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Abstract. A common precept of decision analysis under uncertainty is the
choice of an action which maximizes the expected value of a utility function.
Savage’s (1954) axioms for subjective expected utility provide a normative
foundation for this principle of choice. This paper shows that the same set
of axioms implies that one should select an action which maximizes the
probability of meeting an uncertain target. This suggests a new perspective
and an alternate target-based language for decision analysis. We explore
the implications and the advantages of this target-based approach for both
individual and group decision-making.
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1. Introduction

Two of the most important approaches to decision making are optimizing
and satisficing. In a world with no uncertainty, where each feasible actiond

leads to a (known) consequencexd , the optimizing approach postulates that
the agent should choose an actiond which maximizes his value function
v(d). The satisficing approach, instead, explicitly recognizes the cost or
the practical impossibility of searching among all possible actions for the
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optimal one; see Simon (1955). Therefore, it suggests that the agent should
establish some targett and then pick thefirst actiond which meets the target.

Rational decision making is based on the optimizing principle. However,
the satisficing approach has some appealing features because thinking about
targets is very natural in many problems. Moreover, as it is often easier to
formulate targets and monitor their achievement, they are prominent in the
decision processes of bureaucracies and organizations.

The purpose of this paper is to bring a target-based language to decision
making under uncertainty, while maintaining the optimizing principle as a
guide to rational decisions. The satisficing approach is sufficient but not
necessary to make target-based decisions.

When there is uncertainty, an actiond may lead to different outcomes,
usually summarized in a random consequenceXd . Given a targett , then, the
agent can only assess the probabilityP(Xd � t) that the actiond leads to a
consequence that meets the target.According to the optimizing principle, the
agent should choose an actiond which maximizes the probabilityv(d) =
P(Xd � t) of meeting the targett ; see Manski (1988).

This simple target-based model is not complete because there may be
uncertainty about the target itself. For example, many businesses trying to
meet customer requirements set these as their target. But, while government
contractors frequently have exact specifications to satisfy, commercial firms
must usually view their customers’requirements as uncertain.The target may
not even be known in individual contexts. Many individuals have the goal of
“being successful”; but only a very few know precisely which combinations
of money, leisure time, culture, etc. must be attained to achieve this goal.

Hence, we relax the assumption of a known target and replacet with a
random consequenceT . The ensuing target-based decision model prescribes
that the agent should choose an actiond which maximizes the probability
v(d) = P(Xd � T ) of meeting an uncertain target. Borch (1968) develops
a closely related approach.

To assess the normative appeal of this model for decision analysis, we
consider the subjective expected utility theory perfected in Savage (1954).
It provides an axiomatic foundation which implies that the agent should
choose an actiond which maximizes his expected utilityv(d) = EU(Xd)

with respect to a subjective probability distribution.
Quite unexpectedly, the target-based model satisfies the Savage axioms!

As we prove in the appendix, there is no way to tell if an agent abides by Sav-
age’s axioms is maximizing his expected utility or is maximizing the proba-
bility of meeting his uncertain target. A similar result for the von Neumann
and Morgenstern’s axiomatization is given in Castagnoli and LiCalzi (1996).

This implies that Savage’s axioms allow us to use two different languages
in formulating our decision models – the language of utilities or the language



Decision analysis using targets instead of utility functions 55

of targets. As it turns out, after a trivial normalization, translating between
the two languages is simply a matter of settingU(x) = P(x � T ), that is,
interpreting the “utility” of a consequencex as the subjective probability
that x will meet the target. The choice between a utility-based language
or a target-based language for decision theory ultimately comes down to a
question of convenience.

We explore the implications of this point of view in the rest of this paper,
which is organized as follows. Section 2 compares the target-based model
with the utility-based model for decision analysis under uncertainty. The
following three sections suggest a few applications where the target-based
model may have a comparative advantage over the utility-based formulation.
More precisely, Section 3 considers individual decision making while Sect. 4
looks at group decision making; finally, Section 5 examines multiattribute
decision making, both at the individual and at the group level. Section 6
summarizes and offers our conclusions.

2. The target-based model

Suppose that the agent has to rank several possible decisions. Assume for
simplicity that the setC of consequences is finite and completely ordered
by a preference relation�. Denote byPd his probability distribution for the
random consequenceXd associated1 with a decisiond. The expected utility
model suggests that the ranking be obtained by using the value function

v(d) = EU(Xd) =
∑
x

U(x)Pd(x), (1)

whereU(x) is a von Neumann and Morgenstern (NM-)utility function over
consequences.

The target-based model, instead, suggests using the value function

v(d) = P(Xd � T ) =
∑
x

P (x � T )Pd(x), (2)

whereP(x � T ) is the cumulative distribution function of the uncertain
target andT is stochastically independent ofXd .

Both models are linear functionals over the probability distributions as-
sociated with a decision. This formal similarity may be carried one step
further. Note thatU is bounded and increasing. After having normalized its
range to[0,1],U has all the properties of a cumulative distribution function
(c.d.f.) over consequences. By a standard probability-theoretic argument,

1 Let P be the agent’s subjective probability distribution on the state spaceS. The
probability distributionPd is induced by the actd : S → C through the equality
Pd(Xd = x) = P(d(s) = x).
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we can associate to the c.d.f.U a random consequenceT stochastically in-
dependent ofXd ; see the appendix. We can thus viewU(x) as the probability
that the targetT is belowx; that is,U(x) = P(x � T ). This definition turns
the NM-utility functionU into a probability distribution and makes (1) and
(2) formally identical.

The idea that the NM-utility functionU should be interpreted as a prob-
ability distribution may appear unusual but, in fact, NM-utilitiesare proba-
bilities. Consider how the agent assesses the utilityU(x) of a consequence
x. For simplicity, assume that there is a best consequenceb and a worst
consequencew, so thatb � x � w. ThenU(x) is the probabilityp that
makes the agent indifferent between gettingx for sure or playing a lottery
where he has probabilityp of gettingb and probability(1 − p) of getting
w; that is,U(x) = p.

It is the utility-based language that baptizes the probabilityp as the NM-
utility of x, as some decision theorists have noted long since. For instance,
Pratt, Raiffa and Schlaifer (1995) equate utility with the “indifference prob-
ability”. Similarly, both Behn and Vaupel (1982) and Howard (1992) speak
of utility as a “preference probability” and remark that the manipulation of
preference probabilities is in many respects similar to the treatment of real
probabilities. Nonetheless, they are very careful in keeping preference prob-
abilities distinct from real probabilities because a preference probability is
not associated with a potentially observable event.

The target-based model acceptsU(x) as a real probability only after hav-
ing introduced the notion of an uncertain targetT : the potentially observable
event associated with the probabilityU(x) is thatx does meet the target.

As a result, the target-based model can avoid the notion of a cardinal util-
ity functionU(x) over consequences. This has a major pedagogical advan-
tage. While both target-based and utility-based decision making demand an
understanding of probabilistic choice, the utility-based model additionally
requires a comprehension of cardinal utility assessments. For target-based
reasoning, the agent must only be able to handle probability judgements.

This has a potential for simplifying the assessment procedure forU(x).
For instance, assume that consequences are monetary outcomes described
as changes to the current endowment. A simple way to elicit the distribution
of his target is to let the agent draw a probability densityu(x) over the real
line and then estimate his c.d.f. as

U(x) = P(x � T ) =
∫ x

−∞
u(t)dt. (3)

In the utility-based language, the probability densityu(x) corresponds to
the marginal utility associated with the NM-utility functionU . It may be
interesting to compare the difficulty of eliciting a probability densityu(x)
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versus the task of assessing the marginal utility ofU . Berhold (1973) exploits
a similar insight to estimate certainty equivalents.

We have drawn two probability densities forT in Fig. 1. On the left,
there is a decreasing probability densityu1(x) that suggests a conservative
assessment of the target: the most likely targets to meet are the worst out-
comes. On the right, there is a symmetric unimodal probability densityu2(x)

that suggests an uncertain target very close to thestatus quo, represented
by the mode of the distribution and corresponding to a zero change in the
endowment.

Fig. 1. Two probability densities

Figure 2 shows the cumulative distribution functions of the targets asso-
ciated with these probability densities. By (3), the conservative assessment
on the left of Fig. 1 leads to the concave c.d.f.U1(x) on the left of Fig. 2,
which is equivalent to a concave NM-utility function. Therefore, in using a
target-based model, global risk aversion stems from a conservative assess-
ment of the target.

Fig. 2. Two c.d.f.’s for the target

Looking at the right-hand side of Fig. 1, the unimodal probability density
for the target corresponds to theS-shaped c.d.f.U2(x). This is equivalent to
theS-shaped utility function of prospect theory, according to which people
tend to be risk averse over gains and risk seeking over losses; see Kahneman
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and Tversky (1979). In the target-based language, this amounts to saying that
perceiving the uncertain target as (more or less) symmetrically distributed
around thestatus quo leads to risk averting choices when gains are involved
and to risk seeking decisions when losses are at stake.

Many variations on this theme are possible, but we report only one more.
Suppose that the probability density for the target is unimodal and positively
skewed (e.g., a lognormal distribution). Again, the mode represents thesta-
tus quo. Consistent with prospect theory, the resulting distribution function
U(x)will not only be concave over gains and convex over losses, but steeper
for losses than for gains. In the target-based language, a unimodal probabil-
ity density for the target with fatter right tails implies a behavior that is less
risk averse over gains than it is risk seeking over losses.

3. Individual decision making

The previous section and the appendix show that there is a formal equiva-
lence between the target-based model and the utility-based model. There-
fore, the decision analyst may wish to transfer insights from one model to the
other. This section considers a few examples concerning the relationships
between expected utility models and target-based reasoning in individual
decision making.

3.1. State-dependence

Suppose that an agent is interested in maximizing his expected utility. By
our result of formal equivalence, his decision process can be modelled as if
he is maximizing the probability of meeting an uncertain targetT with c.d.f.
U(x), provided that the target is stochastically independent of the random
consequences to be evaluated. Since it is always possible to make sure that
the target satisfies this assumption, there are no restrictions in going from
the utility-based model to the target-based formulation.

More care, instead, is needed for going in the opposite direction because
the target-based model allows for higher generality. Suppose that the agent
is interested in maximizing the probability of meeting an uncertain target
T . If the targetT is stochastically independent ofXd , we know that

P(Xd = x, x � T ) = P(x � T )Pd(x). (4)

Therefore, the value function is

P(Xd � T ) =
∑
x

P (Xd = x, x � T ) =
∑
x

P (x � T )Pd(x),
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which is equivalent to an expected utility model if we defineU(x) = P(x �
T ). But when the assumption of stochastic independence does not hold, (4)
may fail and we have to resort to more general formulations.

There are situations in which the assumption of stochastic independence
is too strong. Suppose that there are two different decisionsd1 andd2 both
resulting inx when the states are respectivelys1 ands2 	= s1. For exam-
ple, assume thatX1 andX2 are the (nominal) rates of return on two stock
portfolios and that there are two statess1 = H ands2 = L representing
respectively high and low inflation. Imagine thatX1 = x in stateH , while
X2 = x in stateL. The otherwise identical nominal rate of returnx should
probably be weighed differently if it obtains in a state of high or low inflation.
The assumption of stochastic independence, instead, entails

P(x � T |s = H) = P(x � T |X1 = x)

= P(x � T |X2 = x) = P(x � T |s = L),

so that the probability that the nominal ratex meets the target cannot depend
on the level of inflation.

In this example, the assumption of stochastic independence fails because
the evaluation ofx should be state-dependent. Adopting a utility-based lan-
guage requires that we analyze the situation by introducing a state-dependent
utility functionU(x, s) for the consequencex in states; see Karni (1985) or
Schervisch, Seidenfeld and Kadane (1990). However, this is not an easy task
because the eliciting ofU(x, s) requires the agent to compare the cardinal
utility of x across different states. Moreover, since there may be different
ways in which the stochastic independence of the target may fail, there is
no easy general recipe to convert a target-based model into a utility-based
model. It is possible that target-based reasoning may offer a more convenient
approach.

Continuing in the example, the agent might, for instance, assess a target
TH for high inflation and a (possibly different) targetTL for low inflation.
Different targets for different states of the world can be easily understood
and formulated. Conditional on the states of the world, the agent may view
the nominal rate of returnXd on the stock portfoliod as a random variable.
Thus, he would have to use the value function

v(d) = P(Xd � T )

= P(Xd � TH |H)P (H) + P(Xd � TL|L)P (L),
(5)

whereT represents the state-dependent target andP(H) andP(L) are the
(subjective) probabilities for the two states.

Note that (5) has a hierarchical structure which makes it very easy to
tackle the decision problem in steps. First, the agent assesses which are the
relevant states and assesses their probability. Second, for each relevant state
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the agent estimates his uncertain target and the (conditional) distribution
of Xd . Third, he computes the probability thatXd would meet his state-
dependent targetT s in states. Fourth, he aggregates these assessments using
the laws of probability theory. The target-based model makes the decision
problem easy todivide and conquer even if stochastic independence does
not hold.

3.2. Untying correlations

There are some important cases where the lack of stochastic independence
in a target-based model may be overcome by recoding the problem. In gen-
eral, the uncertain targetT and an arbitrary random consequenceX to be
evaluated may be stochastically dependent. However, assume that there exist
an increasing transformationg : C → R and a random numberY such that
g(T ) + Y andg(X) + Y are stochastically independent random numbers.
Note thatY = Y (X) may depend on the random numberX that we are
considering.

Define a new targetT ∗ = g(T ) + Y and a new random numberX∗ =
g(X)+Y . By construction,T ∗ andX∗ are stochastically independent. More-
over, sinceX ≥ T if and only if g(X) ≥ g(T ) andg(X) + Y ≥ g(T ) + Y

if and only if X∗ ≥ T ∗, we have

P(X ≥ T ) = P(g(X) ≥ g(T )) = P(g(X) + Y ≥ g(T ) + Y )

= P(X∗ ≥ T ∗),

whereX∗ andT ∗ are stochastically independent. In this situation, we can
transformT andX and obtain new random numbersX∗ andT ∗ which satisfy
stochastic independence.

One special case of this model corresponds to a situation whereX andT
are nominal rates of return and the only source of correlation is the under-
lying (random) rate of inflationJ . If we let Y = − log(1 + J ) andg(x) =
log(1+x), thenX∗ = log[(1+X)/(1+J )] andT ∗ = log[(1+T )/(1+J )]
are defined in real terms and may be taken to be stochastically indepen-
dent. An appropriate recoding of targets and payoffs may eliminate some
sources of correlation and recover stochastic independence. It is obvious that
stochastic independence still holds if, for reasons of clarity, one introduces
the transformationh(x) = ex − 1 and makes reference to the (random) real
rates of returnX∗∗ = h(X∗) andT ∗∗ = h(T ∗).

Another situation where the source of correlation may be eliminated is the
following. Given a random consequenceX, assume that the agent evaluates
X by using ana posteriori targetT which is a function of hisa priori target
T ∗ andX itself. This may correspond to a situation where the agent “adapts”
his target to the random consequence he is evaluating. This kind of effect
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is observed quite commonly in real life. The agent who has access to some
very promising random consequenceX raises his expectations. The agent
who is offered a poor prospect lowers his target.

In particular, suppose that thea priori targetT ∗ is stochastically inde-
pendent ofX and that there exists some increasing functiong : C → R

such thatg(T ) = ag(X)+ (1−a)g(T ∗) with a = a(X) < 1. SinceX � T

if and only if g(X) ≥ g(T ), we have

P(X � T ) = P(g(X) ≥ g(T )) = P(g(X) ≥ g(T ∗)),

whereg(X) andg(T ∗) are stochastically independent. Recoding the prob-
lem in terms of thea priori target eliminates the source of correlation.

For these cases where stochastic independence may be recovered, we can
convert the target-based formulation into a standard expected utility model.
We think that this conversion may help the agent to make better decisions
in some cases. For example, suppose thatXd represents the (nominal) wage
that the agent expects to earn in the next year if he accepts jobd while
T represents the (real) income that he feels to be necessary to maintain a
satisfactory standard of living. The agent, moreover, ignores what the rate
of inflation J is going to be over the next year; therefore,T is a random
variable.

As shown in Shafir, Diamond and Tversky (1997), the agent is often
confused about nominal and real values. Framing this problem in a utility-
based language may lead him to a poor decision because the agent ends up
assessing the utility ofXd without discounting away the inflationary effect
and does not know how to take inflation into account. Using target-based
reasoning, the agent may be asked to describe his targetT in real values and
his wage expectationsXd in nominal values, if this makes him feel more
confident about their assessment. When the probability distributions forXd

andT have been elicited, it should not be difficult to show him how to correct
his estimates and account for inflation.This procedure may be useful in many
situations where the agent faces similar cognitive limitations: a firm which
sets performance targets related to the growth of the market, a government
that must impose different social security contributions based on changes
in the demographic trends or environmental regulations based on trends in
pollution, etc.

3.3. Projecting future preferences

Applied decision analysis assesses the current preferences of an agent and
uses them as predictors of what his preferences will be in the future. In
particular, with some possible discounting to account for time preferences,
the current NM-utility function is often used as the best estimate of the
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NM-utility function in the future. Target-based decision theory suggests an
alternative way of modelling the relationship between today’s preferences
and tomorrow’s preferences.

The target-based model interprets the current utility function as a de-
scription of the agent’s uncertainty about his current target. Similarly, it
must interpret his future utility function as describing the uncertainty about
his target in the future from today’s viewpoint. In most cases, it is reasonable
to expect greater uncertainty about the future target than about the current
target. Hence, the target-based approach indicates that today’s estimate of
the utility function in the future might differ systematically from today’s
utility function.

There are many ways to model this systematic difference. For concrete-
ness, we consider only one example which should however suffice to convey
the main point. Suppose that the consequences inC are real numbers and
that the current utility functionU(x) corresponds to a normal c.d.f. for the
uncertain current target. OnceU(x) is assessed, then, we may compute its
meanm0 and its variancev0. For convenience, we can think ofm0 as the cur-
rentstatus quo.As discussed in Section 2, a normal distribution for the target
generates risk-averse preferences forx ≥ m0 and risk-seeking preferences
for x ≤ m0.

Now, suppose that we expect thestatus quo to evolve over time according
to a random walk, that is, that there exists a sequence{Yk} of independent
and identically distributed zero-mean random variables such thatmt = m0+∑t

k=1 Yk. If we denote the variance of anyYk byσ 2, this implies that today’s
estimate of the variance ofmt is tσ 2. Hence, from today’s viewpoint, the
uncertainty about the future targetTt consists of two parts: the uncertainty
about how the target varies around its mean, which is measured byv0; and
the uncertainty about how the mean of the target varies, which is measured
by tσ 2.

The uncertainty about the future target, then, is described by a normal
c.d.f.Ut(x) with a mean ofm0 and a variance ofv0 + tσ 2. Reinterpreting
Ut(x) as today’s utility function for the agent’s future preferences at time
t , we see that this results in less risk-aversion forx ≥ m0 and less risk-
seeking forx ≤ m0 than would be implied by today’s utility function for the
agent’s current preferences.That is, in this example the increased uncertainty
about the future favors a more aggressive behavior over gains and a more
conservative attitude over losses. However, depending on the details of the
stochastic process underlying the evolution ofmt , we may obtain a variety
of conclusions.

When tailored to a specific situation, this approach may help the agent
appreciate the implications of a target-based approach; see Cyert and de-
Groot (1975) for a similar approach using a utility-based language. Note



Decision analysis using targets instead of utility functions 63

that, as time unfolds and new information obtains, the estimate ofmt will
change. Therefore, the estimate ofUt today will differ from the estimate of
Ut tomorrow. This has two implications: on the one hand, the change inUt is
likely to result in temporal inconsistency; on the other hand, the agent is now
given a way to take into account how the future arrival of information will
impact his willingness to implement today’s choices and to predict how his
preferences may change. This should be particularly important in a situation
where the agent must decide today which options he wants to leave open in
the future.

The option-based approach to decision making usually presumes that
the agent’s uncertainty about his prospects increases as his time horizon
becomes longer. Options are valuable because they increase the flexibility
of the agent’s future decision set and thus work to reduce the downside of
his uncertainty. Hence, the value of an option also tends to increase with the
length of the time horizon. On the other hand, the example suggests that in
some cases the agent’s uncertainty about his requirements (as summarized
by T ) will also increase with time, making him more willing to take risks
over gains. This reduces the attractiveness of an option taking values in the
domain of gains. A longer time horizon may increase both the uncertainty
about the prospects (enhancing the value of the option) and the uncertainty
about the target (curtailing the value of the option). In general, the net impact
of longer time horizons on option values may not be obvious.

4. Group decision making

In many applications of decision analysis, a group of agents is trying to reach
an agreement on some decision problem under uncertainty. These situations
may involve club memberships, corporate bureaucracies, academic faculties,
parliamentary assemblies or judiciary committees.

From the viewpoint of utility-based models, there are two major ap-
proaches to the analysis of this kind of problem. The first is theoretically
oriented: it assumes that there aren agents and that each agenti has a known
individual NM-utility functionUi(x) and considers the problem of aggre-
gating then individual utility functions into a group utility functionUg(x);
see Harsanyi (1955). The second approach is process oriented: it has the
members of the group share their utility functions and focus on identifying
alternatives that appear beneficial from the perspective of each agent; see
Keeney (1992).

In this section, we present some of the possible contributions of the
target-based model to either approach. As is customary in the utility-based
model, we assume that agents do not misrepresent their preferences or their
probability assessments. Consistent with the previous discussion, we will
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interpretUi(x) as the c.d.f. of an uncertain target. The target-based language
helps to raise a preliminary issue that is often neglected.

4.1. Common target

In some situations, there is a group targetTg that the agents would like
to pursue collectively. For example, the members of an academic faculty
may share the common target of achieving excellence for their department.
To make the target of excellence operational, we can define it as being
listed among the top five schools in a given national ranking. Even when
all members of the department share this objective, they may still disagree
about how likely a specific outcomex is to meet the common target. For
instance, they may have different opinions about how many publications and
positive teaching evaluations are necessary to achieve their shared target of
excellence.

In other situations, each agenti has his own individual targetTi and the
group tries to choose a course of action which takes into account these (pos-
sibly conflicting) targets. This may be the case if each member of the faculty
has the target of promoting his own reputation. Advancing the excellence of
the department, then, would not necessarily be a commonly shared target.
These situations are known as problems of social choice.

While both the situations with one common target and those with many
individual targets fall into the realm of group decision making, they should
be kept distinct. Formally, letUi(x) represents agenti’s uncertainty about
the target. When the agents share a common targetTg and agenti offers his
own honest assessment of the group target, then

Ui(x) = Pi(x � Tg),

wherePi denotesi’s subjective probability forTg. On the other hand, if the
agent is honestly reporting about his own targetTi , then

Ui(x) = Pi(x � Ti).

We must attach a different interpretation toUi depending on whether the
agents share a common target or have individual targets. Switching to the
utility-based language, we see that this difference is easily lost unless we
do not qualifyUi(x) separately: in the case of a common target,Ui(x)

summarizes agenti’s own view of what should be the group utility function;
in the case of individual targets,Ui(x) describes his individual preferences.
It seems, then, that the utility-based notation is not sufficiently rich to capture
this important difference.

When the agents share a common targetTg, Ui(x) represents agenti’s
subjective probability distribution forTg. The problem of specifying a group
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utility function Ug as a function of the individual utility functions can
be reformulated as the problem of combining the probability distributions
U1, U2, . . . , Un into a single probability distributionUg. This problem has
a long history in probability theory and many solutions have been advanced;
see Genest and Zidek (1986). For example, given a (sure) consequencex, let
Ui(x) be the probability thatx will meet the targetTg according to agenti. If
we follow the well-known linear opinion pooling rule studied and axioma-
tized in, among others, Bacharach (1975), deGroot and Mortera (1991), and
Keeney (1976), thenUg(x), the group probability forx meeting the target,
would be an average of the individual probabilities.

Given a common target, the process-oriented approach to group decision
making would have the members of the group exchange their probabilistic
assessments ofTg and discuss the evidence or the information supporting
these assessments, in order to facilitate the identification of critical uncer-
tainties and the pooling of opinions. Let us consider an example. Suppose
that the members of the executive board convene to discuss the firm’s target.
One executive might say that the minimum acceptable target for the pre-tax
profit is between 8% and 12%. Another executive might place it between
9% and 11%. A third executive might add that it should be between 10%
and 14%. At that point, there would be an extensive debate over what is
acceptable or not. Why does the third executive consider it essential to have
a profit of at least 10%? Why does the first executive think it might be ac-
ceptable to have a profit as low as 8%? While reaching a consensus cannot
be guaranteed, this process should foster convergence.

4.2. Individual targets

Things change substantially when the agents do not share a common target,
so thatUi(x) represents agenti’s subjective probability distribution for his
own targetTi . In the utility-based approach, this situation is described as a
social choice problem with cardinal utilities; see d’Aspremont and Gevers
(1977) or Roberts (1980). In spite of a few positive results along the lines
of Harsanyi (1955), there is an ample literature about the impossibility of
reasonable general-purpose aggregating procedures; see Hylland and Zeck-
hauser (1979) or Seidenfeld, Kadane and Schervish (1989). Thus, we must
resort to developing robust solutions for specific classes of problems; see, for
instance, Eliashberg and Winkler (1981) or Keeney and Kirkwood (1975).

Target-based reasoning may offer a systematic approach for some spe-
cific problems. Suppose that then individual targetsT1, T2, . . . , Tn are
stochastically independent. This mildly restrictive assumption holds when-
ever the target of each agent is defined on a different probability space. In
other cases, some appropriate transformations similar to those in Section 3.2
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may untie the correlations and lead to a formulation in which the individual
targets are stochastically independent.

The aggregation of the individual targets into a group objective function
Ug should be based on a principle of fairness. One possible criterion is that
a consequence be acceptable to the group only when it meets the individual
target of each member of the group. The group should therefore aim to
maximize the probability of meeting everybody’s target. If we letT(n) =
max{T1, . . . , Tn} denote then-th order statistic, this would result in

Ug(x) = P(x � T(n)) =
n∏

i=1

Pi(x � Ti) =
n∏

i=1

Ui(x) (6)

being the probability thatx meets everybody’s target. The random variable
Tg associated withUg would therefore be used as the “group benchmark”
to rank any feasible decisiond by the probabilityP(Xd � Tg) that it meets
this benchmark. Note that, if we assume independence ofTg from the ran-
dom consequencesXd , this is in turn equivalent to the maximization of the
expected value of the group utility functionUg.

Other criteria, of course, are possible. For example, a different principle
could be that a consequence is acceptable to the group whenever it is accept-
able to at least one member of the group. If we letT(1) = min{T1, . . . , Tn}
denote the first order statistic, the “group benchmark”Tg would be dis-
tributed according to the c.d.f.

Ug(x) = 1 − P(x ≺ T(1)) = 1 −
n∏

i=1

[Pi(x ≺ Ti)]

= 1 −
n∏

i=1

[1 − Ui(x)]
(7)

and the value function would be againP(Xd � Tg). Similarly, we might
follow the principle of deeming acceptable to the group any consequence
that meets the target of at leastk of then members of the group. This would
lead to a more complicated form forUg.

This target-based viewpoint suggests many ways of aggregating individ-
ual expected utility functionsUi ’s into an aggregate expected utility function
Ug. The implications of these and other possible fairness principles, how-
ever, must still be explored in depth. As a first step in their study, we state
one simple result. Note that the two formulations in (6) and (7) are dual. If
we assume thatUi is absolutely continuous for alli, it is a simple exercise
in differentiation to establish the following.

Suppose thatUi is convex for alli; then theUg implied by (6) will also be
convex. Similarly, ifUi is concave for alli, then theUg implied by (7) will
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also be concave. That is, if we start with all the agents being risk-seeking,
trying to meet everybody’s target makes the group also risk-seeking. Analo-
gously, if we start with risk-averse agents, trying to meet at least someone’s
target makes the group also risk-averse. One simple example will suffice
to illustrate this point: suppose that each agenti has an exponential utility
functionUi(x) = 1 − e−λix . According to (7), the group utility function
would be

Ug(x) = 1 − e−(
∑n

i=1 λi)x,

so that the group would also be risk averse. Furthermore, since(
∑

i λi) is its
coefficient of risk aversion and

∑
i λi > maxi λi , the group would exhibit

more risk aversion than any of its members. This conforms with the group
polarization effect empirically observed by Doise (1969) and Moscovici and
Zavalloni (1969).

5. Multiattribute decision making

The focus of this section is multiattribute utility theory under uncertainty.
Assume that objectives have been specified and thatn appropriate attributes
α1, α2, . . . , αn have been identified. Ifxi denotes a specific level for attribute
αi , a (sure) consequence is described by the vectorx = (x1, x2, . . . , xn)

reporting the level of each attribute.
An important problem of multiattribute utility theory is how to construct

the overall utility functionU(x) as a function of then single attributes
x1, x2, . . . , xn. Many assumptions are possible, but the most important is
utility independence. This states that the conditional preferences over ran-
dom consequences involving onlyαi do not depend on the levels of the
other attributes. This implies the existence of a single-attribute utility func-
tion Ui(xi) for eachi = 1,2, . . . , n.

According to Keeney and Raiffa (1976, p. 224), the role of utility in-
dependence in multiattribute theory is similar to stochastic independence
in multivariate probability theory. In particular, it implies that the multiat-
tribute utility function is a multilinear function of the utilities associated
with the various attributes. Furthermore, the range of both the overall and
the single-attribute utility functions can be normalized to be[0,1].

5.1. Multiattribute individual decisions

We can interpret this result by considering an individual multiattribute utility
problem and switching to the target-based language. Suppose that reaching
the overall target is a function of the levelsx1, x2, . . . , xn of the single
attributes; that is, there exists a setA such that the overall target is attained
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if and only if x ∈ A. In particular, assume thatA is decomposable as the
cartesian product ofn subsetsAi such thatx ∈A if and only if xi ∈Ai for
all i = 1,2, . . . , n.

If we assume stochastic independence of the attributes, the multiattribute
utility function can be written as

U(x) = P(x∈A) =
∏
i

P (xi ∈Ai) =
∏
i

Ui(xi), (8)

whereUi(xi) = P(xi ∈Ai) is interpreted as the probability that the target
for the single attributei is met. As in the standard multiattribute utility
formulation, the overall probability of successU(x) is a multilinear function
of the probabilitiesUi(xi) of meeting the single-attribute targets, fori =
1,2, . . . , n.

A related problem is found in the statistical theory of reliability, which
expresses the reliability of a system as a function of the survival proba-
bilities of its various components. In particular, for coherent systems with
independent components, it is a standard result that the survival probability
of the system is a multilinear function of the survival probabilities of each
component; see Barlow and Proschan (1975). If we interpret the survival of
a component (respectively, of the system) as the event that a single-attribute
(respectively, the overall) target is met, the two formulations are mathemat-
ically equivalent.

This implies that the problem of maximizing a multiattribute utility func-
tion can be mapped to the problem of minimizing the probability of failure
in a fault tree (more generally, an event tree). This suggests a tool to cir-
cumvent the well-known limitations of assuming utility independence in
multiattribute utility assessment.

Consider, for instance, an individual trying to assess how the multiat-
tribute utility of a house depends upon its price, its location and its facilities.
The assumption of utility independence is necessary to quantify how much
of the overall utility of a house depends on the single-attribute utilities of
price, location and facilities. It postulates that each single attribute must
contribute to the overall utility independently from the other attributes. This
strong assumption is often implausible.

In contrast, reliability theory employs event trees which describe how
the achievement of a higher-level objective is influenced by various combi-
nations of lower-level objectives. For example, an event tree might specify
that a house is worthwhile by considering whether it has a reasonable price
or if it has both a satisfactory location and adequate facilities. Taking expec-
tations over this tree defines the probability of achieving the overall target
as a function of various combinations of price, location and facilities. Equa-
tion (8) reduces toU(x) = P(x∈A), whereA is not necessarily a cartesian
product and therefore cross-dependencies may be explicitly modelled.
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Further work is needed to assess the possibility of framing multiattribute
utility assessment as a reliability problem on an event tree, but this approach
holds some promise. For example, we can develop an alternate way of de-
riving the multiattribute utility function by identifying the combinations of
lower-level targets whose attainment is necessary for the achievement of the
overall target.

Define first a (possibly uncertain) acceptable target for each of the higher-
level and lower-level objectives. Thinking of a pyramid with the overall
targetT at the top, there are second-level targetsTi supportingT ; and
then third-level targets supporting the second-level targetsTi , etc. For each
higher-level target, specify how its achievement is related to the attainment
of its (possibly uncertain) lower-level targets: whether we need to meet all
of them; or if it suffices to meet at least one; or if we have to meet at least a
majority of the supporting lower-level targets; etc. Finally, we would com-
pute the probability of achieving the higher-level targets as the probability
of attaining the right combination of lower-level targets.

Since this enables us to translate the fundamental objectives hierarchy
into the standard event tree of reliability analysis, we are able to exploit the
hierarchical structure of the event tree to compute these probabilities. This
makes it possible to use a “bottom-up” approach to the computation of the
probabilities of meeting the higher-level target.

5.2. Multiattribute group decisions

Some important applications of decision analysis concern multiattribute
group decisions. Due to limitations of space, we focus on a comparison be-
tween the utility-based and the target-based approaches which only scratches
the surface of the problem. For concreteness, suppose that we are to consider
a major corporate decision involving the chief officers. Both approaches
would begin by trying to develop collectively an understanding of which
lower-level attributes support the higher-level attributes.

Successively, the utility-based approach generally interviews each agent
separately and tries to summarize his assessments in a set of numbers. For
example, each of the executive officers might be asked to assess his willing-
ness to pay for market share, profits and innovation. The assessments from
each of the executive officers would then be presented to the entire board of
executives and the utility-based decision analysis would creatively search
for a decision that each officer deems superior to thestatus quo.

The target-based approach can usefully complement this approach, by
suggesting that the previously constructed hierarchy of attributes be viewed
as an event tree. This should help to focus the group discussion on the like-
lihood of an acceptable performance in a higher-level objective conditional
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on the attainment of acceptable (or unacceptable) levels of performance on
the lower-level objectives. For example, the financial officer may believe
that an acceptable corporate performance is solely determined by whether
the profit is sufficiently high; the operations officer may think that the only
key component is an acceptable level of innovation; and the sales officer
may hold that it is uniquely determined by a reasonably high level of the
market share. At this point, the dialogue should focus on why there are such
pronounced differences between the different perspectives. Possibly, this
dialogue would lead the group to unearth some higher-level goal like long-
run prosperity as the ultimate criterion, with different members of the group
disagreeing over whether or not a target of long-run prosperity requires an
acceptable performance in all three dimensions. By confronting the officers’
views about higher and lower-level targets, this process should make it easier
to foster convergence of opinions than a utility-based perspective would.

The critical contribution of the target-based approach is that it may help to
translate much of the disagreement between individual utility functions into
a disparity of opinions about which (and how) some targets impact other
targets and over the probabilistic assessments. We believe that there are
situations in which the group can discuss how various targets impact other
targets much more easily than they can settle disagreements over values. It
is likely that some of the existing methodologies for handling uncertainties
(e.g., influence diagrams or tornadoes) might also be used to help modelling
uncertainties about targets. Hence, we feel that a target-based approach to
multiattribute group decision making may turn out to be easier to use than
utility-based decision theory.

6. Conclusions

Most of the current discussion in decision theory is based on utility functions.
This paper shows that there exists an alternate target-based language for
thinking about decision making and that there are contexts in which it may
be more useful than the traditional utility-based language. This suggests that
there might be a role for target-based models in decision analysis.

This paper is far from having exhausted the range of possible applica-
tions of target-based models. However, some potential advantages should
be apparent.

– We can replace the somewhat esoteric concept of an NM-utility function
by the more widely understood notion of a target. This may facilitate the
teaching of decision analysis.

– We can relate the concept of risk aversion to the notion of the agent’s
uncertainty about his target. This may facilitate the description and the
understanding of the causes of risk-aversion.
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– We can offer some guidelines on how to model changes in the agent’s
future utility function from the current one. This may facilitate practical
applications of utility theory.

– We can suggest a new and simple approach to the formulation of a group
utility function. This may facilitate both the analysis and the process of
aggregating individual preferences.

– We can show that reliability theory and multiattribute utility theory are
more intimately related than previously thought. This may facilitate new
insights or new models.

For these reasons, we think that the target-based language seems to offer
considerable promise for the theory and practice of decision analysis and
that this should warrant it further consideration.

Appendix. Savage’s theorem

This appendix reviews Savage’s theorem and shows how to interpret it in a
target-based language. We begin with a detailed statement of the theorem
in the utility-based language. LetS be the state space,C the set of (sure)
consequences andD the set of acts. Assume for simplicity thatC is finite.
There is a preference relation�′ over acts which induces a preference rela-
tion � over consequences such thatδx �′ δy if and onlyx � y, whereδx
denotes the degenerate lottery yieldingx for sure. Hence,C is a completely
ordered finite set.

Theorem 1 (Savage, 1954). Suppose that the agent has a preference re-
lation �′ over all acts which satisfies axioms P1–P6. Then the following
statements hold.

(i) There exists a unique finitely additive probability measure P on S.
For each decision d, this probability measure induces a probability
distribution Pd over the consequences associated with d.

(ii) There exists a [utility] function U on C such that U(x) ≥ U(y) if and
only if x � y. The [utility] function U is bounded and unique up to
increasing affine transformations.

(iii) The value function v over D defined by v(d) = ∑
x U(x)Pd(x) repre-

sents �′. That is, d1 �′ d2 if and only if v(d1) ≥ v(d2).

The boundedness ofU is proved in Fishburn (1970) for the general case
of a setC with an infinite number of consequences, where the additional P7
axiom is required to extend the representation in (iii) to all acts. Here, it is
an obvious corollary to the finiteness ofC.

In part (ii) of the theorem, we have put in brackets the word “utility” to
highlight the fact that the interpretation ofU as a utility function is not part
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of the statement of the theorem. The meaning ofU is open. To provide a
reinterpretation, note that (ii) establishes thatU is bounded and unique up
to increasing affine transformations. Picking the appropriate transformation,
we can normalize the range ofU to be the interval[0,1] and change the
statement in part (ii) to:

(ii. a) There exists a unique functionU : C → [0,1] which is increasing
with respect to�.

This functionU can be interpreted as a distribution function onC, defin-
ing a probability measureQ onC such thatU(x) = Q{y : x � y}. By a
standard probability-theoretic argument, we can pick the probability space
(,,-) where, = [0,1] and- is the uniform distribution on[0,1] and
construct a random consequenceT : , → C with distribution function
U : C → [0,1]; see, for instance, Proposition 3.4 in Fristedt and Gray
(1997). Assuming, ∩ S = ∅, we see that the random variableT turns out
to be stochastically independent of anyPd .

We interpret the random consequenceT as the (subjectively) uncertain
target of the agent. The probability distribution ofT is given byU ; that
is, P(x � T ) = U(x). Hence, what previously was the utility function is
now the distribution function of the uncertain target:U(x) is the probability
thatx meets the target. Of course, the more preferable isx, the higher the
probability that it meets the target; that is,x � y if and only ifU(x) ≥ U(y).

Under this interpretation, part (ii) of the theorem becomes:

(ii. b) There exists a (stochastically independent) random targetT with a
unique [probability distribution] functionU : C → [0,1].

Carrying this interpretation over to part (iii), which in the utility-based
language states thatv(d) is the expected utility ofd, we obtain the target-
based formulation of Savage’s theorem:

Theorem 2. Suppose that the agent has a preference relation �′ over all
acts which satisfies axioms P1–P6. Then the following statements hold.

(i) There exists a unique finitely additive probability measure P on S. For
each decision d, this probability measure induces a random conse-
quence Xd with probability distribution Pd .

(ii) There exists a (stochastically independent) random target T with a
unique [probability distribution] function U : C → [0,1].

(iii) The value function v over D is the probability that the random conse-
quence Xd meets the uncertain target T :

v(d) =
∑
x

U(x)Pd(x) =
∑
x

P (x � T )Pd(x) = P(Xd � T ).
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