C55-GROUPS

S. Dolfi, E. Jabara, and M. S. Lucido

UDC 512.54

Abstract

We classify the $C 55$-groups, i.e., finite groups in which the centralizer of every 5 -element is a 5 -group.

Keywords: group, finite group, centralizer, Frobenius group

1. Introduction

It is well known that the centralizers of involutions play a fundamental role in the study of finite groups. The case of the groups has been of great interest in which the centralizer of every involution is a 2-group. These groups are called C22-groups or CIT-groups. In 1900, Burnside characterized the finite groups of even order in which the order of every element is either 2 or odd (see [1, pp. 208-209; 2, p. 316]). It is not difficult to characterize the soluble $C 22$-groups whereas the classification of the simple $C 22$-groups is a deep result due to Suzuki. In [3] he classified the simple $C N$-groups and then in [4] he proved that a simple $C 22$-group is a $C N$-group. A $C N$-group is a group in which the centralizer of every nontrivial element is nilpotent.

A natural generalization of the concept of $C 22$-group is the concept of $C p p$-group, meaning a group whose order is divisible by p and in which the centralizer of a p-element is a p-group.

The first result in this direction was obtained by Feit and Thompson: in [5] they classified the simple groups with a self-centralizing subgroup of order 3 (see also Theorem 9.2 of [6]). Then Stewart proved a more general result (see Theorem A of [7]), which, together with the classification of the simple groups without elements of order 6 in [8], gives a complete description of the nonsoluble $C 33$-groups.

In this paper we classify the finite $C 55$-groups.
Let G be one of the groups in the following lists (it is easy to verify that G is a $C 55$-group):
List A.
(A1) G is a 5 -group;
(A2) G is a soluble Frobenius group such that either the Frobenius kernel or a Frobenius complement is a 5 -group;
(A3) G is a 2 -Frobenius group such that $\operatorname{Fit}(G)$ is a 5^{\prime}-group and $G / \operatorname{Fit}(G)$ is a Frobenius group, whose kernel is a cyclic 5 -group and whose complement has order 2 or 4 ;
(A4) G is a 2 -Frobenius group such that $\operatorname{Fit}(G)$ is a 5 -group and $G / \operatorname{Fit}(G)$ is a Frobenius group, whose kernel is a cyclic 5^{\prime}-group and whose complement is a cyclic 5 -group.
All groups in List A are soluble.

List B.

(B1) $G \simeq P S L\left(2,5^{f}\right)$, with f a nonnegative integer;
(B2) $G \simeq P S L(2, p)$, with p prime, $p=2 \cdot 5^{f} \pm 1$, and f a nonnegative integer;
(B3) $G \simeq \operatorname{PSL}(2,9) \simeq A_{6}$ or $\operatorname{PSL}(2,49)$;
(B4) $G \simeq P S L(3,4)$;
(B5) $G \simeq S z(8)$ or $S z(32)$;
(B6) $G \simeq \operatorname{PSU}(4,2) \simeq \operatorname{PSp}(4,3)$ or $\operatorname{PSU}(4,3)$ or $\operatorname{PSp}(4,7)$;
(B7) $G \simeq A_{7}$ or M_{11} or M_{22}.
All groups in List B are simple.
The authors were supported by the MURST Project "Group Theory and Applications."
Florence; Venice; Udine (Italy). Translated from Sibirskǐ Matematicheskǐ Zhurnal, Vol. 45, No. 6, pp. 1285-1298, November-December, 2004. Original article submitted June 26, 2003.

List C.

(C1) $G \simeq P G L\left(2,5^{f}\right)$ or $G \simeq M\left(5^{2 f}\right)$, with f a nonnegative integer;
(C2) $G \simeq M(9)$ or $\operatorname{PSL}(2,9)\langle\alpha\rangle \simeq S_{6}$, with α a field automorphism of order 2;
(C3) $G \simeq M(49)$ or $\operatorname{PSL}(2,49)\langle\alpha\rangle$, with α a field automorphism of order 2;
(C4) $G \simeq P S L(3,4)\langle\alpha\rangle$, with α a field or graph-field automorphism of order 2.
All groups in List C are almost simple.
We conclude with a list of nonsoluble groups in which the Fitting subgroup Fit (G) is not trivial.

List D.

$\operatorname{Fit}(G) \neq 1$, every element of order 5 of G acts by conjugation fixed point freely on $\operatorname{Fit}(G)$ and $G / \operatorname{Fit}(G)$ is isomorphic to:
(D1) $\operatorname{PSL}(2,5) \simeq A_{5}$ or S_{5} and $\operatorname{Fit}(G)$ is a direct product of a 2 -group of class at most 3 and an abelian 2^{\prime}-group;
(D2) $\operatorname{PSL}(2,9) \simeq A_{6}$ or S_{6} or $M(9)$ and $\operatorname{Fit}(G)$ is a direct product of an elementary abelian 2-group and an abelian 3-group;
(D3) $\operatorname{PSL}(2,49), M(49)$ or $P S L(2,49)\langle\alpha\rangle$, with α a field automorphism of order 2, and $\operatorname{Fit}(G)$ is an abelian 7-group;
(D4) $S z(8)$ or $S z(32)$ and $\operatorname{Fit}(G)$ is an elementary abelian 2-group;
(D5) $\operatorname{PSU}(4,2) \simeq \operatorname{PSp}(4,3)$ and $\operatorname{Fit}(G)$ is an elementary abelian 2-group;
(D6) A_{7} and $\operatorname{Fit}(G)$ is an elementary abelian 2-group.
We can state our main result:
Theorem 1. G is a finite C55-group if and only if G is isomorphic to one of the groups in Lists A-D.

2. Notations and Preliminary Results

All groups in this article are finite. We use the following notations:

- $q=p^{f}$, with p a prime and f a nonnegative integer;
- $\operatorname{IBr}_{r}(G)$ is the set of irreducible Brauer characters of G in characteristic r, where r is a prime;
- $M(q)$ is the nonsplit extension of $P S L(2, q)$, with $|M(q): P S L(2, q)|=2$, if p is an odd prime and $q=p^{2 f}$.
A group G is almost simple if there exists a finite nonabelian simple group S such that $S \leq G \leq$ $\operatorname{Aut}(S)$. A group G is called 2-Frobenius if it has two normal subgroups N and K with $N<K$, such that K is a Frobenius group with kernel N and G / N is a Frobenius group with kernel K / N.

If G is a group then we define its prime graph $\Gamma(G)=\Gamma$ as follows: the set of vertices of Γ is $\pi(G)$, the set of primes dividing $|G|$. Two vertices p and q are connected if and only if in G there exists an element of order $p q$. Let $\pi_{1}, \pi_{2}, \ldots, \pi_{t}$ be connected components of Γ and let $t(G)=t$ be the number of these components. Moreover if $2 \in \pi(G)$ then we suppose $2 \in \pi_{1}$.

A group G is a $C p p$-group if and only if $\{p\}$ is a connected component of $\Gamma(G)$, the prime graph of G. We observe that if a group G has the $C p p$-property then every subgroup of G of order divisible by p also has the $C p p$-property. The same is true if we consider a quotient of G of order divisible by p.

The groups have been studied in which the prime graph is not connected. In particular Gruenberg and Kegel proved in an unpublished paper (see [9]) that these groups have the following structure:

Proposition 2 [9]. If G is a group whose prime graph has more than one connected component then
(a) G is a Frobenius or 2-Frobenius group;
(b) G is simple;
(c) G is simple by π_{1};
(d) G is π_{1} by simple by π_{1}.

It is clear that items (a)-(d) correspond respectively to Lists A-D, except for the 5 -groups.

3. Some Number Theoretic Lemmas

To classify the simple $C 55$-groups, we need to know the prime powers $q=p^{f}$ such that $q=2 \cdot 5^{n} \pm 1$. If $f=1$ then it is unknown whether there are finitely many primes of that form. We are interested in the case $f>1$. We begin with

Lemma 1. The diophantine equation

$$
\begin{equation*}
X^{2}+1=2 Y^{3} \tag{*}
\end{equation*}
$$

admits the only solutions $(1,1)$ and $(-1,1)$.
Proof. We work in the ring $\mathbb{Z}[i]$ which is a factorial domain. Let (x, y) be a solution of $(*)$. Then x is odd and therefore $1+i x$ is divisible by $1+i$ but not by 2 . So the greatest common divisor of $1+i x$ and $1-i x$ is $1+i$. From the fact that $(1+i x)(1-i x)=2 y^{3}$, and that the units of $\mathbb{Z}[i]$ are ± 1 and $\pm i$, which are all cubes, we obtain the factorization

$$
1+i x=\epsilon(1+i)\left(a^{\prime}+i b^{\prime}\right)^{3}=(1+i)(a+i b)^{3}
$$

with ϵ a unit of $\mathbb{Z}[i]$.
Adding the conjugates and dividing by 2, we find

$$
1=(a+b)\left(a^{2}-4 a b+b^{2}\right)
$$

and therefore $a= \pm 1$ and $b=0$ or $a=0$ and $b= \pm 1$ from which follows $x= \pm 1$ and the lemma is proved.
We can now prove
Lemma 2. Let p be a prime number and $n, t \in \mathbb{N}, t>0$. Then
(i) if $p^{n}+1=2 \cdot 5^{t}$ then either $n=1$ or $n=2$; if $n=2$ then either $t=1, p=3$ or $t=2, p=7$;
(ii) if $p^{n}-1=2 \cdot 5^{t}$ then $n=1$;
(iii) if $2^{n} \pm 1=5^{t}$ then $t=1, n=2$.

Proof. (i) We suppose that $n>1$. Let $n=2^{k} \cdot d$ with d odd. If $d>1$ then we put $q=p^{2^{k}}$ so that $p^{n}+1=q^{d}+1=(q+1) \cdot\left(q^{d-1}-q^{d-2}+\cdots+1\right)$ and therefore $\left(p^{n}+1\right) / 2$ is divisible by two distinct primes. So $d=1$. Since $p^{4} \equiv 1(\bmod 5)$, we hence have $k=1$ and $n=2$.

We now distinguish the two cases:
(A) $t=2 k+1$ is odd. Then $p^{2}=10 \cdot 25^{k}-1 \equiv 0(\bmod 3), p^{2}$ is divisible by 3 and $p=3$, since p is a prime.
(B) $t=2 k$ is even. Then

- if $k \equiv 1(\bmod 3)$ then $2 \cdot 25^{k}-1 \equiv 0(\bmod 7)$; therefore, 7 divides p^{2} and so $p=7$.
- if $k \equiv 2(\bmod 3)$ then $2 \cdot 25^{k}-1 \equiv 3(\bmod 7)$, which is impossible since 3 is not a square $(\bmod 7)$.
- if $k \equiv 0(\bmod 3)$ then $k=3 h$ and $p^{2}=2 \cdot\left(25^{h}\right)^{3}-1$, which is impossible by the preceding lemma.
(ii) If $n>1$ then there exists a Zsigmondy prime divisor q of $p^{n}-1$ that does not divide $p-1$ (see [10]). Then $q=5$ does not divide $p-1, p-1=2$ and again n is an odd prime number. Therefore if $n \equiv 1(\bmod 4)$ then $3^{n}-1 \equiv 2(\bmod 5)$, while if $n \equiv 3(\bmod 4)$ then $3^{n}-1 \equiv 1(\bmod 5)$. This proves $n=1$.
(iii) If $t \geq 2$ then $5^{t}-1$ is divisible by an odd Zsigmondy prime (see [10]). If $5^{t}=2^{m}-1$ then m is a prime; otherwise $2^{m}-1$ is divisible by two distinct primes. We can suppose $m \geq 3$ and then $\left(2^{m}-1,2^{4}-1\right)=2^{(m, 4)}-1=1$. Therefore $2^{m}-1$ is never a power of 5 .

We now state some very easy results that will be helpful in the next section.
Lemma 3. Let s be a natural number. Then
(i) 5 divides $s\left(s^{4}-1\right)$;
(ii) if 5 does not divide $s\left(s^{2}-1\right)$ then 5 does not divide $s^{6}-1$;
(iii) if f is a prime number and r is a prime dividing $s-1$ then r^{2} does not divide $\left(s^{f}-1\right) /(s-1)$ and r divides $\left(s^{f}-1\right) /(s-1)$ if and only if $r=f$.

Proof. (i) It is a consequence of Fermat's little theorem.
(ii) If 5 does not divide $s\left(s^{2}-1\right)$ then by (i) 5 divides $s^{2}+1$, which implies that 5 does not divide $s^{2} \pm s+1$. This concludes the proof, since $s^{6}-1=(s+1)\left(s^{2}-s+1\right)(s-1)\left(s^{2}+s+1\right)$.
(iii) If r divides $s-1$ then $s=1+r m$ for some $m \in \mathbb{N}$. Then

$$
\begin{aligned}
& \frac{\left(s^{f}-1\right)}{(s-1)}=s^{f-1}+s^{f-2}+\cdots+s+1=(1+r m)^{f-1}+\cdots+(1+r m)+1 \\
& =f+r m \sum_{i=1}^{f-1} i+r^{2} l=f+r m f \frac{f-1}{2}+r^{2} l=f\left(1+r m \frac{f-1}{2}\right)+r^{2} l
\end{aligned}
$$

for some $l \in \mathbb{N}$. This implies that r^{2} does not divide $\left(s^{f}-1\right) /(s-1)$ and r divides $\left(s^{f}-1\right) /(s-1)$ if and only if $r=f$.

4. Simple and Almost Simple C55-Groups

We now begin to study the simple groups that are $C 55$. We observe that Theorem 4 of [9] is a particular case of the next proposition which is a straightforward corollary of Williams and Kondrat'ev results (see [11]).

Proposition 3. Let G be a simple C55-group. Then G is one of the following:

$$
\begin{gathered}
\operatorname{PSL}(2, q), \quad \text { with } q=5^{f}, 9,49 \quad \text { or } q=p=2 \cdot 5^{t} \pm 1, \quad \text { p prime, } \\
S z(8), S z(32), \operatorname{PSL}(3,4), \operatorname{PSp}(4,3), \operatorname{PSp}(4,7), \operatorname{PSU}(4,3), A_{7}, M_{11}, M_{22} .
\end{gathered}
$$

Proof. For the sporadic and alternating groups it is enough to check the connected components of the prime graph $\Gamma(G)$ in [9]. We observe that $A_{5} \simeq \operatorname{PSL}(2,5)$ and $A_{6} \simeq \operatorname{PSL}(2,9)$.

Now let G be a simple group of Lie type, $G={ }^{d} L_{n}(q)$ of rank n. It is easily seen, checking the tables in $[9,11,12]$, that if $n \geq 3$ then $\pi\left(q\left(q^{4}-1\right)\right) \subseteq \pi_{1}(G)$, except for ${ }^{3} D_{4}(q), \operatorname{PSU}(4,2)$, and $\operatorname{PSU}(4,3)$. Moreover $\pi\left(q\left(q^{4}-1\right)\right) \subseteq \pi_{1}(G)$ also if $G=\operatorname{Ree}(q)={ }^{2} G_{2}(q)$.

Then by Lemma 3 (i) the prime 5 is in π_{1}, except for $\operatorname{PSL}(2, q), \operatorname{PSL}(3, q), \operatorname{PSp}(4, q), \operatorname{PSU}(3, q)$, $S z(q), G_{2}(q),{ }^{3} D_{4}(q), P S U(4,2)$, and $P S U(4,3)$.

If $G=P S L(2, q)$ and $q \neq 5^{f}$ is odd then either $(q+1) / 2=5^{f}$ or $(q-1) / 2=5^{f}$. By Lemma 2 (i) or (ii) we can conclude that either $q=p$ for some prime p or $q=9$ or 49 . If q is even then $2^{n}+1=5^{t}$ or $2^{n}-1=5^{t}$. Then by Lemma 2 (iii) we can conclude $G=\operatorname{PSL}(2,4) \simeq \operatorname{PSL}(2,5) \simeq A_{5}$.

Let G be $\operatorname{PSL}(3, q), \operatorname{PSU}(3, q)$ or $G_{2}(q)$. We can suppose that $G \neq P S L(3,4)$. If $5 \notin \pi_{1}$ then 5 does not divide $q\left(q^{2}-1\right)$. By Lemma 3 (ii), 5 does not divide $q^{6}-1$, which implies that 5 does not divide $|G|$.

Let G be $P S p(4, q)$. Then $\pi_{2}(G)=\pi\left(\left(q^{2}+1\right) /(2, q-1)\right)$. If q is odd then by Lemma 2 (i) we have $q=3$ or 7 . If q is even then by Lemma 2 (iii) we have $q=2$. But $P S p(4,2)$ is not a simple group. We observe that $\operatorname{PSU}(4,2) \simeq \operatorname{PSp}(4,3)$.

For the groups ${ }^{3} D_{4}(q)$ we see that since 5 does not divide $q\left(q^{2}-1\right)$; therefore, $q^{2} \equiv-1(\bmod 5)$ and $q^{4}-q^{2}+1 \equiv 3(\bmod 5)$ so that $q^{4}-q^{2}+1$ cannot be a power of 5 .

If $G \simeq S z(q)$ then $q=2^{f}$ with $f=2 m+1$ an odd number $(m \in \mathbb{N})$. Then $\pi_{3}(G)=\pi(q-\sqrt{2 q}+1)$, $\pi_{4}(G)=\pi(q+\sqrt{2 q}+1)$, and $(q-\sqrt{2 q}+1)(q+\sqrt{2 q}+1)=\left(q^{2}+1\right)$. We observe that $5=2^{2}+1$ divides $2^{2 f}+1=q^{2}+1$ and therefore either $\pi_{3}(G)=\{5\}$ or $\pi_{4}(G)=\{5\}$.

We first suppose that f is a prime number. From Lemma 3 (iii) with $r=5, s=16$, we obtain then that the highest power of 5 dividing $2^{2 f}+1$ is 25 and this happens if and only if $f=5$. Therefore, if f is a prime, we conclude that $f=3$ or $f=5$. In fact for $f=3, \pi_{3}(G)=\pi(5)=\{5\}$.

Let now $f=r n$, with $1<r<f$ and r a prime number. If we put $q_{0}=2^{r}$ then $q=q_{0}^{n}$. We recall that

- if $n \equiv 1,7(\bmod 8)$ then $\left(q_{0}-\sqrt{2 q_{0}}+1\right)$ divides $(q-\sqrt{2 q}+1)$ and $\left(q_{0}+\sqrt{2 q_{0}}+1\right)$ divides $(q+\sqrt{2 q}+1) ;$
or
- if $n \equiv 3,5(\bmod 8)$ then $\left(q_{0}-\sqrt{2 q_{0}}+1\right)$ divides $(q+\sqrt{2 q}+1)$ and $\left(q_{0}+\sqrt{2 q_{0}}+1\right)$ divides $(q-\sqrt{2 q}+1)$. (This is in the proof of Theorem 5 for Type ${ }^{2} B_{2}$ of $[13,14]$.)

We now observe that if $r \neq 3,5$ then $\pi_{i}\left(S z\left(q_{0}\right)\right) \neq\{5\}$ for $i=3,4$. Therefore by the preceding remark, we conclude $\pi_{i}(S z(q)) \neq\{5\}$ for $i=3,4$.

If $f=9,15,25$ then by direct computation $\pi_{i}(S z(q)) \neq\{5\}$, for $i=3,4$. Using again the preceding remark, we conclude that $S z(q)$ is a $C 55$-group if and only if $q=8,32$.

From this we easily obtain
Proposition 4. Let G be an almost simple C55-group, which is not simple. Then G is one of the following:
(i) $P G L\left(2,5^{f}\right)$ or $M\left(5^{2 f}\right)$, with f a nonnegative integer;
(ii) $M(9)$ or $P S L(2,9)\langle\alpha\rangle \simeq S_{6}$, with α a field automorphism of order 2;
(iii) $M(49)$ or $P S L(2,49)\langle\alpha\rangle$, with α a field automorphism of order 2;
(iv) $\operatorname{PSL}(3,4)\langle\alpha\rangle$, with α a field or graph-field automorphism of order 2.

Proof. We have to consider the groups G such that $S<G \leq \operatorname{Aut}(S)$, with S as in Proposition 3. These can be found in [15], except for $S \simeq \operatorname{PSL}(2, q)$ and $P S p(4,7)$. The connected components of $\Gamma(G)$ for these groups are described in [14]. It is easily seen that if $G=\operatorname{Aut}(P S p(4,7))$ then $\Gamma(G)$ is connected.

For the groups $P S L(2, q)$ we see that if $G=P G L(2, q), q=p^{f}$ then the only prime not belonging to $\pi_{1}(G)$ is p for p an odd prime. Therefore G is a $C 55$-group if and only if $p=5$.

The connected components of $G=M\left(p^{2 f}\right)$, with f a nonnegative integer are exactly the same of $S=P S L\left(2, p^{2 f}\right)$ and therefore $M(9), M(49)$ and $M\left(5^{2 f}\right)$ are C55-groups. Finally, if $G=P S L(2, q)\langle\alpha\rangle$, with α a field automorphism of order $n>1$, then in the cases of Proposition 3 we have $q=5^{f}, 9,49$. If $q \neq 9$ then $\pi(q(q-1)) \subseteq \pi_{1}(G)$ and so the only possible remaining cases are $P S L(2,9)\langle\alpha\rangle$ and $\operatorname{PSL}(2,49)\langle\alpha\rangle$ with α a field automorphism of order 2, which are in fact $C 55$-groups.

5. Fixed Point Free Actions

If the Fitting subgroup of G is a 5^{\prime}-group then an element of order 5 of $G \backslash \operatorname{Fit}(G)$ acts fixed point freely on $\operatorname{Fit}(G)$. We therefore need some results on fixed point free actions.

In this section we use the character tables of some simple groups described in [15, 16], without further reference.

Lemma 4. Let N be a nontrivial normal subgroup of a group G, such that $G / N \simeq S$, with S a simple group. If there is an element $g \in G$ of prime order that acts fixed point freely on N then, for every prime r dividing $|N|$, there exists some $\chi \in \operatorname{IBr}_{r}(S)$ such that $\left[\chi_{T}, 1_{T}\right]=0$, where $T=\langle g N\rangle$.

Proof. N is nilpotent, as g induces on N a fixed point free automorphism of prime order (see [17, V.8.14].) As $\langle g\rangle$ acts fixed point freely on each primary component of N, we can assume that N is an r-group for some prime $r \neq|g|$.

Since $\langle g\rangle$ acts fixed point freely on each G-composition factor in N, we can reduce to the case that N is a minimal normal subgroup of G.

We can further assume that N is an absolutely irreducible and faithful S-module. Namely, as S is simple and acts nontrivially on N, N is a faithful S-module. Let now K be a finite extension of $F=G F(r)$, such that K is a splitting field for S and let $M=K \otimes_{F} N$. Then for every $x \in S$ we have $C_{M}(x)=0$ if and only if $C_{N}(x)=0$, since x has a fixed point if and only if 1 is a root of the characteristic polynomial of x. So we can assume that N is a $K[S]$-module, i.e., N is absolutely irreducible. Since $T=\langle g N\rangle$ is a nontrivial group that acts fixed point freely on N, the restriction N_{T} does not contain the trivial module 1_{T} as a constituent. If $\chi \in \operatorname{IBr}_{r}(S)$ is the Brauer character associated to N, that amounts to $\left[\chi_{T}, 1_{T}\right]=0$, as $(r,|T|)=1$ and χ_{T} is an ordinary (complex) character of T.

Proposition 5. Let N be a normal subgroup of a group G, such that $G / N \simeq S$, with S one of the following almost simple groups. Suppose further that every 5-element of G acts fixed point freely on N. Then
(i) if $S \simeq P S L(2, p)$, where p is an odd prime such that $(p+1) / 2$ or $(p-1) / 2$ is a power of 5 , then $N=1 ;$
(ii) if $S \simeq P S L\left(2,5^{f}\right)$, with $f \geq 2$, then $N=1$;
(iii) if $S \simeq \operatorname{PSL}(2,5) \simeq A_{5}$ or S_{5} then N is the direct product of a 2-group of class at most 3 and an abelian 2^{\prime}-group;
(iv) if $S \simeq \operatorname{PSL}(2,9) \simeq A_{6}$ or S_{6} or $M(9)$ then N is a direct product of an elementary abelian 2-group and an abelian 3-group;
(v) if $S \simeq \operatorname{PSL}(2,49)$ or $M(49)$ or $P S L(2,49)\langle\alpha\rangle$, with α a field automorphism of order 2 , then N is an abelian 7-group;
(vi) if $S \simeq S z(8), S z(32), \operatorname{PSp}(4,3), A_{7}$ then N is an elementary abelian 2-group;
(vii) if $S \simeq \operatorname{PSL}(3,4), \operatorname{PSU}(4,3), \operatorname{PSp}(4,7), M_{11}$ or M_{22} then $N=1$;

Proof. As N is nilpotent, we can assume that N is an r-group, $r \neq 5$.
(i) Let $g \in G$ be an element of order 5 that acts fixed point freely on N. Let $S=G / N$ and $T=\langle g N\rangle \leq S$. By Lemma 4 to prove that N is trivial it is enough to show that

$$
\left[\phi_{T}, 1_{T}\right]>0
$$

for every $\phi \in \operatorname{IBr}_{\mathrm{r}}(S)$ and for each prime $r, r \neq 5$.
We denote by A a cyclic subgroup of S of order $(p-1) / 2$ and by B, a cyclic subgroup of S of order $(p+1) / 2$.
I. We first suppose that $r=p$. It is well known that the degrees of the p-Brauer characters of $\operatorname{PSL}(2, p)$ are of the form $m+1$ where $0 \leq m \leq p-1$ and m is even. Further, if $\phi \in \operatorname{IBr}_{p}(P S L(2, p))$ has degree $2 k+1$ then the restrictions of ϕ to A and B decompose in the following way:

$$
\begin{gathered}
\phi_{A}=\eta^{k}+\eta^{k-1}+\eta^{k-2}+\cdots+\eta^{-(k-1)}+\eta^{-k} \\
\phi_{B}=\delta^{k}+\delta^{k-1}+\delta^{k-2}+\cdots+\delta^{-(k-1)}+\delta^{-k}
\end{gathered}
$$

where η and δ are generators of the dual groups \widehat{A} and \widehat{B}.
As $(|T|, r)=1$, up to conjugation we have $T \leq A$ or $T \leq B$ and hence it follows that ϕ_{T} has 1_{T} as a constituent.

So we can assume $r \neq p$.
We can also assume that $(p+1) / 2$ is a power of 5 and that, up to conjugation, $T \leq B$. If namely $(p-1) / 2$ is a power of 5 then T (as a conjugate to a subgroup of the "diagonal" subgroup of S) normalizes a Sylow p-subgroup P of S and T acts fixed point freely on $P N$. Hence $P N$ is nilpotent and then, as $r \neq p, P$ centralizes N, which implies $N=\{1\}$.
II. Let us consider first the case in which $r=\operatorname{char}(N)$ does not divide $|S|$. Then $\operatorname{IBr}_{r}(S)=\operatorname{Irr}(S)$.

Also, $p \equiv 1(\bmod 4)$ and the part of the character table of S which is significant for us is

	1	\ldots	$b \in B \backslash\{1\}$
1_{G}	1	\cdots	1
α	p	\ldots	-1
χ_{i}	$p+1$	\ldots	0
θ_{j}	$p-1$	\ldots	$-\left(\delta_{j}(b)+\overline{\delta_{j}}(b)\right)$
γ_{1}	$\frac{1}{2}(p+1)$	\ldots	0
γ_{2}	$\frac{1}{2}(p+1)$	\cdots	0

for $1 \leq i \leq(p-5) / 4,1 \leq j \leq(p-1) / 4$, and $1_{B} \neq \delta_{j} \in \operatorname{Irr}(B)$.
We have:
(a) $\left[\alpha_{T}, 1_{T}\right]=\frac{1}{|T|}(p-|T|+1)=\frac{p+1}{|T|}-1 \geq 2-1>0$ as $|T|$ divides $|B|=(p+1) / 2$.
(b) If $\chi=\gamma_{1}, \gamma_{2}$ or χ_{i}, for some $1 \leq i \leq(p-5) / 4$, then $\left[\chi_{T}, 1_{T}\right]=\frac{\chi(1)}{|T|}>0$.
(c) Let, for some $1 \leq j \leq(p-1) / 4, \theta=\theta_{j}$ and $1_{B} \neq \delta=\delta_{j} \in \operatorname{Irr}(B)$. Thus,

$$
\left[\theta_{T}, 1_{T}\right]=\frac{1}{|T|}\left(p-1+2-|T|\left(\left[\delta_{T}, 1_{T}\right]+\left[\bar{\delta}_{T}, 1_{T}\right]\right)\right) \geq \frac{p+1}{|T|}-2 .
$$

Observe that $|T|=5$ is a proper divisor of $|B|=(p+1) / 2$, as $5=(p+1) / 2$ implies $p=9$, against the assumption that p is prime. Hence, it follows $\left[\theta_{T}, 1_{T}\right]>0$.

Let us now assume that r divides $|S|=\frac{1}{2}(p-1) p(p+1)$. Since $r \neq p$, we can assume r divides $p-1$.
III. Suppose first that $r \neq 2$. By [18, Case III], every $\phi \in \operatorname{IBr}_{r}(S)$ has a lift in $\operatorname{Irr}(S)$ and hence from part II it follows that $\left[\phi_{T}, 1_{T}\right]>0$.

If $r=2$, by [18, Case VIII (a)], every r-Brauer character ϕ that belongs to a nonprincipal block of S has a lift in $\operatorname{Irr}(S)$ and hence, again by part II, $\left[\phi_{T}, 1_{T}\right]>0$. On the other hand, the principal block contains three Brauer characters 1, β_{1}, β_{2} and the decomposition matrix in [18, p. 90] gives $\beta_{i}=\gamma_{i}^{o}-1$ where γ_{i}^{o} is the restriction to the r-regular elements of S of the above-mentioned complex character $\gamma_{i}(i=1,2)$.

Since $T \leq B$, we hence obtain for $\beta=\beta_{1}, \beta_{2}$

$$
\left[\beta_{T}, 1_{T}\right]=\frac{1}{|T|}\left(\frac{p-1}{2}-(|T|-1)\right)=\frac{p+1}{2|T|}-1>0
$$

because $|T|=5 \neq(p+1) / 2$.
(ii) Let H be a Sylow 5 -subgroup of G. If $N \neq 1$ then $N H$ is a Frobenius group and therefore H is a Frobenius complement, and so it is cyclic. But the Sylow 5 -subgroups of $\operatorname{PSL}\left(2,5^{f}\right)$ are cyclic if and only if $f=1$.
(iii) If $r=2$ then Theorem 2 of [19] and Theorem 1 of [20] give the conclusion.

We consider the following presentation of A_{5} :

$$
\left\langle\alpha, \beta, \gamma \mid \alpha^{2}=\beta^{3}=\gamma^{5}, \gamma=\alpha \beta\right\rangle .
$$

A_{5} has a natural representation of dimension 4 on \mathbb{Z}, in which α, β, and γ are mapped respectively to the matrices A, B, and C :

$$
A=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & -1 & -1 & -1
\end{array}\right), \quad B=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \quad C=A \cdot B=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1
\end{array}\right) .
$$

If $r \neq 2$ the only irreducible modular representation of A_{5} in which the elements of order 5 act fixed point freely is the one just described, that can be realized over $G F(r)$, as can be checked in the character tables. We will denote by Σ the module obtained by this representation. Every composition factor of N is isomorphic to Σ, as a $G F(r) A_{5}$-module, and has therefore order r^{4}.

A simple computation shows that the exterior product $\Sigma \wedge \Sigma$ is of dimension 6 over $G F(r)$ and decomposes, in a quadratic extension of $G F(r)$, in the sum of two absolutely irreducible $G F\left(r^{2}\right) A_{5}$-modules of dimension 3. In each of these, an element of order 5 of A_{5} has nontrivial fixed points. In particular there exists no nontrivial homomorphism of $G F(r) A_{5}$-modules $\Sigma \wedge \Sigma \rightarrow \Sigma$.

We now prove by contradiction that N is abelian. Let N be a minimal counterexample. Then N^{\prime} is elementary abelian of order r^{4} and isomorphic to Σ as $G F(r) A_{5}$-modulo. We now distinguish two cases:
(a) $N / Z(N)$ has order r^{4} and it is therefore isomorphic to Σ. Then the map $\Sigma \times \Sigma \rightarrow N^{\prime}$ defined by $(Z(N) x, Z(N) y) \mapsto[x, y]$ is well defined and it induces a surjective homomorphism $\psi: \Sigma \wedge \Sigma \rightarrow N^{\prime} \simeq \Sigma$. This is a contradiction by the preceding remark.
(b) $|N / Z(N)|>r^{4}$. Since N has class 2 and N^{\prime} has exponent r, for all $x, y \in N$ we have $\left[x, y^{r}\right]=$ $[x, y]^{r}=1$ and therefore $\Phi(N)=\left\langle N^{\prime}, N^{r}\right\rangle \leq Z(N)$. Then $N / Z(N)$ decomposes in a direct sum of a certain number of modules $\overline{N_{i}}$ isomorphic to Σ, with $i \in I$, a set of indices. Let N_{i} be the subgroup of N such that $N_{i} / Z(N)=\overline{N_{i}}$. Since $N_{i}<N$; therefore, N_{i} is abelian for all $i \in I$. Since N is not abelian by hypothesis, there exist N_{1} and N_{2} such that $\left[N_{1}, N_{2}\right] \neq 1$. By the minimality of $|N|$ we then have $N=N_{1} N_{2},\left[N_{1}, N_{2}\right]=N^{\prime}$ and moreover $N_{1} \cap N_{2}=Z(N)$.

Fix a basis $\overline{x_{i}}=x_{i} Z(N), i=1, \ldots, 4$, of $\overline{N_{1}}$, such that $\alpha, \beta, \gamma \in A_{5}$ are represented by the matrices A, B, and C. Moreover, we can choose the elements $x_{1}, x_{2}, x_{3}, x_{4}$ of N_{1}, such that $x_{i}^{\gamma}=x_{i+1}$ for $i=1,2,3$ and $x_{4}^{\gamma}=x_{1}^{-1} x_{2}^{-1} x_{3}^{-1} x_{4}^{-1}$.

Similarly we choose elements $y_{1}, y_{2}, y_{3}, y_{4}$ of N_{2}.

It is easy to verify that $N_{3}=\left\langle x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}, x_{4} y_{4}, Z(N)\right\rangle$ is a G-invariant subgroup of N and since $N_{3}<N, N_{3}$ is again abelian. In particular, since N has class 2 and both N_{1} and N_{2} are abelian, we obtain $1=\left[x_{i} y_{i}, x_{j} y_{j}\right]=\left[x_{i}, y_{j}\right]\left[y_{i}, x_{j}\right]$ and therefore

$$
\left[x_{i}, y_{j}\right]=\left[x_{j}, y_{i}\right] \quad \text { for all } i, j \in\{1,2,3,4\} .
$$

We put

$$
\epsilon_{i, j}=\left\{\begin{aligned}
& 1 \text { if } i<j \\
& 0 \text { if } \\
&-1=j \\
&-1 \text { if } \\
& i>j
\end{aligned}\right.
$$

Let $s_{1}, s_{2}, s_{3}, s_{4}$ be a basis of Σ, chosen such that $\alpha, \beta, \gamma \in A_{5}$ are represented by the matrices A, B, and C, as before. We consider the map $\psi: \Sigma \times \Sigma \rightarrow N^{\prime}$ of $G F(r) A_{5}$-modules, defined by $\psi\left(s_{i}, s_{j}\right)=\left[x_{i}, y_{j}\right]^{\epsilon_{i, j}}$.

It is easy to verify that ψ is alternating, but there does not exist nontrivial maps $\Sigma \wedge \Sigma \rightarrow N^{\prime} \simeq \Sigma$ and therefore

$$
\left[x_{i}, y_{j}\right]=1, \quad i, j \in\{1,2,3,4\}, i \neq j
$$

The only nontrivial commutators of this generating set of N^{\prime} are therefore $\left[x_{i}, y_{i}\right]$ with $i=1,2,3,4$. We recall that if an automorphism γ of order 5 of a finite group T acts fixed point freely, then for all $t \in T$, we have $t t^{\gamma} t^{\gamma^{2}} t \gamma^{3} t^{\gamma^{4}}=1$. Then

$$
\left[x_{4}, y_{4}\right]^{\gamma}=\left[x_{1}^{-1} x_{2}^{-1} x_{3}^{-1} x_{4}^{-1}, y_{1}^{-1} y_{2}^{-1} y_{3}^{-1} y_{4}^{-1}\right]=\left[x_{1}, y_{1}\right]\left[x_{2}, y_{2}\right]\left[x_{3}, y_{3}\right]\left[x_{4}, y_{4}\right]
$$

because N has class 2. Therefore,

$$
\left[x_{1}, y_{1}\right]\left[x_{1}, y_{1}\right]^{\gamma}\left[x_{1}, y_{1}\right]^{\gamma^{2}}\left[x_{1}, y_{1}\right]^{\gamma^{3}}\left[x_{1}, y_{1}\right]^{\gamma^{4}}=\left[x_{1}, y_{1}\right]^{2}\left[x_{2}, y_{2}\right]^{2}\left[x_{3}, y_{3}\right]^{2}\left[x_{4}, y_{4}\right]^{2} \neq 1
$$

since $r \neq 2$. This contradiction completes the proof.
If $S \simeq S_{5}$ then similar methods can be used to prove the statement.
(iv) If $r=2$ then the claim follows by Theorem 2 of [20].

If $r>5$ then $\operatorname{IBr}_{r}\left(A_{6}\right)=\operatorname{Irr}\left(A_{6}\right)$ and, just checking the character table of A_{6}, by Lemma 4 it follows that $N=1$.

If $r=3$ then there exists a representation of dimension 4 over $G F(3)$, such that the 5 -elements act fixed point freely and, since $A_{5}<A_{6}$, by (iii), N is abelian.

If $S \simeq S_{6}$ or $M(9)$ then similar methods can be used to prove the statement.
(v) Using the character tables of $\operatorname{PSL}(2,49)$ and Lemma 4 we can easily conclude that the only possible case is $r=7$. It is well known that $P S L(2,49)$ can be represented with matrices 4×4 with coefficients in $G F(7)$ and in such a representation each element of order 5 acts fixed point freely. Since $\operatorname{PSL}(2,49)$ contains a subgroup isomorphic to A_{5}, by (iii), it follows that the 7 -group N is abelian.

If $S \simeq M(49)$ or $P S L(2,49)\langle\alpha\rangle$ with α a field automorphism of order 2 , similar methods can be used to prove the statement.
(vi) Let $S \simeq S z(8)$ or $S z(32)$. If $r \neq 2$ then $N=1$, as proved in [21].

If $r=2$ then N is an elementary abelian 2-group, and the action is the natural action as proved in [22].

In $\operatorname{PSp}(4,3)$ there is a maximal subgroup H, which is the semidirect product of an elementary abelian 2 -group K with a group isomorphic to A_{5}. Moreover, H is a $C 55$-group. Then $N K$ is nilpotent and therefore N is a 2-group. Since $\operatorname{PSp}(4,3)$ has also a subgroup isomorphic to A_{6}, by (iv) we conclude that N is elementary abelian.

Since $A_{6} \leq A_{7}$ by (iv), N is an abelian $\{2,3\}$-group. Using the 3 -modular character table of A_{7}, by Lemma 4 the 3 -component of N is trivial.
(vii) Using the character tables of $\operatorname{PSL}(3,4)$ and Lemma 4, we can easily conclude that $N=1$.
$\operatorname{PSU}(4,3)$ contains a Frobenius subgroup, with an elementary abelian kernel of order 2^{4} and a complement of order 5 and a Frobenius subgroup, with an elementary abelian kernel of order 3^{4} and a complement of order 5 . This implies that N should be a 2 -group and 3 -group. Then $N=1$.
$P S p(4,7)$ contains a subgroup isomorphic to $P S L(2,49)$ therefore, by (v), N should be a 7 -group. But $P S p(4,7)$ contains also a subgroup isomorphic to A_{7} therefore, by (vi), N should be a 2-group. Then $N=1$.

Both M_{11} and M_{22} contain a subgroup isomorphic to A_{6} and a subgroup isomorphic to the Frobenius group of order 55 . Then N should be both a $\{2,3\}$-group and 11-group. Therefore, $N=1$.

6. Proof of the Theorem and Concluding Remarks

We can now easily complete the proof of our theorem.
Proof of Theorem 1. We suppose that G is not a 5 -group. Therefore, $\Gamma(G)$ is not connected and so by Proposition $2 G$ is one of the following groups:
(a) G is a Frobenius or 2-Frobenius group. In the first case either the Frobenius kernel or the Frobenius complement are 5 -groups, since the Frobenius kernel as well as the Frobenius complement has nontrivial center. In the second case, if $F=\operatorname{Fit}(G)$ is a 5 -group then $G / \operatorname{Fit}(G)$ is a Frobenius group whose kernel \bar{K} is a cyclic 5^{\prime}-group. In fact if K is the subgroup of G containing F such that $\bar{K}=K / F$ is the Fitting subgroup of G / F, then $K=F H$ is a Frobenius group, with H a nilpotent Frobenius complement. Therefore H is either a cyclic subgroup or the product of a cyclic group with a generalized quaternion group. Moreover, $\pi_{1}(G)=\pi(K / F)$ and $\pi_{2}(G)=\pi(F) \cup \pi(G / K)=\{5\}$. Since $\bar{K}=F H / F \simeq H$ and G / K is a 5 -group acting fixed point freely on \bar{K}, we conclude that H is a cyclic group, because the outer automorphism group of the generalized quaternion group $Q_{2^{n}}$ is a 2-group, if $n>3$ and $\operatorname{Out}\left(Q_{8}\right) \simeq S_{3}$.

If F is a 5^{\prime}-group then $G / \operatorname{Fit}(G)$ is a Frobenius group whose kernel \bar{K} is a cyclic 5 -group and therefore the Frobenius complement can only be a cyclic group of order 2 or 4.

We remark that a Frobenius $C 55$-group is necessarily soluble. Otherwise the Frobenius complement contains a subgroup isomorphic to $S L(2,5)$, which is not a $C 55$-group.
(b) G is a simple group, and then the claim follows from Proposition 3.
(c) G is a simple by π_{1} group. This implies that G is an almost simple group, and again we conclude by Proposition 4.
(d) G is a π_{1} by simple by π_{1} group.

It can be easily deduced from the results in [9] that $F=\operatorname{Fit}(G)=O_{\pi_{1}}(G)$ and G / F is isomorphic to an almost simple group. Moreover if S is the only simple nonabelian section of G, we have $\pi_{i}(G)=\pi_{i}(S)$ for $i \geq 2$. Therefore this is the case in which $F \neq 1$ and G / F is an almost simple $C 55$-group, and the conclusion comes from Proposition 4.

If G is a soluble nonnilpotent $C 55$-group we can give a more detailed description of the structure of G. In particular, if we put $\pi_{*}(G)=\pi(G) \backslash\{5\}$ and $p_{*}=\min \left(\pi_{*}(G)\right)$, we have the following

Proposition 6. If G is a soluble nonnilpotent $C 55$-group then

(i) the derived length of G is bounded by a function of p_{*}, in particular if $p_{*}=2$ then $G^{(5)}=1$;
(ii) if $p_{*}>2$ then $G^{\prime \prime}$ is nilpotent.

Proof. It is well known that a finite group with a fixed point free automorphism of prime order p is nilpotent and its nilpotency class is bounded by a function $f(p)$ of p. We can suppose $p>2$, otherwise the group is abelian. We have $f(p) \leq 1+(p-1)+\cdots+(p-1)^{2^{p}-2}$ (see Theorem VIII.10.12 of [23]); moreover G. Higman conjectured that if p is odd, $f(p)=\frac{p^{2}-1}{4}$ and proved its conjecture for $p=5$: in particular $f(5)=6$ (see Remark VIII.10.13.b of [23]).

We study the different cases following List A.
(1) G is a Frobenius group (case A2). Let N be the Frobenius kernel and let K be a Frobenius complement of G. We can distinguish two subcases:
(1a) N is a 5 -group. If $2 \in \pi(K)$ then N is abelian and K has derived length at most 4 . In fact a soluble Frobenius complement has derived length at most 4, as it can be easily deduced from Chapter 18 of [24]. Therefore G has derived length at most 5 . If $2 \notin \pi(K)$ then K is metacyclic and therefore $G^{\prime \prime} \leq N$. Moreover, as we have observed, the nilpotency class of N is bounded by $f\left(p_{*}\right)$. Therefore the derived length of G is bounded by a function of p_{*}.
(1b) N is a 5^{\prime}-group. Then K is a cyclic 5 -group and N is nilpotent of class at most $f(5)=6$. In particular the derived length of N is at most 3 and since $G^{\prime} \leq N$ we have $G^{(4)}=1$.
(2) G is a 2 -Frobenius group. Let $N=\operatorname{Fit}(G)$. We can distinguish two subcases:
(2a) N is a 5 -group (case A4). Then $G^{\prime \prime} \leq N$ and we conclude as in (1a). We observe that in this case the order of G is necessarily odd.
(2b) N is a 5^{\prime}-group (case A3). Then $G^{\prime \prime} \leq N$ and N is nilpotent of class at most $f(5)=6$. In particular $G^{(5)}=1$.

References

1. Curtis C. W., "Pioneers of representation theory," Hist. Math., 15, 75-96 (1999).
2. Solomon R., "A brief history of classification of the finite simple groups," Bull. Amer. Math. Soc., 38, 315-352 (2001).
3. Suzuki M., "Finite groups with nilpotent centralizers," Trans. Amer. Math. Soc., 99, 425-470 (1961).
4. Suzuki M., "On a class of doubly transitive groups," Ann. Math. (2), 75, 105-145 (1962).
5. Feit W. and Thompson J. G., "Finite groups which contain a self-centralizing subgroup of order 3," Nagoya Math. J., 21, 185-197 (1962).
6. Higman G., Odd Characterizations of Finite Simple Groups, Univ. of Michigan, Michigan (1968).
7. Stewart W. B., "Groups having strongly self-centralizing 3-centralizers," Proc. London Math. Soc., 26, $653-680$ (1973).
8. Fletcher L. R., Stellmacher B., and Stewart W. B., "Endliche Gruppen, die kein Element der Ordnung 6 enthalten," Quart. J. Math. Oxford, 28, 143-154 (1977).
9. Williams J. S., "Prime graph components of finite groups," J. Algebra, 69, 487-513 (1981).
10. Zsigmondy K., "Zur Theorie der Potenzreste," Monatsh. Math. Phys., 3, 265-284 (1892).
11. Kondrat'ev A. S., "Prime graph components of finite simple groups," Math. of the USSR, 67, 235-247 (1990).
12. Iiyori N. and Yamaki H., "Prime graph components of the simple groups of Lie type over the field of even characteristic," J. Algebra, 155, 335-343 (1993).
13. Lucido M. S., "Addendum to 'Prime graph components of finite almost simple groups'," Rend. Sem. Mat. Univ. Padova, 107, 1-2 (2002).
14. Lucido M. S., "Prime graph components of finite almost simple groups," Rend. Sem. Mat. Univ. Padova, 102, 1-22 (1999).
15. Conway J., Curtis R., Norton S., Parker R., and Wilson R., Atlas of Finite Groups, Clarendon Press, Oxford (1985).
16. Jansen C., Lux K., Parker R., and Wilson R., An Atlas of Brauer Characters, Clarendon Press; Oxford Univ. Press, New York (1995). (L. M. S. Monographs. New Series, 11. Oxford Sci. Publ.)
17. Huppert B., Endliche Gruppen. I, Springer-Verlag, Berlin (1967).
18. Burkhardt R., "Die Zerlegungsmatrizen der Gruppen $P S L\left(2, p^{f}\right)$," J. Algebra, 40, 75-96 (1976).
19. Holt D. F. and Plesken W., " A_{5}-invariant 2-groups with no trivial sections," Quart. J. Math. Oxford, 37, 39-47 (1986).
20. Prince A. R., "On 2-groups admitting A_{5} or A_{6} with an element of order 5 acting fixed point freely," J. Algebra, 49, 374-386 (1977).
21. Martineau P., "On representations of the Suzuki groups over fields of odd characteristic," J. London Math. Soc., 6, 153-160 (1972).
22. Martineau P., "On 2-modular representations of the Suzuki groups," Amer. J. Math., 94, 55-72 (1972).
23. Blackburn N. and Huppert B., Finite Groups. II, Springer-Verlag, Berlin; Heidelberg; New York (1982).
24. Passman D., Permutation Groups, W. A. Benjamin Inc., New York; Amsterdam (1968).
