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Abstract

Given their reference point, most people tend to be risk averse over gains and risk seeking over
losses. Therefore, they exhibit a dual risk attitude which is reference dependent. This paper
considers an adaptive process for choice under risk such that, in spite of a permanent short-run
dual risk attitude, the agent eventually learns to make risk neutral choices. The adaptive process is
based on an aspiration level, endogenously adjusted over time in the direction of the actually
experienced payoff.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Among economists, the most common assumption about choice behavior under risk is
that people maximize expected utility. The second most common assumption is that they
are risk averse. Serious difficulties in reconciling this second hypothesis with the
empirical evidence have been known since Friedman and Savage (1948). As a way to
deal with those, Markowitz (1952) suggested that the utility function might shift
depending on the current wealth.

This long forgotten intuition was revived by Kahneman and Tversky (1979) and
Fishburn and Kochenberger (1979). They showed how the empirical evidence supports a
model where the utility function of an agent is based on a reference point such as her
current level of wealth. While people may focus on different reference points, see Heath
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et al. (1999), most agents tend to exhibit what Kahneman and Tversky (1979) called the
reflection effect: they are risk averse in the gains and risk seeking in the losses with
respect to their reference point. A variety of studies and psychological explanations
surveyed in Kahneman et al. (1991) has established that there is a dual risk attitude
which depends on the reference point.

The risk attitude, therefore, is not an intrinsic feature of the choice behavior of an
agent. Whatever affects the reference point may determine the risk attitude. Depending
on the context and her past experiences, the same agent might seek or avert risk and
henceforth make different choices over the same set of lotteries. This compels
economics to confront two questions: (i) whether her choice behavior may converge
(and hence become predictable) in the long run; (ii) which kind of risk attitude would
eventually emerge?

March (1996) approaches the second question showing that a stimulus-response
model of experiential learning tends to generate a dual risk attitude in a simple bandit
problem. While he considers possible generalizations, he explicitly warns that ‘‘adaptive
aspirations present a more complicated problem’’ (p. 317). This paper studies a model of
aspiration-based learning over a known domain of symmetrically distributed payoffs
where, while maintaining reference-dependent preferences in the short run, the agent
eventually learns to choose a lottery which maximizes expected value. Our results
answer the first question in the positive and suggest an important distinction in the
second one: even if the agent has a dual risk attitude, this does not rule out her making
risk-neutral choices in the long run.

The following outline gives the essential features of our model. The agent repeatedly
faces a choice problem over monetary lotteries that are symmetrically distributed. Her
reference point is based on an aspiration level which acts as a target. At each period, the
agent picks a lottery that maximizes the probability of meeting her current target. Right
after, she plays the lottery and adjusts her reference point for the next period in the
direction of the actually experienced payoff. In the long-run, the reference point settles
down to a specific value and her choice behavior converges to maximization of the
expected value. However, at each period the agent maintains a dual risk attitude which
never withers away: therefore, learning to make risk neutral choices takes place without
the agent learning to be risk neutral.

The crucial idea for this result is simple: since preferences (and hence choices) depend
on the reference point, long-run convergence of the choice behavior follows from the
convergence of the reference point. Our model, however, has other features as well. We
endogenize the reference point and make it depend on the outcome of the past choices.
A simple rule of aspiration adaptation provides the link between the evolution of
long-run preferences and the short-run choice behavior. Moreover, we model short-run
preferences using an approach which is independent of the expected utility hypothesis,
while still consistent with it. This provides a simple generalization of the reflection effect
to the case of lotteries which simultaneously involve gains and losses.

There is not yet a theory of the learnable in economics, see Marimon (1997), but our
framework is similar in many ways to the adaptive learning models for equilibrium
behavior developed in game theory. These models postulate a plausible behavior rule for
the players. Combined with their current beliefs about opponent’s actions, this rule
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selects some strategies resulting in an outcome that affects players’ beliefs in the next
period. Against a fixed behavior rule, beliefs evolve endogenously. Thus, convergence to
equilibrium behavior follows from convergence to equilibrium beliefs.

Here, we postulate that the behavior rule is target-based maximization. Combined
with the agent’s current reference point, this rule selects a lottery resulting in an outcome
that affects her target for the next period. Against a fixed behavior rule, the reference
point evolves endogenously. Convergence to a risk neutral choice follows from
convergence of the reference point to the ‘right’ level.

The importance of maintaining the ‘right’ aspiration level is stressed in Gilboa and
Schmeidler (1996). They show that a case-based decision maker who follows an
appropriate adjustment rule for his aspiration level learns to maximize expected utility in
a bandit problem. As in our model, they postulate that in each period the agent follows a

¨deterministic rule of maximization. Borgers and Sarin (1996), instead, study a model
where the agent’s choice rule is stochastic. At each period, the agent raises (or lowers)
the probability to choose the lottery just selected according to whether its outcome met
(or not) her current target. As in our model, the aspiration level is adjusted in the
direction of the experienced payoffs. However, since the choice rule introduces
probability matching effects, choice behavior usually fails to converge to expected value
maximization.

Both of these papers are concerned with choice behavior. Rubin and Paul (1979) and
Robson (1996), instead, discuss the formation of individual risk attitudes from an
evolutionary viewpoint. Measuring success by the expected number of offsprings, they
investigate which kinds of risk attitudes are more likely to emerge. While they suggest
reasons for risk seeking over losses by younger males, this approach has not yet been
able to fully account for reference-dependent preferences. Dekel et al. (1998) go further
and study the endogenous determination of preferences in evolutionary games, but
provide no specific results on the evolution of risk attitudes.

2. The short-run model

This section describes our target-based model for the short-run choice behavior. The
long-run dynamics of our model is studied in the next section. For the sake of
readability, we relegate most proofs and a few auxiliary results to Appendix A.

2.1. Preliminaries

The agent faces a finite (nonempty) set + of monetary lotteries out of which she must
choose one. With no loss of generality, we assume that probabilities are exogenously
given. All the lotteries in + have finite variance. We denote by m and s respectivelyi i

the expected value and the standard deviation of a lottery X in +. We write X | F toi

denote that F is the cumulative distribution function (for short, c.d.f.) of X.
Given a lottery X | F, we say that X is symmetrically distributed (and F is symmetric

around m) if there exists some m in R such that F(m 2 x) 1 F(m 1 x) 5 1 for almost all x
in R. When F is continuous, taking limits for x → 0 in the previous equality gives
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F(m) 5 1/2. Therefore, we define m as the median of a symmetrically distributed X.
Note that our definition implies that m is unique even if the set of xs such that
F(x) 5 1/2 is not a singleton. Moreover, if the expected value of X is finite, this is equal
to m. Therefore, for a symmetrically distributed lottery X, we denote both the median
and the expected value by m.

We suppose that all the lotteries in + are symmetrically distributed and that their
c.d.f.s are absolutely continuous with full support on R. This restrictive assumption is
maintained throughout the paper. For the mere purpose of exemplification, we will
occasionally assume that the lotteries in + are normally distributed.

2.2. Target-based ranking

In order to make her choice, the agent must rank the lotteries. We assume that she
follows the target-based procedure described in Bordley and LiCalzi (2000). Let V
denotes the agent’s target, representing her aspiration level. The agent is interested in
maximizing the probability of meeting her target. Therefore, she ranks a lottery X in +
by the index w(X) 5 P(X $V ); that is, by the probability that X meets her target. To
allow for the case where the agent does not know exactly her aspiration level, we
assume that V is a random variable with a subjective distribution stochastically
independent of +. Therefore, the agent ranks X | F by the index

w(X) 5 P(X $V ) 5E P(x $V ) dF(x). (1)

Given that the agent relies on an uncertain target to rank the available lotteries, we
need to formulate some assumptions on the distribution of her aspiration level. In a
world where all lotteries are symmetrically distributed, the most natural hypothesis is
that the agent’s target V is also symmetrically distributed. We refer to the situation where
both the lotteries in + and the target are symmetrically distributed as a ‘symmetric
world’. When lotteries and target are taken to be normally distributed, we speak of a
‘normal world’.

An agent using the target-based procedure may not be sure about what her aspiration
level V should be. Unless this target is precisely known to her, it is not clear how the
agent should decide to code a specific outcome as a gain or as a loss. According to
prospect theory, the agent sets a reference point n in R and classifies an outcome as a
gain or as a loss according to its being higher or lower than n.

Therefore, we need some assumptions to relate the target V with the reference point n.
If the target is degenerate, it is reasonable to expect it to coincide with the reference
point. More generally, a natural assumption might be to let n be the mode of the target.
This matches the intuition that in many cases the agent is likely to anchor her
perceptions to the modal outcome. However, the mode of V may not be unique and there
may be reasons to prefer other statistics. For instance, one might suggest to let the
reference point be some central statistics like the expected value or the median of V.
Note though that these two statistics usually differ for non-symmetric distributions.

In a symmetric world, most of these concerns disappear. When the target V is
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symmetrically distributed, its expected value and its median have the same value.
Moreover, if the distribution of the target is unimodal, the mode is unique and is also
equal to the expected value. Given that any of these three statistics can claim to be a
prominent anchor and that they all coincide, we let the reference point be the expected
value n of the aspiration level V. Note that the assumption of a unimodal target is not
part of our definition of a symmetric world: except for the next section, this assumption
is not used in the rest of the paper.

2.3. Dual risk attitude

This section shows that, in a symmetric world where the distribution of the target is
unimodal, the agent exhibits a dual risk attitude centered around her reference point.
This matches the compelling evidence that decision makers tend to be risk averse with
respect to gains over their reference point and risk seeking with respect to losses.

We illustrate the point with an example based on a ‘normal’ world. Assume
temporarily that all the lotteries in + are normally distributed with strictly positive
variances and, by analogy, that the target is also normally distributed with expected
value n and standard deviation s . 0; for short, we write V| N(n, s). By Theorem A.1 in
Appendix A,

m 2 n
]]]P(X $V ) 5 F ,]]S D2 2Œs 1 s

where F is the c.d.f. of a standard normal.
Given a lottery X with expected value m, denote by c(X) the certainty equivalent of X.

An agent is said to be risk averse over X if her certainty equivalent c(X) # m ;
correspondingly, she is risk seeking if c(X) $ m and risk neutral if equality holds. In a
normal world, the certainty equivalent exists and is unique for any lottery. If the agent
follows the target-based ranking procedure, Theorem A.2 in the Appendix shows that
her certainty equivalent for X can be written as a convex combination of m and n :

c(X) 5 am 1 (1 2 a)n, (2)

where of course a is in [0, 1]. Therefore, the agent is risk averse (respectively, neutral or
seeking) over all lotteries that have a higher (equal or lower) expected value m than her
reference point n. To put it differently, she tends to be more cautious when she expects
(on average) to meet her target.

We think that this result fits the spirit of prospect theory. However, we must point out
that this is not the reflection effect studied by Kahneman and Tversky (1979). They
confronted subjects with pairs of lotteries yielding only positive payoffs and most
choices exhibited risk aversion; then they changed positive with negative payoffs and
several people switched to risk seeking behavior. Each lottery they examined was on just
one side of the reference point. In our normal world, instead, the lotteries in + have full
support and therefore none of them offers only gains (or losses).

On the other hand, since normal distributions are symmetric, a lottery X with expected
value m . n is more likely to yield outcomes above the reference point n than not.
Accordingly, the agent tends to view X as a positive lottery and exhibits risk aversion.
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As m↓n, her ‘positive’ perception of X becomes weaker and weaker until m 5 n. At this
point, the lottery X is as likely to yield outcomes above the reference point as below and
the agent perceives it as ‘balanced’, so that she exhibits risk neutrality. For m , n, the
lottery becomes mostly ‘negative’ and the agent turns to a risk seeking behavior.

There is another subtler difference between our approach and Kahneman and Tversky
(1979). We postulate target-based ranking as a behavior rule and use this assumption to
deduce that the agent will exhibit a dual risk attitude. Kahneman and Tversky (1979),
instead, start off from the empirical evidence about dual risk attitudes and show that it
may be accounted for by a reflection effect in the utility function. In a sense, while we
are trying to suggest an explanatory mechanism, they simply strive to obtain a robust
description of the empirical evidence; see Gigerenzer (1996). Moreover, they build their
descriptive model by amending the expected utility model (to a significant extent) while
we abstract from it.

Our model for a dual risk attitude essentially carries over to a symmetric world,
provided that the distribution of the target is unimodal. The whole argument rests on the
validity of Eq. (2) in a normal world. When trying to extend the equation to a symmetric
world, one runs into the technical difficulty that the existence of the certainty equivalent
for any lottery X cannot be guaranteed without further regularity assumptions. Theorem
A.4 in Appendix A proves that Eq. (2) holds whenever the certainty equivalent of X
exists and V has a unimodal distribution. Thus, if we base the definition of risk attitude
on the certainty equivalent, unimodality of the target implies that the dual risk attitude
holds in a symmetric world as well.

2.4. The relationship with expected utility

It is instructive to consider how our agent would look like to someone trying to
interpret her choice behavior in view of the expected utility model. Maybe surprisingly,
her target-based ranking procedure is both mathematically and observationally equiva-
lent to the expected utility model. This is shown by Castagnoli and LiCalzi (1996) in
von Neumann and Morgenstern’s setting and by Bordley and LiCalzi (2000) in Savage’s
framework. For our purposes here, it suffices to note that the choice behavior associated
with (1) is compatible with the expected utility model provided that we interpret
P(x $V ) as the utility of the outcome x; that is, if we let U(x) 5 P(x $V ). Accordingly,
we denote the c.d.f. of the uncertain target V by U and write V| U.

To illustrate this point, we assume a normal world where the target V is normally
distributed with expected value n and standard deviation s . 0; then P(x $V ) 5 F (x 2f
n) /s . An agent that maximizes the probability to meet the target V would rank allg
lotteries as if she is maximizing the expected value of the utility function U(x) 5 F (x 2f
n) /s . Either approach makes exactly the same predictions.g

For instance, note that F (x 2 n) /s is concave for x $ n and convex otherwise. In thef g
language of expected utility, we say that the utility function U(x) is S-shaped around n.
In the target-based language, we say that the distribution of the target is unimodal. In
either case, this characteristic curvature generates a reflection effect around the reference
point n.

The equivalence between the expected utility model and the target-based procedure
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raises an important modelling issue: why the second and not the first one? There are two
independent reasons for this choice. First, the target-based procedure offers a more
plausible account of how reference dependence may come into place in the short run.
Second, it suggests a natural way to aggregate many short-run choices into a single
long-run process. For other modelling advantages of a target-based language see LiCalzi
(2000). We argue here for the first claim and defer the discussion of the second one to
Section 3.4.

There is a tendency to confound the assumption that the expected utility model
represents the agent’s preferences with the claim that the agent actually uses expected
utility to find out what she likes better. The first viewpoint is descriptive: the purpose of
a theory is to describe behavior, not to explain it. Following this viewpoint, it is
immaterial which model we adopt provided that it shares the same descriptive accuracy
of its competitors. Both an S-shaped utility function and a unimodal target generate the
reflection effect. Therefore, they are equally good and equally bad.

The second viewpoint is closer to looking for an explanation of the observed behavior.
An S-shaped utility function does not explain much. The target-based procedure suggests
a mechanism which may be the cause behind the reflection effect. Suppose that the agent
is not sure about her target and must estimate a probability distribution for it. One
possibility is that she focuses on the most likely value n and then assesses decreasing
probabilities as she moves away from n. The probability that x is the ‘true’ target is a
decreasing function of its distance from n which, accordingly, acts as a reference point.
This would lead to the unimodal distribution which generates the reflection effect.

3. The long-run model

3.1. The evolution of the reference point

Consider an agent who deals with the following choice problem under risk. At times
t 5 1, 2, . . . , the agent faces a fixed set + of lotteries which satisfy the assumptions
listed in Section 2.1. We assume a symmetric world where, at each time, any lottery in +
is stochastically independent of the lotteries that were available in previous periods. At

teach time t, the agent has a target V which represents her current (and possibly
uncertain) aspiration level. The distribution of the target at time t is stochastically
independent of any set + which was available up to (and including) time t. The agent
ranks the lotteries in + by the probability that they meet the target, following the

t tprocedure described in Section 2.2. We denote by X the lottery chosen in t and by x the
tcorresponding outcome of X , which becomes known to the agent right after she selects

tX .
tThe distribution of the target V may change over time. We assume that the agent’s

aspiration level is closely related to the average outcome that the agent has obtained in
0the past. Let X be the agent’s (arbitrary, and possibly random) initial aspiration level in

t tt 5 0. At the beginning of period t, the outcome x received for playing lottery X is
known for any t 5 0, 1, . . . , t 2 1. The agent sets her current reference point to
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t211t t t¯ ]S Dn 5 x 5 O x . (3)t t 50

tThe target V used to choose a lottery at time t is a (possibly degenerate and)
t t¯symmetrically distributed random variable with expected value n 5 x . Note that we do

tnot place any restriction on the variance or other moments of V . The only restriction on
tthe updating rule for V is that its expected value should obey (3). Therefore, there is a

substantial degree of freedom about the process by which the agent sets her aspiration
level.

t¯Intuitively, we are assuming that the reference point x adapts to how things have
been going. If the outcomes experienced in the recent past have been relatively
unsatisfactory, the reference point decreases and the agent lowers the expected value of
her target (or raises it in the opposite case). Hence, the reference point evolves
endogenously as a consequence both of the agent’s choices (which lottery X she plays)
and of chance (which outcome x actually occurs).

Chance is what makes interesting this simple rule for setting the reference point.
t¯Although at the beginning of period t the reference point x is known with certainty, its

evolution over time is stochastic because it depends on which outcome obtains from the
lottery that the agent selects. Today we may know exactly her reference point, but what

tit will become tomorrow depends on how the lottery X played today will turn out.
More formally, given the information available at the beginning of period t, the

reference point for the next period is the random variable

t 1] t11 t t]] ¯ ]]S DX 5S Dx 1 X . (4)t 1 1 t 1 1
t¯The (already known) reference point x for the previous period combines with the (yet to

t tbe realized) lottery X . The randomness of the X term makes the evolution of the
reference point stochastic. In turn, since the agent’s choice depends on her target, this
makes the evolution of her choice behavior stochastic as well.

3.2. Convergence of the reference point

This section shows that, in spite of this randomness, the agents’ reference point
converges (almost surely) to a level that induces her to pick a lottery that maximizes
expected value, so that she learns to make risk neutral choices.

Let m denote the greatest expected value attainable in the (finite) set +. The set +*

may contain more than one lottery with expected value m . However, we show below in*

Theorem 1 that if a lottery X with expected value m is optimal for the agent, then all* *

(and only all) the lotteries with expected value m are optimal as well. Therefore, for the*

sake of simplicity, we pretend that there exists only one such lottery X and we say that*

X is optimal to mean that any lottery with expected value m is optimal. Note that by* *

definition X maximizes expected value and hence it represents the risk neutral choice.*

We wish to prove that eventually the agent learns to choose X . How might this come*

about? Suppose that the current reference point is n. Our first result shows that the
reference point n 5 m has a crucial fixed-point property.*
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Theorem 1. At the reference point n 5 m , the optimal choice has expected value m . If* *

n . m (respectively, n , m ), then any optimal choice has an expected value strictly* *

lower (respectively, higher) than n.

Proof. There are three cases to consider, depending on the sign of (m 2 n). First,*

*suppose that n 5 m . By Theorem A.3 in Appendix A, P(X $V ) 5 1/2. Since X has* *

the greatest expected value from +, any other lottery X in + has an expected value
m , m 5 n. By Theorem A.3 again, P(X $V ) , 1/2 and therefore X cannot be an*

optimal choice. Second, suppose that n . m . Since any lottery X in + has an expected*

value m # m , n, the result follows immediately. Third, suppose that n , m . By* *

Theorem A.3, P(X $V ) . 1/2. By Theorem A.4 again, any lottery X with expected*

value m # n gives P(X $V ) # 1/2 and therefore cannot be optimal. Hence, the optimal
choice must have an expected value m . n. h

Note that the theorem does not rule out the possibility that X be an optimal choice*

when the reference point n ± m . The most important consequences of Theorem 1 are*

three. First, when her reference point n is lower than m , the agent is ambitious in the*

sense that she goes after lotteries with an expected value higher than n. Second, when
her reference point n is greater than m , the agent must necessarily pick lotteries with an*

expected value lower than n. Third, m is the only reference point which induces the*

agent to choose a lottery with an expected value equal to the reference point.
Therefore, a sufficient condition for the agent to pick X as her optimal choice in + is*

that her reference point is n 5 m . The rest of this section is devoted to show that, under*

a slight strengthening of ambition, the stochastic evolution of the reference point settles
(almost surely) at m regardless of its initial position. Thus, it is by adjusting her*

reference point until it matches the highest available expected value that the agent learns
to make a risk neutral choice.

tConsider the stochastic evolution of the reference point. Given a target V with
t t t¯reference point x , let B(V ) be the choice map induced by the ranking index P(X $V ) at

ttime t. At the beginning of period t, the agent selects a lottery in B(V ). Since our
tconvergence result holds no matter how indifferences in B(V ) are resolved, we assume

without loss of generality that there is a tie-breaking rule which turns this choice map
t tinto a choice function. Therefore, we let X 5 B(V ) and write Eq. (4) as

t 1 1] t11 t t t t t]] ¯ ]] ¯ ]] ¯S DX 5S Dx 1 B(V ) 5 x 1 fB(V ) 2 x g. (5)t 1 1 t 1 1 t 1 1

Eq. (5) has a structure similar to the stochastic approximation algorithm introduced by
Robbins and Monro (1951). Since Blum (1954) proved a sufficient condition for its
almost sure convergence, a vast literature has developed proposing various types of
stochastic approximation procedures and proving several sufficient conditions for their
convergence. See Ljung et al. (1992) for a mathematical introduction and Sargent (1993)
for a partial survey of applications to adaptive learning in economics. Using methods
from stochastic approximation theory, Theorem A.5 in the appendix establishes a result
of almost sure convergence for this algorithm.
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t 0 1 t21 t t t tLet ^ the s-algebra generated by hX , X , . . . , X j. Let b (V ) 5 E B(V ) u ^ thef g
t tconditional expectation of the optimal choice B(V ), given the current target V and the

payoffs realized in the past (up to time t). The ambition property from Theorem 1 states
t t t t t¯ ¯ ¯that m . x implies b (V ) . x . We say that ambition is strict if furthermore m . x 1 ´* *

t t t¯with ´ . 0 implies b (V ) $ x 1h with h . 0, where h depends on ´ but not on t or on
tthe events in ^ . The main result of this section is a corollary of Theorem A.5.

t¯Theorem 2. Under strict ambition, the reference point x converges almost surely to m .*

The proof is in the Appendix A, but we offer here some intuition about how this result
comes about. Rewrite Eq. (5) as

1 1] t11 t t t t t t t¯ ]] ¯ ]]X 5 x 1 fb (V ) 2 x g 1 fB(V ) 2 b (V ) g.t 1 1 t 1 1
t t t tGiven ^ , the conditional expectation of fB(V ) 2 b (V ) g is zero and therefore the

] t11(conditional) expected motion of X is

1] t11 t t t t t¯ ]] ¯E X u ^ 5 x 1 fb (V ) 2 x g.f g t 1 1
] t11This shows that the evolution of the expected value of X tends to be driven by the

t t t¯fb (V ) 2 x g term which, by Theorem 1, always points towards m .*
t t tThis expected motion towards m is perturbed by the stochastic term fB(V ) 2 b (V ) g,*

which in principle might lead the system elsewhere. However, the cumulated perturba-
tions

t 1 t t t]]O B(V ) 2 b (V )f g
t 1 1t 51

form a martingale and converge (almost surely). Hence, after a sufficient time, the
cumulated perturbations cannot counter the expected motion and the system settles down
on m .*

3.3. An example in a normal world

This section provides a pictorial example set in a normal world with a degenerate
target. When + is a set of normal distributions and the agent’s ranking is compatible
with expected utility as discussed in Section 2.4, we can simplify the representation of
the choice set and replace a lottery X by the pair (m, s) of its expected value and
standard deviation; see Meyer (1987). For instance, if the target is known for sure and
therefore coincides with the reference point n, Theorem A.1 in Appendix A implies that
the agent behaves as if choosing the lottery that maximizes (m 2 n) /s.

Let # be the set of (m, s)-pairs associated with lotteries in +. Note that there may be
more than one lottery in + corresponding to the same pair in #, but the agent will be
indifferent among them. We can represent the new choice set # as points on the plane;
see for instance Fig. 1. In this setting, the optimal choice of the agent depends only on
her reference level n. There are lotteries which can never be optimal. For a lottery
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Fig. 1. An example of a normal world.

X | N(m , s ) to be optimal, there must exist a reference point n such that (m 2 n) /1 1 1 1

¯s 5 max (m 2 n) /s 5 k. This occurs if and only if m # x 1 ks for all (s, m) [ # with1 #

equality holding at (s , m ); or, equivalently, if and only if there exists an hyperplane1 1

through (m , s ) supporting # from above (with respect to the m-axis). Therefore, a1 1

lottery X | N(m, s) can be optimal if and only if (m, s) lies on the upper boundary of
the convex hull of #.

To gain some intuition, consider Fig. 1. Only the lotteries corresponding to the points
from 1 to 6 can be optimal. Lottery 2 can be optimal although it is not an extreme point;
but when 2 is optimal, the agent is indifferent between Lotteries 1, 2, and 3. Lottery 7 is
an extreme point, but it cannot be optimal because either 5 or 6 will be preferred.
Lottery 8 cannot be optimal, although its expected value is higher than that of most other
lotteries.

Order just the lotteries that can be optimal so that they are increasing in the variance.
For instance, we have numbered such lotteries in Fig. 1 from 1 to 6. Then the actual
optimal choice is increasing in the reference point n ; that is, the higher is n, the higher is
the variance of the optimal choice. In fact, given two reference points n . n , let X and1 2 1

X be respectively optimal in n and n . By Theorem A.1, it must be2 1 2

m 2 n m 2 n m 2 n m 2 n1 1 2 1 2 2 1 2
]] ]] ]] ]]$ and $ .

s s s s1 2 2 1

Adding the two inequalities and rearranging terms, we obtain (n 2 n ) /s # (n 2 n ) /1 2 1 1 2

s , from which s $ s .2 1 2

Intuitively, the higher is the reference point, the higher the variance of the optimal
lottery. If the upper boundary of the convex hull is humped as in Fig. 1, an agent with a
sufficiently low aspiration level chooses a lottery with low variance (and hence low
mean); and if she has a sufficiently high reference point, she picks a lottery with high
variance (but again low mean). By well-known results about the risk attitude over
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normal distributions, see Hanoch and Levy (1969), the agent is risk averse (respectively,
risk seeking) when her reference point is sufficiently low (or high).

3.4. Two counterexamples

The main results in this paper are two. First, reference-dependent preferences may
converge in the long run. Second, they may lead to risk neutral behavior. This section
provides two simple counterexamples, one for each result. Their purpose is to help the
reader assess the strengths and the limitations of our approach.

We show first that preferences may fail to converge because the reference point may
cycle forever. Recall that we took the reference point to be (essentially) the sample mean
of the outcomes received in the past. For simplicity, suppose that the target is degenerate
and equal to n. The choice set + contains two lotteries: X is normally distributed with
expected value m 5 0 and standard deviation s 5 20; and Y is a (non-symmetric) binary
lottery which pays 1 with probability 0.9 and 11 with probability 0.1. The expected
value of Y is 2 . m. Let n be the current reference point.

We claim that the agent strictly prefers X when n . 1 and strictly prefers Y when
n # 1. For n # 1 and n . 11, this is immediate. For n in (1,11], note that X is normally
distributed and therefore

P(X $ n) . P(X $ 20) 5 P(X $ m 1 s) 5 1 2 F(1) ¯ 0.1587 . 0.1 5 P(Y $ n).

As long as n # 1, the agent chooses Y in each period. Since the expected value of Y is
2, persisting in this choice generates payoffs that drive the sample mean up until n . 1;
at that point, the agent switches to choosing X. But, in turn, the expected value of X is
m 5 0 and this must eventually bring the sample mean down so that the agent switches
back to Y. The reference point cannot converge and thus the agent’s choice keeps going
back and forth between X and Y forever, while each cycle stretches (on average) over
longer and longer periods.

This first counterexample proves that Theorem 2 is not trivial. Our second counterex-
ample shows that, even when the reference point converges, the long run choice
behavior may not be risk neutral. This suggests that our model may be used to explain
convergence of long-run behavior to different kinds of risk attitudes in worlds which are
not symmetric. For the moment, we must leave this conjecture to future research.

Assume again a degenerate target and a choice set with two lotteries: X | N(0, 20) as
before and another (non-symmetric) binary lottery Z which pays 21 with probability 0.9
and 10 with probability 0.1. Similarly to the above, the agent strictly prefers X when
n . 2 1 and strictly prefers Z when n # 2 1. Thus, as far as n # 2 1, the agent chooses
Z. Since the expected value of Z is 0.1, this must eventually drive the sample mean over
2 1 and make the agent pick X. Once the agent starts choosing X, which has m 5 0, the
sample mean tends to settle around 0. Eventually, the reference point converges to 0 and
the agent prefers X although Z has a higher expected value. In other words, the agent
learns to make a (strictly) risk averse choice.

We can offer some intuition about why risk neutrality fails to emerge in this example.
The key property is ambition, as it appears in Theorem 1: if there is a lottery with
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expected value strictly higher than n, the agent does not content herself with any lottery
whose expected value is lower than n. If the agent is ambitious for all values of n , m*

(and if she prefers X at n 5 m ), then her choice behavior will converge to risk* *

neutrality. In the second counterexample above, ambition fails for n in [0, 0.1) and this
prevents convergence to the risk neutral choice.

We note one last important feature of our model. Establishing Theorem 1 suffices to
prove Theorem 2 and therefore to obtain convergence to risk neutrality. We proved
Theorem 1 using Theorem A.3, which relies on the assumption of a symmetric world.
However, there may different ‘worlds’ in which Theorem 1 is true. In any of them, the
choice behavior would converge to risk neutrality by Theorem 2. This suggests how to
go about proving a piece of our conjecture above: risk neutrality may also emerge in
worlds that are not symmetric.

3.5. Changing preferences and expected utility

As the reference point changes, so do the short-run preferences of the agent. It is
instructive to consider how their dynamics looks like in both our target-based model and
the expected utility model. We begin from the first one.

At the beginning of period t, we can write the target

t t t¯V 5 x 1 z

t t¯as the sum of the current reference point x and a random term z . This allows one to
model situations where the agent is uncertain about which reference point she should

t¯use. For instance, the agent may feel that the average experienced payoff x is an
undistorted estimate of the ideal reference point, but that there might be some other
relevant (yet unavailable) information that she should take into account. This in-
formation combines into a probabilistic assessment of the aspiration level at each period
t.

t¯Given that convergence in our model only requires convergence of x , the possible
dynamics of these probabilistic assessments includes many possible cases. For instance,

t twe could assume that the standard deviation s of the target V is decreasing over time as
the sample of experienced payoffs becomes longer: the greater the sample, the lower the

t t t¯uncertainty. Alternatively, we might assume that s 5 0 if x , m and s . 0 otherwise;*
t¯that is, the agent feels confident that x is her target when there is at least one lottery in

+ that has a higher mean, but entertains doubts once she realizes that her reference point
may be too high. More generally, provided that (3) holds, our model is compatible with

t t t¯any updating rule for V . We do not even require V to converge, although x will.
Hence, in our model based on a random target, the aggregation of short-run

preferences into a long-run preferences is compatible with a large class of probabilistic
assessments and updating rules. The agent is not required to have a utility function and
her preferences change simply because her opinions change.

The expected utility model is compatible with ours. Therefore it is possible to rewrite
our model while having the agent maximize expected utility at each period. However,
doing so requires ad hoc assumptions that betray that the formal equivalence is not
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t t t t11 tsubstantial. Given V , let U be its corresponding c.d.f. When V is updated to V , U
t11 tbecomes U . The equivalence requires that U be used as utility function in the

expected utility representation of the agent’s behavior. Therefore, the same dynamics
tensues if we postulate that the utility function U changes its shape over time while the

reference point independently evolves so that (3) holds. But it would take a quite
tcontrived story to explain why and how U shifts over time. The model would manage

to describe the dynamics of preferences only by ignoring the issue of why they are
changing.

4. Conclusions

The adaptive process described in this paper seems close to the learning experience
underlying the formation of expertise. Suppose that an inexperienced agent sets her
aspiration level too low (or too high). If she exhibits a dual risk attitude, her choices will
lead to outcomes that systematically overshoot (or undershoot) the target. As her
experience grows, she learns to set more realistic targets and to make choices matching
(on average) her aspiration level. Moreover, this process tends to maximize the expected
value of the chosen lotteries. Experience is embodied in the evolution of the target and
in the stabilization of the reference point at the ‘right’ level.

Unfortunately, we are not aware of any experimental evidence which bears on this
interpretation. More generally, the literature lacks attempts to study the evolution of risk
attitudes over time. It may be time to undertake such an investigation. Behavioral
economics is becoming increasingly aware that preferences are often endogenous and
that they may be learnt. However, what (if anything at all) can be eventually learnt is not
yet clear.

This paper proposes a model which makes testable predictions about the evolution of
choice behavior over symmetric lotteries. In particular, it would be interesting to study
the risk attitudes of experienced versus inexperienced agents in a symmetric world. We
predict that the first group would be more likely to engage in risk neutral choices.
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Appendix A

Theorem A.1. Suppose that X | N(m, s) and V| N(n, s) are stochastically independent
2 2and normally distributed. If s 1 s . 0, then
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m 2 n
]]]P(X $V ) 5 F ]]S D2 2Œs 1 s

2 2where F is the distribution function of a standard normal. If instead s 5 s 5 0, then
P(X $V ) 5 1 if m $ n and 0 otherwise.

]]2 2Œs dProof. The difference of the two normals V and X is (V2 X) | N (n 2 m), s 1 s . If
2 2

s 1 s . 0, we have that

(V2 X) 2 n 2 ms d
]]]]]Z 5 ]]2 2Œs 1 s

is a standard normal and therefore

m 2 n m 2 n
]]] ]]]P(X $V ) 5 P(V2 X # 0) 5 P Z # 5 F .]] ]]S D S D2 2 2 2Œ Œs 1 s s 1 s

2 2If instead s 5 s 5 0, both X and V are degenerate and P(X $V ) 5 P(m $ n). h

Theorem A.2. Given a target V| N(n, s) with s . 0 and a lottery X | N(m, s), there
exists a in [0, 1] such that the certainty equivalent CE(X) satisfies

CE(X) 5 am 1 (1 2 a)n.

Proof. By Theorem A.1, CE(X) must satisfy

m 2 n CE(X) 2 n
]]] ]]]5 .]]2 2 sŒs 1 s

Rearranging, we obtain

m 2 n 1 1
]]]] ]]]] ]]]]CE(X) 5 n 1 5 m 1 1 2 n]]] ]]] ]]]S D S D2 2 2 2 2 2Œ Œ Œ1 1ss /s d 1 1ss /s d 1 1ss /s d

and the result follows by taking

1
]]]]a 5 . h]]]S D2 2Œ1 1ss /s d

Theorem A.3. Let X | F and V| U be stochastically independent and symmetrically
distributed, with medians respectively m and n. Suppose that F is absolutely continuous
and has full support on R. Then

(i) m 5 n implies P(X $V ) 5 1/2;
(ii) m . n implies P(X $V ) . 1/2;
(iii) m , n implies P(X $V ) , 1/2.

Proof. Recall that P(X $V ) 5 e U(x) dF(x). Case (i) follows immediately by the
symmetry of U and the absolute continuity of F. Consider Case (ii). Let d 5 m 2 n . 0.
Define the auxiliary function
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U(x) ifx $ m
A(x) 5HU(x 2 2d ) ifx , m

Note that A(x) is bounded and symmetric around m. Moreover, U(x) $ A(x) for all x.
Therefore,

1
]P(X $V ) 5EU(x) dF(x) $E A(x) dF(x) 5 ,2

where the last equality follows by the symmetry of A and the absolute continuity of F.
To strengthen the inequality, note that there must exist an interval [a, b] in (2`, m)
where U(x) . A(x). By the full support assumption, F puts positive probability on I and
therefore the strict inequality holds. The proof of Case (iii) follows by reversing the
argument just used for Case (ii). h

We say that a random variable V has a unimodal distribution U if there exists a mode
n in R such that U is convex on (2`, n] and concave on [n, 1 `). If U is unimodal, the
set of its modes is a (possibly degenerate) interval. If U is unimodal and has a unique
mode n, it may fail to be continuous at (and only at) n ; in particular, any degenerate
distribution is unimodal.

Theorem A.4. Suppose that the target has a unimodal distribution. Under the
assumptions of Theorem A.3, if there is a certainty equivalent c(X) for X then there
exists a in [0, 1] such that c(X) 5 am 1 (1 2 a)n.

Proof. Recall that c(X) solves the equation P(X $V ) 5 P(c $V ). We distinguish three
cases. First, suppose that m 5 n. By Theorem A.3, P(X $V ) 5 1/2. Hence, P(c $V ) 5 1/
2 and so c 5 n. Therefore, c 5 m 5 n and any a will do. Second, suppose that m . n. By
Theorem A.3, P(X $V ) . 1/2 and so c $ n. To prove the result, we need to show that
m $ c or, equivalently, that

U(c) 2 U(m) 5E U(x) 2 U(m) dF(x) # 0.f g

Let d 5 m 2 n . 0. Define the auxiliary function

U(x) 2 U(m) if x $ m
A(x) 5HU(x 2 2d ) 2 U(m 2 2d ) if x , m

Note that A(x) is bounded and symmetric around m, with A(m 1 x) 1 A(m 2 x) 5 0 for
almost all x. Moreover, A(x) $ U(x) 2 U(m) for all x by the unimodality of U. Therefore,
by the symmetry of A,

E U(x) 2 U(m) dF(x) #EA(x) dF(x) 5 0,f g

as it was to be shown. The third case, when m , n, can be similarly handled. h
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The next theorem is a variation on an almost sure convergence result that is
well-known in the literature on stochastic approximation algorithms. Given some

] 0arbitrary random variable X , consider the stochastic algorithm

1] t11 t t t¯ ]] ¯X 5 x 1 H(x , X ), (A.1)t 1 1

where H(x, X) is a deterministic function. We provide a sufficient condition for the
almost sure convergence of (A.1) to a point. Our proof uses an elegant argument
developed in Robbins and Siegmund (1971), where the following lemma is proved.

t t t t tLemma 3. Let h^ j be an increasing sequence of s-algebras. Suppose that Z , A , B , C
tare nonnegative ^ -measurable random variables such that

t11 t t t t tE Z u ^ # Z (1 1 A ) 1 B 2 Cf g

for all t 5 1, 2, . . . Then, on the set

1` 1`

t tO A , `, O B , ` ,H J
t51 t51

t 1` tit almost surely occurs that Z converges to a finite random variable Z and o C ist51

finite.

t 0 1 t21Theorem A.5. Let ^ be the s-algebra generated by hX , X , . . . , X j. Suppose that
(A.1) satisfies the following three assumptions:

t t t¯(i) the term H(x , X ) is ^ -measurable for all t;
(ii) there exists a constant k . 0 such that

t 22¯ ¯E H(x, X) u ^ # k 1 1 ux us dfs d g

¯for all t and all x;
(iii) for

t t¯ ¯h (x ) 5 E H(x, X) u ^ ,f g

which is well defined by (ii), there exists m such that ´ . 0 implies*

t¯ ¯sup (x 2 m ) h (x ) # g*
¯´#ux2m u#(1 /´)*

]t tfor some g , 0 which depends on ´ but not on t or on the events in ^ . Then X
converges almost surely to m .*

t t 2¯Proof. Define Z 5 (x 2 m ) and, for notational simplicity, let a 5 1/(t 1 1). Then* t

t11 t t t t 2 t t 2¯ ¯ ¯Z 5 Z 1 2a (x 2 m )H(x , X ) 1 a fH(x , X ) g .t * t

t 2 t 2¯Using (ii) and the inequality (x ) # 2Z 1 2m , this implies*
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t11 t t t t t t 2 t t 2 t¯ ¯ ¯E[Z u ^ ] 5 Z 1 2a (x 2 m )E[H(x , X ) u ^ ] 1 a E[(H((x , X )) u ^ ]t * t

t t t t 2 t 2¯ ¯ ¯# Z 1 2a (x 2 m )h (x ) 1 ka (1 1 ux u )t * t

t 2 2 2 t t t¯ ¯# Z (1 1 2ka ) 1 ka (1 1 2m ) 1 2a (x 2 m )h (x ).t t * t *

t 2 t 2 2 t t t t t¯ ¯Let A 5 2ka , B 5 ka (1 1 2m ) and C 5 2 2a (x 2 m )h (x ). Note that oA , `,t t * t *
t toB , ` and that C is nonnegative by (iii). Therefore, Lemma 3 implies that it almost

t t t t¯ ¯surely occurs that Z converges to Z and that oa (x 2 m )h (x ) is finite.t *

It remains to show that Z 5 0 almost surely. Proceed by contradiction and suppose
t¯that Z(v) ± 0. Then there exist some ´ . 0 and some T such that ´ # ux 2 m u # (1 /´)*

t t t¯ ¯for all t $ T. By (iii), sup (x 2 m )h (x ) # g , 0. But oa diverges and thereforet$T * t
t t t¯ ¯oa (x 2 m )h (x ) cannot be finite. ht *

t t t t¯ ¯Proof of Theorem 2. Eq. (5) is a special case of (A.1) where H(x , X ) 5 X 2 x and
t tthe lottery X 5 B(V ) is the optimal choice at time t. Therefore we only need to check

that the three assumptions of Theorem A.5 are satisfied. Assumption (i) holds because
t tthe optimal choice X 5 B(V ) is a stochastically independent lottery. Let s be theM

greatest standard deviation attainable in the (finite) set +. Then Assumption (ii) holds
because

t t t t t t t t2 2 2¯ ¯E sX 2 x d u ^ 5 E sB(V ) 2 b(V )d u ^ 1 fb(V ) 2 x gf g f g
2 2 t 2¯# s 1 2[m 1 (x ) ].M *

t t t t¯ ¯ ¯Finally, since h (x ) 5 b (V ) 2 x , Assumption (iii) holds because ux 2 m u $ ´ implies*
t¯ ¯(x 2 m ) h (x ) # 2 ´ ? minh´, hj , 0. h*
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