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Abstract: We classify the C55-groups, i.e., finite groups in which the centralizer of every 5-element is
a 5-group.
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1. Introduction

It is well known that the centralizers of involutions play a fundamental role in the study of finite
groups. The case of the groups has been of great interest in which the centralizer of every involution
is a 2-group. These groups are called C22-groups or CIT -groups. In 1900, Burnside characterized the
finite groups of even order in which the order of every element is either 2 or odd (see [1, pp. 208–209; 2,
p. 316]). It is not difficult to characterize the soluble C22-groups whereas the classification of the simple
C22-groups is a deep result due to Suzuki. In [3] he classified the simple CN -groups and then in [4] he
proved that a simple C22-group is a CN -group. A CN -group is a group in which the centralizer of every
nontrivial element is nilpotent.

A natural generalization of the concept of C22-group is the concept of Cpp-group, meaning a group
whose order is divisible by p and in which the centralizer of a p-element is a p-group.

The first result in this direction was obtained by Feit and Thompson: in [5] they classified the simple
groups with a self-centralizing subgroup of order 3 (see also Theorem 9.2 of [6]). Then Stewart proved
a more general result (see Theorem A of [7]), which, together with the classification of the simple groups
without elements of order 6 in [8], gives a complete description of the nonsoluble C33-groups.

In this paper we classify the finite C55-groups.
Let G be one of the groups in the following lists (it is easy to verify that G is a C55-group):
List A.

(A1) G is a 5-group;
(A2) G is a soluble Frobenius group such that either the Frobenius kernel or a Frobenius complement

is a 5-group;
(A3) G is a 2-Frobenius group such that Fit(G) is a 5′-group and G/Fit(G) is a Frobenius group,

whose kernel is a cyclic 5-group and whose complement has order 2 or 4;
(A4) G is a 2-Frobenius group such that Fit(G) is a 5-group and G/Fit(G) is a Frobenius group,

whose kernel is a cyclic 5′-group and whose complement is a cyclic 5-group.
All groups in List A are soluble.
List B.

(B1) G ' PSL(2, 5f ), with f a nonnegative integer;
(B2) G ' PSL(2, p), with p prime, p = 2 · 5f ± 1, and f a nonnegative integer;
(B3) G ' PSL(2, 9) ' A6 or PSL(2, 49);
(B4) G ' PSL(3, 4);
(B5) G ' Sz(8) or Sz(32);
(B6) G ' PSU(4, 2) ' PSp(4, 3) or PSU(4, 3) or PSp(4, 7);
(B7) G ' A7 or M11 or M22.
All groups in List B are simple.
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List C.
(C1) G ' PGL(2, 5f ) or G 'M(52f ), with f a nonnegative integer;
(C2) G 'M(9) or PSL(2, 9)〈α〉 ' S6, with α a field automorphism of order 2;
(C3) G 'M(49) or PSL(2, 49)〈α〉, with α a field automorphism of order 2;
(C4) G ' PSL(3, 4)〈α〉, with α a field or graph-field automorphism of order 2.

All groups in List C are almost simple.
We conclude with a list of nonsoluble groups in which the Fitting subgroup Fit(G) is not trivial.
List D.
Fit(G) 6= 1, every element of order 5 of G acts by conjugation fixed point freely on Fit(G) and

G/Fit(G) is isomorphic to:
(D1) PSL(2, 5) ' A5 or S5 and Fit(G) is a direct product of a 2-group of class at most 3 and an

abelian 2′-group;
(D2) PSL(2, 9) ' A6 or S6 or M(9) and Fit(G) is a direct product of an elementary abelian 2-group

and an abelian 3-group;
(D3) PSL(2, 49), M(49) or PSL(2, 49)〈α〉, with α a field automorphism of order 2, and Fit(G) is an

abelian 7-group;
(D4) Sz(8) or Sz(32) and Fit(G) is an elementary abelian 2-group;
(D5) PSU(4, 2) ' PSp(4, 3) and Fit(G) is an elementary abelian 2-group;
(D6) A7 and Fit(G) is an elementary abelian 2-group.

We can state our main result:

Theorem 1. G is a finite C55-group if and only if G is isomorphic to one of the groups in Lists A–D.

2. Notations and Preliminary Results

All groups in this article are finite. We use the following notations:
• q = pf , with p a prime and f a nonnegative integer;
• IBrr(G) is the set of irreducible Brauer characters of G in characteristic r, where r is a prime;
• M(q) is the nonsplit extension of PSL(2, q), with |M(q) : PSL(2, q)| = 2, if p is an odd prime

and q = p2f .
A group G is almost simple if there exists a finite nonabelian simple group S such that S ≤ G ≤

Aut(S). A group G is called 2-Frobenius if it has two normal subgroups N and K with N < K, such
that K is a Frobenius group with kernel N and G/N is a Frobenius group with kernel K/N .

If G is a group then we define its prime graph Γ(G) = Γ as follows: the set of vertices of Γ is π(G),
the set of primes dividing |G|. Two vertices p and q are connected if and only if in G there exists an
element of order pq. Let π1, π2, . . . , πt be connected components of Γ and let t(G) = t be the number of
these components. Moreover if 2 ∈ π(G) then we suppose 2 ∈ π1.

A group G is a Cpp-group if and only if {p} is a connected component of Γ(G), the prime graph
of G. We observe that if a group G has the Cpp-property then every subgroup of G of order divisible
by p also has the Cpp-property. The same is true if we consider a quotient of G of order divisible by p.

The groups have been studied in which the prime graph is not connected. In particular Gruenberg
and Kegel proved in an unpublished paper (see [9]) that these groups have the following structure:

Proposition 2 [9]. If G is a group whose prime graph has more than one connected component then

(a) G is a Frobenius or 2-Frobenius group;

(b) G is simple;

(c) G is simple by π1;

(d) G is π1 by simple by π1.

It is clear that items (a)–(d) correspond respectively to Lists A–D, except for the 5-groups.
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3. Some Number Theoretic Lemmas

To classify the simple C55-groups, we need to know the prime powers q = pf such that q = 2 ·5n±1.
If f = 1 then it is unknown whether there are finitely many primes of that form. We are interested in
the case f > 1. We begin with

Lemma 1. The diophantine equation

X2 + 1 = 2Y 3 (∗)

admits the only solutions (1, 1) and (−1, 1).
Proof. We work in the ring Z[i] which is a factorial domain. Let (x, y) be a solution of (∗). Then

x is odd and therefore 1 + ix is divisible by 1 + i but not by 2. So the greatest common divisor of 1 + ix
and 1− ix is 1 + i. From the fact that (1 + ix)(1− ix) = 2y3, and that the units of Z[i] are ±1 and ±i,
which are all cubes, we obtain the factorization

1 + ix = ε(1 + i)(a′ + ib′)3 = (1 + i)(a+ ib)3,

with ε a unit of Z[i].
Adding the conjugates and dividing by 2, we find

1 = (a+ b)(a2 − 4ab+ b2)

and therefore a = ±1 and b = 0 or a = 0 and b = ±1 from which follows x = ±1 and the lemma is proved.

We can now prove

Lemma 2. Let p be a prime number and n, t ∈ N, t > 0. Then
(i) if pn + 1 = 2 · 5t then either n = 1 or n = 2; if n = 2 then either t = 1, p = 3 or t = 2, p = 7;
(ii) if pn − 1 = 2 · 5t then n = 1;
(iii) if 2n ± 1 = 5t then t = 1, n = 2.

Proof. (i) We suppose that n > 1. Let n = 2k · d with d odd. If d > 1 then we put q = p2k
so that

pn + 1 = qd + 1 = (q + 1) · (qd−1 − qd−2 + · · · + 1) and therefore (pn + 1)/2 is divisible by two distinct
primes. So d = 1. Since p4 ≡ 1(mod 5), we hence have k = 1 and n = 2.

We now distinguish the two cases:
(A) t = 2k + 1 is odd. Then p2 = 10 · 25k − 1 ≡ 0(mod 3), p2 is divisible by 3 and p = 3, since p is

a prime.
(B) t = 2k is even. Then
• if k ≡ 1(mod 3) then 2 · 25k − 1 ≡ 0(mod 7); therefore, 7 divides p2 and so p = 7.
• if k ≡ 2(mod 3) then 2 · 25k − 1 ≡ 3(mod 7), which is impossible since 3 is not a square (mod 7).
• if k ≡ 0(mod 3) then k = 3h and p2 = 2 · (25h)3−1, which is impossible by the preceding lemma.

(ii) If n > 1 then there exists a Zsigmondy prime divisor q of pn − 1 that does not divide p − 1
(see [10]). Then q = 5 does not divide p− 1, p− 1 = 2 and again n is an odd prime number. Therefore if
n ≡ 1(mod 4) then 3n − 1 ≡ 2(mod 5), while if n ≡ 3(mod 4) then 3n − 1 ≡ 1(mod 5). This proves n = 1.

(iii) If t ≥ 2 then 5t − 1 is divisible by an odd Zsigmondy prime (see [10]). If 5t = 2m − 1 then m
is a prime; otherwise 2m − 1 is divisible by two distinct primes. We can suppose m ≥ 3 and then
(2m − 1, 24 − 1) = 2(m,4) − 1 = 1. Therefore 2m − 1 is never a power of 5.

We now state some very easy results that will be helpful in the next section.

Lemma 3. Let s be a natural number. Then
(i) 5 divides s(s4 − 1);
(ii) if 5 does not divide s(s2 − 1) then 5 does not divide s6 − 1;
(iii) if f is a prime number and r is a prime dividing s− 1 then r2 does not divide (sf − 1)/(s− 1)

and r divides (sf − 1)/(s− 1) if and only if r = f .
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Proof. (i) It is a consequence of Fermat’s little theorem.
(ii) If 5 does not divide s(s2 − 1) then by (i) 5 divides s2 + 1, which implies that 5 does not divide

s2 ± s+ 1. This concludes the proof, since s6 − 1 = (s+ 1)(s2 − s+ 1)(s− 1)(s2 + s+ 1).
(iii) If r divides s− 1 then s = 1 + rm for some m ∈ N. Then

(sf − 1)
(s− 1)

= sf−1 + sf−2 + · · ·+ s+ 1 = (1 + rm)f−1 + · · ·+ (1 + rm) + 1

= f + rm

f−1∑
i=1

i+ r2l = f + rmf
f − 1

2
+ r2l = f

(
1 + rm

f − 1
2

)
+ r2l

for some l ∈ N. This implies that r2 does not divide (sf − 1)/(s− 1) and r divides (sf − 1)/(s− 1) if and
only if r = f .

4. Simple and Almost Simple C55-Groups

We now begin to study the simple groups that are C55. We observe that Theorem 4 of [9] is a partic-
ular case of the next proposition which is a straightforward corollary of Williams and Kondrat′ev results
(see [11]).

Proposition 3. Let G be a simple C55-group. Then G is one of the following:

PSL(2, q), with q = 5f , 9, 49 or q = p = 2 · 5t ± 1, p prime,

Sz(8), Sz(32), PSL(3, 4), PSp(4, 3), PSp(4, 7), PSU(4, 3), A7, M11, M22.

Proof. For the sporadic and alternating groups it is enough to check the connected components of
the prime graph Γ(G) in [9]. We observe that A5 ' PSL(2, 5) and A6 ' PSL(2, 9).

Now let G be a simple group of Lie type, G = dLn(q) of rank n. It is easily seen, checking the tables
in [9, 11, 12], that if n ≥ 3 then π(q(q4 − 1)) ⊆ π1(G), except for 3D4(q), PSU(4, 2), and PSU(4, 3).
Moreover π(q(q4 − 1)) ⊆ π1(G) also if G = Ree(q) = 2G2(q).

Then by Lemma 3 (i) the prime 5 is in π1, except for PSL(2, q), PSL(3, q), PSp(4, q), PSU(3, q),
Sz(q), G2(q), 3D4(q), PSU(4, 2), and PSU(4, 3).

If G = PSL(2, q) and q 6= 5f is odd then either (q + 1)/2 = 5f or (q − 1)/2 = 5f . By Lemma 2 (i)
or (ii) we can conclude that either q = p for some prime p or q = 9 or 49. If q is even then 2n + 1 = 5t

or 2n − 1 = 5t. Then by Lemma 2 (iii) we can conclude G = PSL(2, 4) ' PSL(2, 5) ' A5.
Let G be PSL(3, q), PSU(3, q) or G2(q). We can suppose that G 6= PSL(3, 4). If 5 6∈ π1 then 5 does

not divide q(q2− 1). By Lemma 3 (ii), 5 does not divide q6− 1, which implies that 5 does not divide |G|.
Let G be PSp(4, q). Then π2(G) = π((q2 + 1)/(2, q − 1)). If q is odd then by Lemma 2 (i) we have

q = 3 or 7. If q is even then by Lemma 2 (iii) we have q = 2. But PSp(4, 2) is not a simple group. We
observe that PSU(4, 2) ' PSp(4, 3).

For the groups 3D4(q) we see that since 5 does not divide q(q2 − 1); therefore, q2 ≡ −1(mod 5) and
q4 − q2 + 1 ≡ 3(mod 5) so that q4 − q2 + 1 cannot be a power of 5.

If G ' Sz(q) then q = 2f with f = 2m+ 1 an odd number (m ∈ N). Then π3(G) = π(q −
√

2q + 1),
π4(G) = π(q +

√
2q + 1), and (q −

√
2q + 1)(q +

√
2q + 1) = (q2 + 1). We observe that 5 = 22 + 1 divides

22f + 1 = q2 + 1 and therefore either π3(G) = {5} or π4(G) = {5}.
We first suppose that f is a prime number. From Lemma 3 (iii) with r = 5, s = 16, we obtain then

that the highest power of 5 dividing 22f + 1 is 25 and this happens if and only if f = 5. Therefore, if f
is a prime, we conclude that f = 3 or f = 5. In fact for f = 3, π3(G) = π(5) = {5}.

Let now f = rn, with 1 < r < f and r a prime number. If we put q0 = 2r then q = qn
0 . We recall that

• if n ≡ 1, 7(mod 8) then (q0 −
√

2q0 + 1) divides (q −
√

2q + 1) and (q0 +
√

2q0 + 1) divides
(q +

√
2q + 1);

or
• if n ≡ 3, 5(mod 8) then (q0 −

√
2q0 + 1) divides (q +

√
2q + 1) and (q0 +

√
2q0 + 1) divides

(q −
√

2q + 1). (This is in the proof of Theorem 5 for Type 2B2 of [13, 14].)
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We now observe that if r 6= 3, 5 then πi(Sz(q0)) 6= {5} for i = 3, 4. Therefore by the preceding
remark, we conclude πi(Sz(q)) 6= {5} for i = 3, 4.

If f = 9, 15, 25 then by direct computation πi(Sz(q)) 6= {5}, for i = 3, 4. Using again the preceding
remark, we conclude that Sz(q) is a C55-group if and only if q = 8, 32.

From this we easily obtain

Proposition 4. Let G be an almost simple C55-group, which is not simple. Then G is one of the
following:

(i) PGL(2, 5f ) or M(52f ), with f a nonnegative integer;
(ii) M(9) or PSL(2, 9)〈α〉 ' S6, with α a field automorphism of order 2;
(iii) M(49) or PSL(2, 49)〈α〉, with α a field automorphism of order 2;
(iv) PSL(3, 4)〈α〉, with α a field or graph-field automorphism of order 2.

Proof. We have to consider the groups G such that S < G ≤ Aut(S), with S as in Proposition 3.
These can be found in [15], except for S ' PSL(2, q) and PSp(4, 7). The connected components of Γ(G)
for these groups are described in [14]. It is easily seen that if G = Aut(PSp(4, 7)) then Γ(G) is connected.

For the groups PSL(2, q) we see that if G = PGL(2, q), q = pf then the only prime not belonging
to π1(G) is p for p an odd prime. Therefore G is a C55-group if and only if p = 5.

The connected components of G = M(p2f ), with f a nonnegative integer are exactly the same of
S = PSL(2, p2f ) and therefore M(9), M(49) and M(52f ) are C55-groups. Finally, if G = PSL(2, q)〈α〉,
with α a field automorphism of order n > 1, then in the cases of Proposition 3 we have q = 5f , 9, 49.
If q 6= 9 then π(q(q − 1)) ⊆ π1(G) and so the only possible remaining cases are PSL(2, 9)〈α〉 and
PSL(2, 49)〈α〉 with α a field automorphism of order 2, which are in fact C55-groups.

5. Fixed Point Free Actions

If the Fitting subgroup of G is a 5′-group then an element of order 5 of G \ Fit(G) acts fixed point
freely on Fit(G). We therefore need some results on fixed point free actions.

In this section we use the character tables of some simple groups described in [15, 16], without further
reference.

Lemma 4. Let N be a nontrivial normal subgroup of a group G, such that G/N ' S, with S
a simple group. If there is an element g ∈ G of prime order that acts fixed point freely on N then, for
every prime r dividing |N |, there exists some χ ∈ IBrr(S) such that [χT , 1T ] = 0, where T = 〈gN〉.

Proof. N is nilpotent, as g induces on N a fixed point free automorphism of prime order (see [17,
V.8.14].) As 〈g〉 acts fixed point freely on each primary component of N , we can assume that N is an
r-group for some prime r 6= |g|.

Since 〈g〉 acts fixed point freely on each G-composition factor in N , we can reduce to the case that
N is a minimal normal subgroup of G.

We can further assume that N is an absolutely irreducible and faithful S-module. Namely, as S
is simple and acts nontrivially on N , N is a faithful S-module. Let now K be a finite extension of
F = GF (r), such that K is a splitting field for S and let M = K ⊗F N . Then for every x ∈ S
we have CM (x) = 0 if and only if CN (x) = 0, since x has a fixed point if and only if 1 is a root of
the characteristic polynomial of x. So we can assume that N is a K[S]-module, i.e., N is absolutely
irreducible. Since T = 〈gN〉 is a nontrivial group that acts fixed point freely on N , the restriction NT

does not contain the trivial module 1T as a constituent. If χ ∈ IBrr(S) is the Brauer character associated
to N , that amounts to [χT , 1T ] = 0, as (r, |T |) = 1 and χT is an ordinary (complex) character of T .

Proposition 5. Let N be a normal subgroup of a group G, such that G/N ' S, with S one of the
following almost simple groups. Suppose further that every 5-element of G acts fixed point freely on N .
Then

(i) if S ' PSL(2, p), where p is an odd prime such that (p+ 1)/2 or (p− 1)/2 is a power of 5, then
N = 1;
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(ii) if S ' PSL(2, 5f ), with f ≥ 2, then N = 1;
(iii) if S ' PSL(2, 5) ' A5 or S5 then N is the direct product of a 2-group of class at most 3 and an

abelian 2′-group;
(iv) if S ' PSL(2, 9) ' A6 or S6 or M(9) then N is a direct product of an elementary abelian

2-group and an abelian 3-group;
(v) if S ' PSL(2, 49) or M(49) or PSL(2, 49)〈α〉, with α a field automorphism of order 2, then N

is an abelian 7-group;
(vi) if S ' Sz(8), Sz(32), PSp(4, 3), A7 then N is an elementary abelian 2-group;
(vii) if S ' PSL(3, 4), PSU(4, 3), PSp(4, 7), M11 or M22 then N = 1;

Proof. As N is nilpotent, we can assume that N is an r-group, r 6= 5.
(i) Let g ∈ G be an element of order 5 that acts fixed point freely on N . Let S = G/N and

T = 〈gN〉 ≤ S. By Lemma 4 to prove that N is trivial it is enough to show that

[φT , 1T ] > 0

for every φ ∈ IBrr(S) and for each prime r, r 6= 5.
We denote by A a cyclic subgroup of S of order (p− 1)/2 and by B, a cyclic subgroup of S of order

(p+ 1)/2.
I. We first suppose that r = p. It is well known that the degrees of the p-Brauer characters of

PSL(2, p) are of the form m + 1 where 0 ≤ m ≤ p − 1 and m is even. Further, if φ ∈ IBrp(PSL(2, p))
has degree 2k + 1 then the restrictions of φ to A and B decompose in the following way:

φA = ηk + ηk−1 + ηk−2 + · · ·+ η−(k−1) + η−k,

φB = δk + δk−1 + δk−2 + · · ·+ δ−(k−1) + δ−k

where η and δ are generators of the dual groups Â and B̂.
As (|T |, r) = 1, up to conjugation we have T ≤ A or T ≤ B and hence it follows that φT has 1T as

a constituent.
So we can assume r 6= p.
We can also assume that (p + 1)/2 is a power of 5 and that, up to conjugation, T ≤ B. If namely

(p−1)/2 is a power of 5 then T (as a conjugate to a subgroup of the “diagonal” subgroup of S) normalizes
a Sylow p-subgroup P of S and T acts fixed point freely on PN . Hence PN is nilpotent and then, as
r 6= p, P centralizes N , which implies N = {1}.

II. Let us consider first the case in which r = char(N) does not divide |S|. Then IBrr(S) = Irr(S).
Also, p ≡ 1(mod 4) and the part of the character table of S which is significant for us is

1 . . . b ∈ B \ {1}
1G 1 . . . 1
α p . . . −1
χi p+ 1 . . . 0
θj p− 1 . . . −(δj(b) + δj(b))
γ1

1
2(p+ 1) . . . 0

γ2
1
2(p+ 1) . . . 0

for 1 ≤ i ≤ (p− 5)/4, 1 ≤ j ≤ (p− 1)/4, and 1B 6= δj ∈ Irr(B).
We have:
(a) [αT , 1T ] = 1

|T |(p− |T |+ 1) = p+1
|T | − 1 ≥ 2− 1 > 0 as |T | divides |B| = (p+ 1)/2.

(b) If χ = γ1, γ2 or χi, for some 1 ≤ i ≤ (p− 5)/4, then [χT , 1T ] = χ(1)
|T | > 0.

(c) Let, for some 1 ≤ j ≤ (p− 1)/4, θ = θj and 1B 6= δ = δj ∈ Irr(B). Thus,

[θT , 1T ] =
1
|T |

(p− 1 + 2− |T |([δT , 1T ] + [δT , 1T ])) ≥ p+ 1
|T |

− 2.
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Observe that |T | = 5 is a proper divisor of |B| = (p + 1)/2, as 5 = (p + 1)/2 implies p = 9, against the
assumption that p is prime. Hence, it follows [θT , 1T ] > 0.

Let us now assume that r divides |S| = 1
2(p− 1)p(p+ 1). Since r 6= p, we can assume r divides p− 1.

III. Suppose first that r 6= 2. By [18, Case III], every φ ∈ IBrr(S) has a lift in Irr(S) and hence from
part II it follows that [φT , 1T ] > 0.

If r = 2, by [18, Case VIII (a)], every r-Brauer character φ that belongs to a nonprincipal block
of S has a lift in Irr(S) and hence, again by part II, [φT , 1T ] > 0. On the other hand, the principal
block contains three Brauer characters 1, β1, β2 and the decomposition matrix in [18, p. 90] gives
βi = γo

i − 1 where γo
i is the restriction to the r-regular elements of S of the above-mentioned complex

character γi (i = 1, 2).
Since T ≤ B, we hence obtain for β = β1, β2

[βT , 1T ] =
1
|T |

(
p− 1

2
− (|T | − 1)

)
=
p+ 1
2|T |

− 1 > 0

because |T | = 5 6= (p+ 1)/2.
(ii) Let H be a Sylow 5-subgroup of G. If N 6= 1 then NH is a Frobenius group and therefore H is

a Frobenius complement, and so it is cyclic. But the Sylow 5-subgroups of PSL(2, 5f ) are cyclic if and
only if f = 1.

(iii) If r = 2 then Theorem 2 of [19] and Theorem 1 of [20] give the conclusion.
We consider the following presentation of A5:

〈α, β, γ | α2 = β3 = γ5, γ = αβ〉.
A5 has a natural representation of dimension 4 on Z, in which α, β, and γ are mapped respectively to
the matrices A, B, and C:

A =


1 0 0 0
0 0 1 0
0 1 0 0

−1 −1 −1 −1

 , B =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 , C = A ·B =


0 1 0 0
0 0 1 0
0 0 0 1

−1 −1 −1 −1

 .

If r 6= 2 the only irreducible modular representation of A5 in which the elements of order 5 act fixed
point freely is the one just described, that can be realized over GF (r), as can be checked in the character
tables. We will denote by Σ the module obtained by this representation. Every composition factor of N
is isomorphic to Σ, as a GF (r)A5-module, and has therefore order r4.

A simple computation shows that the exterior product Σ ∧ Σ is of dimension 6 over GF (r) and
decomposes, in a quadratic extension of GF (r), in the sum of two absolutely irreducible GF (r2)A5-mod-
ules of dimension 3. In each of these, an element of order 5 of A5 has nontrivial fixed points. In particular
there exists no nontrivial homomorphism of GF (r)A5-modules Σ ∧ Σ → Σ.

We now prove by contradiction that N is abelian. Let N be a minimal counterexample. Then N ′ is
elementary abelian of order r4 and isomorphic to Σ as GF (r)A5-modulo. We now distinguish two cases:

(a) N/Z(N) has order r4 and it is therefore isomorphic to Σ. Then the map Σ×Σ → N ′ defined by
(Z(N)x, Z(N)y) 7→ [x, y] is well defined and it induces a surjective homomorphism ψ : Σ∧Σ → N ′ ' Σ.
This is a contradiction by the preceding remark.

(b) |N/Z(N)| > r4. Since N has class 2 and N ′ has exponent r, for all x, y ∈ N we have [x, yr] =
[x, y]r = 1 and therefore Φ(N) = 〈N ′, N r〉 ≤ Z(N). Then N/Z(N) decomposes in a direct sum of
a certain number of modules Ni isomorphic to Σ, with i ∈ I, a set of indices. Let Ni be the subgroup
of N such that Ni/Z(N) = Ni. Since Ni < N ; therefore, Ni is abelian for all i ∈ I. Since N is not
abelian by hypothesis, there exist N1 and N2 such that [N1, N2] 6= 1. By the minimality of |N | we then
have N = N1N2, [N1, N2] = N ′ and moreover N1 ∩N2 = Z(N).

Fix a basis xi = xiZ(N), i = 1, . . . , 4, of N1, such that α, β, γ ∈ A5 are represented by the matrices
A, B, and C. Moreover, we can choose the elements x1, x2, x3, x4 of N1, such that xγ

i = xi+1 for
i = 1, 2, 3 and xγ

4 = x−1
1 x−1

2 x−1
3 x−1

4 .
Similarly we choose elements y1, y2, y3, y4 of N2.
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It is easy to verify that N3 = 〈x1y1, x2y2, x3y3, x4y4, Z(N)〉 is a G-invariant subgroup of N and since
N3 < N , N3 is again abelian. In particular, since N has class 2 and both N1 and N2 are abelian, we
obtain 1 = [xiyi, xjyj ] = [xi, yj ][yi, xj ] and therefore

[xi, yj ] = [xj , yi] for all i, j ∈ {1, 2, 3, 4}.

We put

εi,j =


1 if i < j,

0 if i = j,

−1 if i > j.

Let s1, s2, s3, s4 be a basis of Σ, chosen such that α, β, γ ∈ A5 are represented by the matrices
A, B, and C, as before. We consider the map ψ : Σ × Σ → N ′ of GF (r)A5-modules, defined by
ψ(si, sj) = [xi, yj ]εi,j .

It is easy to verify that ψ is alternating, but there does not exist nontrivial maps Σ ∧ Σ → N ′ ' Σ
and therefore

[xi, yj ] = 1, i, j ∈ {1, 2, 3, 4}, i 6= j.

The only nontrivial commutators of this generating set of N ′ are therefore [xi, yi] with i = 1, 2, 3, 4.
We recall that if an automorphism γ of order 5 of a finite group T acts fixed point freely, then for all
t ∈ T , we have ttγtγ

2
tγ

3
tγ

4
= 1. Then

[x4, y4]γ =
[
x−1

1 x−1
2 x−1

3 x−1
4 , y−1

1 y−1
2 y−1

3 y−1
4

]
= [x1, y1][x2, y2][x3, y3][x4, y4]

because N has class 2. Therefore,

[x1, y1][x1, y1]γ [x1, y1]γ
2
[x1, y1]γ

3
[x1, y1]γ

4
= [x1, y1]2[x2, y2]2[x3, y3]2[x4, y4]2 6= 1

since r 6= 2. This contradiction completes the proof.
If S ' S5 then similar methods can be used to prove the statement.
(iv) If r = 2 then the claim follows by Theorem 2 of [20].
If r > 5 then IBrr(A6) = Irr(A6) and, just checking the character table of A6, by Lemma 4 it follows

that N = 1.
If r = 3 then there exists a representation of dimension 4 over GF (3), such that the 5-elements act

fixed point freely and, since A5 < A6, by (iii), N is abelian.
If S ' S6 or M(9) then similar methods can be used to prove the statement.
(v) Using the character tables of PSL(2, 49) and Lemma 4 we can easily conclude that the only

possible case is r = 7. It is well known that PSL(2, 49) can be represented with matrices 4 × 4 with
coefficients in GF (7) and in such a representation each element of order 5 acts fixed point freely. Since
PSL(2, 49) contains a subgroup isomorphic to A5, by (iii), it follows that the 7-group N is abelian.

If S 'M(49) or PSL(2, 49)〈α〉 with α a field automorphism of order 2, similar methods can be used
to prove the statement.

(vi) Let S ' Sz(8) or Sz(32). If r 6= 2 then N = 1, as proved in [21].
If r = 2 then N is an elementary abelian 2-group, and the action is the natural action as proved

in [22].
In PSp(4, 3) there is a maximal subgroupH, which is the semidirect product of an elementary abelian

2-group K with a group isomorphic to A5. Moreover, H is a C55-group. Then NK is nilpotent and
therefore N is a 2-group. Since PSp(4, 3) has also a subgroup isomorphic to A6, by (iv) we conclude that
N is elementary abelian.

Since A6 ≤ A7 by (iv), N is an abelian {2, 3}-group. Using the 3-modular character table of A7, by
Lemma 4 the 3-component of N is trivial.

(vii) Using the character tables of PSL(3, 4) and Lemma 4, we can easily conclude that N = 1.
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PSU(4, 3) contains a Frobenius subgroup, with an elementary abelian kernel of order 24 and a comple-
ment of order 5 and a Frobenius subgroup, with an elementary abelian kernel of order 34 and a complement
of order 5. This implies that N should be a 2-group and 3-group. Then N = 1.

PSp(4, 7) contains a subgroup isomorphic to PSL(2, 49) therefore, by (v), N should be a 7-group.
But PSp(4, 7) contains also a subgroup isomorphic to A7 therefore, by (vi), N should be a 2-group.
Then N = 1.

Both M11 and M22 contain a subgroup isomorphic to A6 and a subgroup isomorphic to the Frobenius
group of order 55. Then N should be both a {2, 3}-group and 11-group. Therefore, N = 1.

6. Proof of the Theorem and Concluding Remarks

We can now easily complete the proof of our theorem.

Proof of Theorem 1. We suppose that G is not a 5-group. Therefore, Γ(G) is not connected and
so by Proposition 2 G is one of the following groups:

(a) G is a Frobenius or 2-Frobenius group. In the first case either the Frobenius kernel or the
Frobenius complement are 5-groups, since the Frobenius kernel as well as the Frobenius complement
has nontrivial center. In the second case, if F = Fit(G) is a 5-group then G/Fit(G) is a Frobenius
group whose kernel K is a cyclic 5′-group. In fact if K is the subgroup of G containing F such that
K = K/F is the Fitting subgroup of G/F , then K = FH is a Frobenius group, with H a nilpotent
Frobenius complement. Therefore H is either a cyclic subgroup or the product of a cyclic group with
a generalized quaternion group. Moreover, π1(G) = π(K/F ) and π2(G) = π(F ) ∪ π(G/K) = {5}. Since
K = FH/F ' H and G/K is a 5-group acting fixed point freely on K, we conclude that H is a cyclic
group, because the outer automorphism group of the generalized quaternion group Q2n is a 2-group, if
n > 3 and Out(Q8) ' S3.

If F is a 5′-group then G/Fit(G) is a Frobenius group whose kernelK is a cyclic 5-group and therefore
the Frobenius complement can only be a cyclic group of order 2 or 4.

We remark that a Frobenius C55-group is necessarily soluble. Otherwise the Frobenius complement
contains a subgroup isomorphic to SL(2, 5), which is not a C55-group.

(b) G is a simple group, and then the claim follows from Proposition 3.
(c) G is a simple by π1 group. This implies that G is an almost simple group, and again we conclude

by Proposition 4.
(d) G is a π1 by simple by π1 group.
It can be easily deduced from the results in [9] that F = Fit(G) = Oπ1(G) and G/F is isomorphic to

an almost simple group. Moreover if S is the only simple nonabelian section of G, we have πi(G) = πi(S)
for i ≥ 2. Therefore this is the case in which F 6= 1 and G/F is an almost simple C55-group, and the
conclusion comes from Proposition 4.

If G is a soluble nonnilpotent C55-group we can give a more detailed description of the structure
of G. In particular, if we put π∗(G) = π(G) \ {5} and p∗ = min(π∗(G)), we have the following

Proposition 6. If G is a soluble nonnilpotent C55-group then
(i) the derived length of G is bounded by a function of p∗, in particular if p∗ = 2 then G(5) = 1;
(ii) if p∗ > 2 then G′′ is nilpotent.

Proof. It is well known that a finite group with a fixed point free automorphism of prime order p
is nilpotent and its nilpotency class is bounded by a function f(p) of p. We can suppose p > 2, otherwise
the group is abelian. We have f(p) ≤ 1 + (p − 1) + · · · + (p − 1)2

p−2 (see Theorem VIII.10.12 of [23]);
moreover G. Higman conjectured that if p is odd, f(p) = p2−1

4 and proved its conjecture for p = 5: in
particular f(5) = 6 (see Remark VIII.10.13.b of [23]).

We study the different cases following List A.
(1) G is a Frobenius group (case A2). Let N be the Frobenius kernel and let K be a Frobenius

complement of G. We can distinguish two subcases:
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(1a) N is a 5-group. If 2 ∈ π(K) then N is abelian and K has derived length at most 4. In
fact a soluble Frobenius complement has derived length at most 4, as it can be easily deduced from
Chapter 18 of [24]. Therefore G has derived length at most 5. If 2 6∈ π(K) then K is metacyclic and
therefore G′′ ≤ N . Moreover, as we have observed, the nilpotency class of N is bounded by f(p∗).
Therefore the derived length of G is bounded by a function of p∗.

(1b) N is a 5′-group. Then K is a cyclic 5-group and N is nilpotent of class at most f(5) = 6. In
particular the derived length of N is at most 3 and since G′ ≤ N we have G(4) = 1.

(2) G is a 2-Frobenius group. Let N = Fit(G). We can distinguish two subcases:
(2a) N is a 5-group (case A4). Then G′′ ≤ N and we conclude as in (1a). We observe that in this

case the order of G is necessarily odd.
(2b) N is a 5′-group (case A3). Then G′′ ≤ N and N is nilpotent of class at most f(5) = 6. In

particular G(5) = 1.
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