipses fitted in the images

are triangulated with the algorithm proposed in [15] and the

best pair is selected. In [10], holes in metal plates and in-

dustrial components are captured by a couple of calibrated

cameras and the resulting conics are then used to reconstruct

the hole in the Euclidean space. Also in [5] the intersection

of two independently extracted conics is obtained through

a closed form. All these approaches, however, exploit 3D

constraints in an indirect manner, as triangulation always

happens on the basis of the ellipses fitted over 2D data.

In this paper we present a rather different technique that

works directly in 3D space. Specifically, we adopt a para-

metric level-set appraoch, where the parameters of a sin-

gle elliptical object that is observed by a calibrated net-

work of multiple cameras (see Fig.1) are optimized with

respect to an energy function that simultaneously accounts

for each point of view. The goal of our method is to bind

the 2D intensity and gradient-based energy maximization

that happens within each image to a common 3D ellipse

model. The performance of the solution has been assessed

through both synthetic experiment and by applying it to a

real world scenario. Finally, to make the approach feasible

regardless of the high computational requirements, we pro-

pose a GPU implementation which performance has been

compared with a well optimized CPU-based version.

2. Multiple Camera Ellipse Fitting
In our approach we are not seeking for independent op-

tima over each image plane, as is the case with most el-

lipse fitting methods. Rather, our search domain is the

parametrization of an ellipse in the 3D Euclidean space,

and the optimum is sought with respect to its concurrent

2D reprojections over the captured images. In order to per-

form such optimization we need to sort out a number of

issues. The first problem is the definition of a 3D ellipse

parametrization that is well suitable for the task (that is,

it makes easy to relate the parameters with the 2D projec-

tions). The second one, is the definition of an energy func-

tion that is robust and accounts for the usual cues for curve

detection (namely the magnitude and direction of the in-

tensity gradient). The last issue is the computation of the

derivative of the energy function with respect to the 3D el-

lipse parameters to be able to perform a gradient descent.

2.1. Parameterization of the 3D Ellipse

In its general case, any 2-dimensional ellipse in the im-

age plane is defined by 5 parameters, namely: the length of

the two axes, the angle of rotation and a translation vector

with respect to the origin.

In matrix form it can be expressed by the locus of points

�x =
(
x1 x2 1

)T
in homogeneous coordinates for which

the equation �xTA�xT = 0 holds, for

A =

⎛
⎝a b d
b c f
d f g

⎞
⎠ (1)

with det(A) < 0 and ac− b2 > 0.

In the 3-dimensional case it is subjected to 3 more de-

grees of freedom (i.e. rotation around two more axes and

the z-component of the translation vector). More directly,

we can define the ellipse by first defining the plane T it

resides on and then defining the 2D equation of the el-

lipse on a parametrization of such plane. In particular, let

�c = (c1, c2, c3, 1)
T ∈ T be the origin of the parametriza-

tion, and �u = (u1, u2, u3, 0)
T , �v = (v1, v2, v3, 0)

T be the

generators of the linear subspace defining T , then each point

on the 3D ellipse will be of the form �o + α�u + β�v with α
and β satisfying the equation of an ellipse.

By setting the origin �o to be at the center of the ellipse

and selecting the directions �u and �v appropriately, we can

transform the equation of the ellipse on the plane coordi-

nates in such a way that it will take the form of the equa-

tion of a circle. Hence, allowing the 3D ellipse to be fully

defined by the parametrization of the plane on which the

ellipse resides. However, this representation has still one

more parameter than the actual degrees of freedom of the

ellipse. To solve this we can, without any loss of generality,

set u3 = 0, thus, by defining the matrix

Uc =

⎛
⎜⎜⎝
u1 v1 c1
u2 v2 c2
0 v3 c3
0 0 1

⎞
⎟⎟⎠ (2)

and the vector �x = (α, β, 1)T , we can express any point p
in the 3D ellipse as:

�p = Uc�x subject to �xT

⎛
⎝1 0 0
0 1 0
0 0 −1

⎞
⎠ �x = 0 . (3)

Even if Uc embeds all the parameters needed to describe

any 3d ellipse, it is often the case that an explicit represen-

tation through center �c and axes �a1, �a2 ∈ R3 is needed. Let

U be the 3 × 2 matrix composed by the first two columns

of UC. The two axes �a1, �a2 can be extracted as the two

columns of the matrix:

K =

⎛
⎝ �a1 �a2

⎞
⎠ = UφT

where φT is the matrix of left singular vectors of UTU
computed via SVD decomposition. The vector �c is trivially

composed by the parameters
(
c1 c2 c3

)T
.
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Conversely, from two axes �a1, �a2, the matrix U can be

expressed as:

U = K

(
α −β
β α

)

by imposing that

{
αK31 + βK32 = 0

α2 + β2 = 1
. Finally, once U

has been computed, the 3D ellipse matrix can be composed

in the following way:

Uc =

(
U �c
�0 1

)

Finally, with this parametrization it is very easy to obtain the

equation of the ellipse projected onto any camera. Given

a projection matrix P, the matrix AP describing the 2-

dimensional ellipse after the projection can be expressed as:

AP = (PUc)
−T

⎛
⎝1 0 0
0 1 0
0 0 −1

⎞
⎠ (PUc)

−1 (4)

2.2. Energy Function over the Image

To estimate the equation of the 3D-ellipse we set-up a

level-set based optimization schema that updates the ellipse

matrix Uc by simultaneously taking into account its re-

projection in every camera of the network. The advantages

of this approach are essentially threefold. First, the equation

of the 3D ellipse estimated and the re-projection in all cam-

eras are always consistent. Second, erroneous calibrations

that affects the camera network itself can be effectively at-

tenuated, as shown in the experimental section. Third, the

ellipse can be partially occluded in one or more camera im-

ages without heavily hindering the fitting accuracy.

In order to evolve the 3D ellipse geometry to fit the ob-

servation, we need to define the level set functions ϕi :
R2 → R describing the shape of the ellipse Uc re-projected

to the ith camera. Given each level set, we cast the multi-

view fitting problem as the problem of maximizing the en-

ergy function:

EI1...In(Uc) =
n∑

i=1

EIi(Uc) (5)

Which sums the energy contributions of each camera:

EIi(Uc) =

∫
R2

〈∇H(ϕ(�x)),∇Ii(�x)〉2dx (6)

=

∫
R2

〈H ′(ϕ(�x))∇ϕ(�x),∇Ii(�x)〉2dx , (7)

where H is a suitable relaxation of the Heavyside function.

In our implementation, we used:

H(t) =
1

1 + e−
t
σ

(8)

where parameter σ models the band size (in pixels) of the

ellipse region to be considered. By varying σ we can man-

age the trade-off between the need of a regularization term

in the energy function to handle noise in the image gradient

and the estimation precision that has to be achieved.

The level set for a generic ellipse is rather complicated

and cannot be easily expressed in closed form, however,

since it appears only within the Heavyside function and its

derivative, we only need to have a good analytic approxi-

mation in the boundary around the ellipse. We approximate

the level set in the boundary region as:

ϕi(�x) ≈ �xTAi�x

2
√
�xTAi

T I0Ai�x
(9)

Where I0 =

⎛
⎝1 0 0
0 1 0
0 0 0

⎞
⎠ and Ai is the re-projection of the

ellipse Uc into the ith camera computed using equation (4).

The function has negative values outside the boundaries of

the ellipse, positive values inside and is exactly 0 for each

point {�x|�xTUc�x = 0}.
The gradient of the level set function ∇ϕ : R2 → R2

can actually be defined exactly in closed form:

∇ϕi(�x) =
Ai�x√

�xTAi
T I0Ai�x

(10)

.

Starting from an initial estimation, given by a simple

triangulation of 2d-ellipses between just two cameras, we

maximize the energy function (5) over the plane parameters

Uc by means of a gradient scheme.

2.3. Gradient of the Energy Function

The gradient of the energy function can be computed as

a summation of the gradient of each energy term. This gra-

dient can be obtained by analytically computing the partial

derivatives of equation (6) with respect to the eight param-

eters (p1 . . . p8) = (u1, v1, c1, u2, v2, c2, v3, c3):

∂

∂pi
EIi(Uc) =

∂

∂pi

∫
R2

EIi(Uc, �x)
2dx

=

∫
R2

2EIi(Uc, �x)
∂

∂pi
EIi(Uc, �x)dx

Where:

EIi(Uc, �x) = 〈H ′(ϕ(�x))∇ϕ(�x),∇Ii(�x)〉
and

∂

∂pi
EIi(Uc, �x) =(

∂

∂pi
H ′(ϕ(x)))〈∇ϕ(�x),∇Ii(�x)〉+

+H ′(ϕ(�x))〈( ∂

∂pi
∇ϕ(�x)),∇Ii(�x)〉 .
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Figure 2. Evaluation of the accuracy of the proposed method with respect to different noise sources. The metric adopted is the relative error

between the minor axis of the ground truth and of the fitted ellipse.

The derivatives of the parametric level set functions can

be computed analytically. At the beginning of each iteration

we compute the derivative of the projected ellipse matrices

Ai which are constant with respect to �x:

∂

∂pi
Ai = T+TT (11)

where

T = (
∂

∂pi
[(PiUc)

−1])T

⎛
⎝1 0 0
0 1 0
0 0 −1

⎞
⎠ (PiUc)

−1 (12)

and

∂

∂pi
[(PiUc)

−1] = −(PiUc)
−1(Pi

∂

∂pi
Uc)(PiUc)

−1 .

(13)

Then, using (11), we can compute the level set deriva-

tives for each pixel:

∂

∂pi
∇ϕ(�x) =

( ∂
∂pi

Ai)�x√
�xTAi

T I0Ai�x
−

−
Ai�x(�x

T ( ∂
∂pi

Ai)
T I0Ai�x+ �xTAi

T I0(
∂

∂pi
Ai)�x)

2(�xTAi
T I0A�x)

3
2

(14)

∂

∂pi
ϕ(�x) =

1

2
〈�x, ∂

∂pi
∇ϕ(�x)〉 (15)

∂

∂pi
H ′(ϕ(�x)) = H ′′(ϕ(�x))

∂

∂pi
ϕ(�x) . (16)

By summing the derivative ∂
∂pi

EIi(Uc, �x) over all im-

ages and all pixels in the active band in each image, we

obtain the gradient G = ∇EI1...In(Uc). At this point, we

update the 3D ellipse matrix Uc through the gradient step

Uc
(t+1) = Uc

(t) + ηG (17)

where η is a constant step size.

3. Experimental evaluation
We evaluated the proposed approach both on a set of syn-

thetic tests and on a real world quality control task where

we measure the diameter of a pipe with a calibrated multi-

camera setup. In both cases, lacking a similar 3D based

optimization framework, we compared the accuracy of our

method with respect to the results obtained by triangulating

ellipses optimally fitted over the single images. The ratio-

nale of the synthetic experiments is to be able to evaluate

the accuracy of the measure with an exactly known ground

truth (which is very difficult to obtain on real objects with

very high accuracy). Further, the synthetically generated
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Figure 3. Examples of images with artificial noise added. Respec-

tively additive Gaussian noise and blur in the left image and oc-

clusion in the right image. The red line shows the fitted ellipse.

imagery permits us to control the exact nature and amount

of noise, allowing for a separate and independent evalua-

tion for each noise source. By contrast, the setup employ-

ing real cameras does not give an accurate control over the

scene, nevertheless it is fundamental to asses the ability of

the approach to deal with the complex set of distractors that

arise from the imaging process (such as reflections, vari-

able contrast, defects of the object, bad focusing and so on).

In both cases the ellipse detection is performed by extract-

ing horizontal and vertical image gradients with an oriented

derivative of Gaussian filter. Edge pixels are then found by

non-maxima suppression and by applying a very permissive

threshold (no hysteresis is applied). The obtained edge pix-

els are thus grouped into contiguos curves, which are in turn

fitted to find ellipses candidates. The candidate that exhibit

the higher energy is selected and refined using [14]. The

refined ellipses are then triangulated using the two images

that score the lower triangulation error. The obtained 3D el-

lipse is finally used both as the result of the baseline method

(labeled as 2view in the following experiments) and as the

initialization ellipse for our refinement process (labeled as

multiview). All the experiments have been performed with

3Mp images and the processing is done with a modern 3.2

Ghz Intel Core i7 PC equipped with Windows 7 Operating

System. The CPU implementation was written in C++ and

the GPU implementation uses the CUDA library. The video

card used was based on the Nvidia 670 chipset with 1344

CUDA cores.

3.1. Synthetic Experiments

For this set of experiments we chose to evaluate the ef-

fect of four different noise sources over the optimization

process. Specifically, we investigated the sensitivity of the

approach to errors on the estimation of the focal length and

of the radial distortion parameters of the camera and the

influence of Gaussian noise and clutter corrupting the im-

ages. In Fig. 3 examples of Gaussian noise and clutter are

shown (note that these are details of the images, in the ex-

periments the ellipse was viewed in full). For each test we

created 5 synthetic snapshots of a black disc as seen from 5

different cameras looking at the disk from different points

of view (see Fig. 1 and Fig. 4). The corruption by Gaus-

sian noise has been produced by adding to each pixel a nor-

mal distributed additive error of variable value of σ, fol-

lowed by a blurring of the image with a Gaussian kernel

with σ = 6. The artificial clutter has been created by oc-

cluding the perimeter of the disc with a set of random white

circles until a given percentage of the original border was

corrupted. This simulates the effect of local imaging effect

such as the presence of specular highlights that severely af-

fect the edge detection process. The focal length error was

obtained by changing the correct focal length of the central

camera by a given percentage. Finally, the distortion error

was introduced by adding an increasing amount to the cor-

rect radial distortion parameter K1. In Fig. 2 we show the

results obtained using the baseline triangulation and our op-

timization with different values of the parameter σ used for

the heavyside function (respectively 3, 6 and 9 pixels). As

expected, in all the tests performed the relative error grows

with the level of noise. In general, all the methods seem to

be minimally sensitive to Gaussian noise, whereas the clut-

ter has a big effect even at low percentages. The baseline

method performs consistently worse and, among the multi-

view configurations, the one with lower heavyside band ap-

pears to be the most robust for almost all noise levels. This

is probably due to the fact that the images have already been

smoothed by the gradient calculation step, and thus further

smoothing is not required and, to some degree, leads to a

more prominent signal displacement.

3.2. Real World Application

For the experiments with real images we built an imag-

ing device that hold 5 PointGrey Flea3 3.2Mp Monochrome

USB3 machine vision cameras (see Fig. 4). The 5 cameras

were calibrated for both intrinsic and extrinsic parameters.

Figure 4. The experimental Multiple-camera imaging head.
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Figure 5. Comparison between the accuracy of the initial 2D fitting and the proposed 3D optimization.

We used an aluminium pipe for air conditioning system as

the object to be measured, and the imaging head has been

supplemented with four high power leds in order to get an

even illumination of the rim. This is a typical scenario for

in-line inspection in manufacturing lines. Additionally, the

smooth and polished surface of the pipe offers especially

challenging conditions for ellipse detection and refinement,

since reflections and changes of contrast tend to create a lot

of false elliptical sectors and some highly structured noise.

If Fig. 5 a complete qualitative example of the refinement
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Figure 6. Quantitative assessment of the improvement in accuracy.

process is shown. In the first two rows of the figure the re-

projection of the initially estimated 3D ellipse is overlayed

to both the original images and the intensity-coded gradient

magnitude. In the remaining rows the reprojection of the

optimized 3D ellipse is overlayed over the same images.

The images used for the initial triangulation in this specific

case were the first and the third. Specifically, the initial

guess for the first image was a slightly off-center ellipse fit-

ted in between the edge response produced by the inner and

outer rims of the pipe opening (see the gradient image). As

a matter of fact, it is immediate to note that these two im-

ages exhibits the lower reprojection error, especially for the

central camera. However, the other reprojections are rather

grossly misaligned with the remaining three points of view.

By contrast, almost all the misalignment has been corrected

after performing the 3D refinement procedure. While some

degree of displacement is still visible in some images, we

think that this is mainly due to miscalibration of the extrin-

sic parameters of the imaging head.

We manually measured the internal and external diame-

ter of the pipe with a caliper (with ±0.1mm accuracy) ob-

taining respectively 13.9 and 16.1 mm. However, since the

optimization process aim to converge toward the middle of

the two rims, it would make no sense to evaluate directly the

measurement error committed. Still, the standard deviation

of the data with respect to several subsequent measures of
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Figure 7. Effect of the number of views over the measure quality.

the same object from slightly different angles can be con-

sidered a good indication of measurement error. Indeed,

even if the final measure can be affected by systematic er-

rors, they can be estimated and corrected a-posteriori. In

Fig. 6 we plotted the measured length of the major axis of

the detected 3D ellipse for 60 repeated shots of the pipe

opening. The improvement in uncertainty reduction after

the refinement step is clearly noticeable as the variance of

the measurements is strongly reduced. Indeed, the standard

deviation went from 0.23 to 0.03.

All the refinements performed so far have been con-

ducted using 5 points of view. In order to complete our tests

it would have been interesting to evaluate if similar accu-

racy could be obtained using a smaller number of cameras.

To this end we disabled two cameras and took further 60

shots of the pipe. The results are plotted in Fig. 7. While

the dispersion of the measurements is a little higher using

only three points of view, it is still noticeably smaller than

the one obtained without the optimization step (note that the

scales of Fig. 6 and Fig. 7 are different).

4. GPU-based Implementation
In a naive implementation, the optimization scheme pro-

posed is quite intensive in terms of raw computing power.

Especially for the gradient computation, which requires

several matrix and vector multiplications that may easily

sum up to an unacceptable total computation time.

However, the intrinsic structure of the problem leads nat-

urally to an implementation in which every pixel in the area

of interest defined by the Heavyside function are computed

in parallel. After this computation, that can be performed

with no required synchronization between each view, a re-

duction step is needed to aggregate all terms and obtain the

final value of the energy and gradient in each iteration.

We implemented the algorithm in C++ with no addi-

tional external libraries except for OpenCV for image IO,

OpenMP for CPU parallelization and CUDA for GPU com-

puting. Both the CPU and GPU based implementations are

essentially the same, except for the fact that the latter can

exploit the massive computing power of modern graphics

cards. For every algorithm’s iteration, a CPU-based func-

tion computes a list of pixel for each image that will be

affected by the computation. This list is generated by con-

sidering a band around each 2d-ellipse reprojection with a

thickness of 5σ pixels and is uploaded to the device mem-

ory, together with the optimized parameters and the pre-

computed image gradient for each pixel in the list. Once

the upload is completed, all available stream processors are

used to compute the energy and the energy gradient terms.

At the end of the computation steps, all threads are synchro-

nized and 9 values are reduced (energy and the 8 terms of

the gradient) to obtain the final values. The total energy is

used to track the optimization status and trigger a termina-

tion criteria, the gradient is used to adjust the 3d ellipse that

is being optimized, moving toward a local maxima.

We tested the execution time per iteration for both the

CPU and GPU based implementation of our algorithm (see

Fig.8) with respect to the average number of pixel pro-

cessed. In both cases, the process is fast enough to handle

a real-time optimization in 3 megapixels images with the

fitted ellipse spanning into about 50% of the image. As ex-

pected, the GPU implementation performs better than the

CPU and exhibits a more consistent running time through-

out the tests. This is probably due to the fact that we are

dealing with a dedicated hardware. Finally, the synchro-

nization overhead caused by the reductions decreases the

performance gap between the two implementations when a

relatively low number of pixels are processed, which in turn

becomes dramatic when an optimization involving more

than 105 pixels is needed.
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are plotted with respect to the number of pixels in the evaluated

mask (i.e. size of the ellipse to be refined).
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5. Conclusions

In this paper we presented a novel approach for ellipse

fitting that exploits multiple simultaneous calibrated views

of the same physical elliptical object. The proposed tech-

nique starts by obtaining an initial estimation of the 3D el-

lipse using 2D based fitting methods followed by a pairwise

triangulation. This initial guess is then refined by moving

its parameters according to an intensity-based level set ap-

proach that accounts for all the images simultaneously. To

this end, a specially crafted parametrization and an apt en-

ergy function have been introduced. The effectiveness of

the approach has been evaluated through an extensive ex-

perimental section that shows its resilience to a wide range

of noise sources and compares the accuracy obtained with

respect to a baseline approach. Finally, a running time

analysis of our GPU-based implementation of the algorithm

shows that the proposed method can be effectively used in

real-time applications.
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