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Giovanni Fasano – Università Ca’Foscari Venezia, Dipartimento di Management, San Giobbe,
Cannaregio 873, 30121 Venice, Italy. fasano@unive.it.

Giampaolo Liuzzi – Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed
Informatica “A. Ruberti”, Viale Manzoni 30, 00185 Rome, Italy. liuzzi@iasi.cnr.it.
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Abstract

In this paper, we propose new linesearch-based methods for nonsmooth optimization problems
when first-order information on the problem functions is not available. In the first part, we de-
scribe a general framework for bound-constrained problems and analyze its convergence towards
stationary points, using the Clarke-Jahn directional derivative. In the second part, we consider
inequality constrained optimization problems where both objective function and constraints can
possibly be nonsmooth. In this case, we first split the constraints into two subsets: difficult gen-
eral nonlinear constraints and simple bound constraints on the variables. Then, we use an exact
penalty function to tackle the difficult constraints and we prove that the original problem can
be reformulated as the bound-constrained minimization of the proposed exact penalty function.
Finally, we use the framework developed for the bound-constrained case to solve the penalized
problem, and we prove that every accumulation point of the generated sequence of points is a
stationary points of the original constrained problem.
In the last part of the paper, we report extended numerical results on both bound-constrained
and nonlinearly constrained problems, showing the effectiveness of our approach when compared
to some state-of-the-art codes from the literature.

Key words: Derivative-free optimization, Lipschitz optimization, Exact penalty functions, In-
equality constrained optimization, Stationarity conditions
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1. Introduction

In this paper, we consider the optimization of a nonsmooth function f : IRn → IR over a
feasible set defined by lower and upper bounds on the variables and, possibly, by nonlinear and
nonsmooth inequality constraints g : IRn → IRm, namely

min f(x)
s.t. g(x) ≤ 0

l ≤ x ≤ u,

where l, u ∈ IRn. We assume that the problem functions (though non-smooth) are Lipschitz
continuous and that first-order information is unavailable, or impractical to obtain (e.g. when
problem functions are expensive to evaluate or somewhat noisy).
Such a kind of optimization problems encompasses many real-world problems arising in different
fields like e.g. computational mathematics, physics and engineering, and presents a twofold
difficulty. On the one hand, problem functions are typically of the black-box type, so that first
order information is unavailable; on the other hand, the functions present a certain level of
nonsmoothness (see e.g. [3], [10] and [18]).
In [4] and [5] the Mesh Adaptive Direct Search (MADS) class of algorithms is introduced,
where an asymptotically dense set of directions is generated and combined with an extreme
barrier approach, in order to provide a general and flexible framework for nonsmooth constrained
problems. In [2] the use of a deterministic scheme for the generation of an asymptotically dense
set of search directions is proposed, thus defining the ORTHOMADS method. A different way
to handle the constraints within MADS-type algorithms is proposed in [6] where the authors
combine a filter-based strategy [13] with a progressive barrier approach.

In [11] it is proved that the efficiency of direct search methods (like e.g. MADS), when applied
to nonsmooth problems, can be improved by using simplex gradients to order poll directions.
In the first part of this paper, we describe a general framework for solving bound-constrained
nonsmooth optimization problems. The approach, called DFNsimple, combines a projected line-
search with the use of search directions which are asymptotically dense in the unit sphere. These
two features make the algorithm very flexible as for the way to generate the asymptotically dense
set of search directions, and allow us to prove convergence to stationary points of the problem
in the Clarke-Jahn sense [16]. Then, we propose an improved version of the algorithm, namely
CS-DFN, which further performs linesearches along the coordinate directions.
In the second part, we focus on nonlinearly constrained problems. We assume that two different
classes of constraints exist, namely, difficult general nonlinear constraints (g(x) ≤ 0) and simple
bound constraints on the problem variables (l ≤ x ≤ u). The main idea is that of getting rid
of the nonlinear constraints by means of an exact penalty approach. Therefore, we construct a
merit function that penalizes the general nonlinear inequality constraints and we resort to the
minimization of the penalty function subject to the simple bound constraints. In this way, using
again the framework developed for the bound-constrained case, we define an algorithm (which
is called DFNcon) to tackle nonlinearly constrained problems. We are able to prove that the new
bound-constrained problem is to a large extent equivalent to the original problem and that the
sequence generated by means of the described approach converges to stationary points of the
original problem, in the sense that every accumulation point is stationary for the constrained
problem.
In the last part of the paper, an extended numerical experience (on 142 bound-constrained
and 296 nonlinearly constrained problems) is carried out. We first test two versions of then
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DFNsimple algorithm, obtained by embedding into the scheme two different pseudorandom se-
quences to generate the asymptotically dense set of search directions. In particular, we com-
pare the Halton [14] and Sobol sequences [30, 8] within our method. Then we analyze the
performances of both our methods DFNsimple and CS-DFN, and we compare CS-DFN with
two state-of-the-art solvers on a large set of 142 bound-constrained nonsmooth problems. Fi-
nally, we focus on nonlinearly constrained problems. In the latter case, we compare our code
DFNcon with two well-known codes on a large test set of 296 nonsmooth constrained prob-
lems. The codes DFNsimple, CS-DFN and DFNcon are freely available for download at the url:
http://www.dis.uniroma1.it/∼lucidi/DFL .

The paper has the following structure: Section 2 contains some preliminaries and technical
definitions used throughout the paper. In Section 3, we analyze the approach for the bound-
constrained case. In Section 4, we extend the approach to nonlinearly constrained problems.
The numerical results are reported in Section 5. We summarize our conclusions in Section 6,
and an Appendix completes the paper, including auxiliary results.
As regards the notation used in this paper, given a vector v ∈ IRn, a subscript will be used to
denote either the ith of its entries vi or the fact that it is an element of an infinite sequence
of vectors {vk}. In case of possible misunderstanding or ambiguities, the ith component of a
vector will be denoted by (v)i or {v}i. We denote by vj the generic jth element of a finite set
of vectors, and in particular e1, . . . , en represent the coordinate unit vectors. Given two vectors
a, b ∈ IRn, we indicate with y = max{a, b} the vector such that yi = max{ai, bi}, i = 1, . . . , n.
Furthermore, given a vector v ∈ IRn we denote by v+ = max{0, v}. By S(0, 1) we indicate the
unit sphere with center in the origin, i.e. S(0, 1) = {x ∈ IRn : ‖x‖2 = 1}, and given a subset
A ⊆ IRn, Co(A) indicates its convex hull. Finally, [·]+ denotes the orthogonal projection on a
compact convex subset of IRn, and ∂f(x) is the generalized gradient of f at x.

2. Preliminary results

In this section, we introduce some definitions and report some results that will be used through-
out the paper. In particular, we first recall the definition of a dense subset of IRn.

Definition 2.1. Given two sets A,B ⊆ R
n, we say that B is dense in A if, for all a ∈ A and

for all ǫ > 0, an element b ∈ B exists such that

‖a− b‖ ≤ ǫ.

Then, we introduce the less intuitive definition of asymptotically dense sequence of sets (of
directions).

Definition 2.2. Let us consider the sequence of sets of directions {Dk}
∞
k=0, with Dk = {d0, . . . , dk}.

We say that the sequence is asymptotically dense in S(0, 1) if for any ǫ > 0, there exists an index
k̄ ≥ 0 such that for all directions d̄ ∈ S(0, 1) and for all k ≥ k̄

‖dik − d̄‖ ≤ ǫ, for some dik ∈ Dk.

Using the latter definition we are able to introduce the following assumption and a related result,
which will be crucial in our analysis.

Assumption 1. There exists a map M : N 7→ IRn, such that the sequence of sets {Dk}
∞
k=0,

where Dk = {d0, . . . , dk}, with dk = M(k), is asymptotically dense in S(0, 1).
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Proposition 2.3. Let A ⊆ IRn and consider the sequence {xk} ⊂ A converging to x̄ ∈ A. Let
Assumption 1 hold, being {Dk}

∞
k=0 the sequence of search directions generated by map M. Then,

for all ǫ > 0, an index k̄ exists, such that for all d̄ ∈ S(0, 1) and for all k ≥ k̄,

‖xk − x̄‖ ≤ ǫ, (1)

‖dik − d̄‖ ≤ ǫ, for some dik ∈ Dk.

Proof. Since {xk} → x̄ by assumption, suppose by contradiction that for any k̄,

‖dik − d̄‖ > ǫ, for all dik ∈ Dk, (2)

for some k ≥ k̄ and some ǫ > 0. Let us consider the sequences {yh} and {ph}, with yh = xh+k̄

and ph = M(h+ k̄). Thus {yh} → x̄; in addition, the sequence {Ph}
∞
h=0, with Ph = {p1, . . . , ph},

is asymptotically dense in the unit sphere S(0, 1) by Assumption 1. Then, the index h̄ exists
such that for all h ≥ h̄, there exist an index (ih ≤ h) and a direction pih ∈ Ph such that

‖pih − d̄‖ ≤ ǫ. (3)

Now, recalling that pih = dih+k̄, relation (3) yields a contradiction with (2). ✷

From Proposition 2.3 we can prove the next result, which characterizes the limit points of the
sequences generated in our framework.

Corollary 2.4. Let {xk} ⊂ A be a sequence converging to x̄ ∈ A and let Assumption 1 hold,
with {dk} being the sequence of search directions generated by map M. Given the direction
d̄ ∈ S(0, 1) there exist subsequences {xk}K ⊆ {xk} ⊂ A and {dk}K ⊆ {dk} such that

lim
k→∞,k∈K

xk = x̄,

lim
k→∞,k∈K

dk = d̄.

3. The bound-constrained case

In this section we consider the bound-constrained problem

min f(x)
s.t. x ∈ X,

(4)

where we indicate by X the set of bound constraints on the variables, i.e.

X = {x ∈ IRn : l ≤ x ≤ u},

and f is Lipschitz continuous. We observe that to our purposes, the boundedness assumption
on the set X might be relaxed by suitable assumptions on the objective function of the problem.
For points in the feasible set X we address also the definition of cone of feasible directions, as
follows.

Definition 3.1 (Cone of feasible directions) Given problem (4) and any point x ∈ X

D(x) = {d ∈ IRn : di ≥ 0 if xi = li, di ≤ 0 if xi = ui, i = 1, . . . , n}

is the cone of feasible directions at x with respect to X.
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We also report a technical proposition whose proof can be found in [21].

Proposition 3.2. Given problem (4), let {xk} ⊂ X for all k, and {xk} → x̄ for k → ∞. Then,
for k sufficiently large,

D(x̄) ⊆ D(xk).

Moreover, on the guideline of Corollary 2.4 and considering the set D(xk) from the latter propo-
sition, we can consider also the next result.

Corollary 3.3. Given problem (4), let {xk} ⊂ X be a sequence converging to x̄. Let Assumption
1 hold, being {dk} the sequence of search directions generated by map M, and dk ∈ D(xk)
(i.e. dk is a feasible direction). Given a direction d̄ ∈ D(x̄) ∩ S(0, 1) there exist subsequences
{xk}K ⊆ {xk} ⊂ X and {dk}K ⊆ {dk} such that

lim
k→∞,k∈K

xk = x̄,

lim
k→∞,k∈K

dk = d̄.

The necessary optimality conditions for problem (4) can be characterized in terms of the Clarke-
Jahn generalized directional derivative of the objective function. In particular, we recall that
given the point x ∈ X, the Clarke-Jahn directional derivative of the function f along the
direction d ∈ D(x) is given by (see [16]):

f◦(x; d) = lim sup
y → x, y ∈ X

t ↓ 0, y + td ∈ X

f(y + td)− f(y)

t
. (5)

From [16] we recall the every local minimum of problem (4) satisfies the following definition.

Definition 3.4. Given problem (4), x⋆ is a stationary point if

f◦(x⋆; d) ≥ 0, ∀ d ∈ D(x⋆). (6)

We propose in the next sections two algorithms, having different performances on the nonsmooth
bound-constrained problem (4).

3.1. A simple derivative-free algorithm

As discussed in the Introduction, even in the simpler case of bound constraints, since the ob-
jective function f is possibly not continuously differentiable on X, a finite number of search
directions is not sufficient to investigate the local behavior of f(x) on X [18]. Hence, recalling
[5], we resort to the use of a set of search directions which is eventually dense in the unit sphere.
We prove that the use of such a simple set of search directions is sufficient to enforce convergence
to stationary points of problem (4).
On this purpose, here we propose a very simple Derivative-Free algorithm for solving the Non-
smooth problem (4), namely DFNsimple, where a map satisfying Assumption 1 is adopted, in
order to generate a set of search directions dense in the unit sphere.
In this algorithm, apart from the initializations, at any iteration k we use the map M to generate
the search direction dk. Then, we investigate the behavior of the function f(x) along the direc-
tion dk, by means of the linesearch procedure Projected Continuous Search. Given the current
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iterate xk at step k, the latter procedure first evaluates the function at [xk ± α̃kdk]+. In case
a sufficient reduction of the function value is obtained, then an extrapolation along the search
direction is performed, so that a suitable step-length αk is computed, and is used as a tentative
step-length for the next iteration, i.e. α̃k+1 = αk. On the other hand, if at [xk ± α̃kdk]+ we
do not obtain a sufficient reduction of the function value, then the tentative step-length at the
next iteration is suitably reduced by a scale factor, i.e. α̃k+1 = θα̃k, θ ∈ (0, 1). More formally
the resulting algorithm and the corresponding linesearch procedure adopted are summarized in
the next schemes, where [·]+ denotes the projection on X.

Algorithm DFNsimple

Data. θ ∈ (0, 1), x0 ∈ X, α̃0 > 0, the map M : N 7→ IRn such that for k ≥ 0, dk = M(k)
and

‖dk‖ = 1.

For k = 0, 1, . . .
Set dk = M(k).

Compute αk by the Projected Continuous Search(α̃k , xk, dk;αk, d̃k).

If (αk == 0) then α̃k+1 = θα̃k and x̃k = xk

else α̃k+1 = αk and x̃k = [xk + αkd̃k]+

Find xk+1 ∈ X such that f(xk+1) ≤ f(x̃k).

End For

Projected Continuous Search (α̃, y, p;α, p+)

Data. γ > 0, δ ∈ (0, 1).
Step 0. Set α = α̃.

Step 1. If f([y + αp]+) ≤ f(y)− γα2 then set p+ = p and go to Step 4.

Step 2. If f([y − αp]+) ≤ f(y)− γα2 then set p+ = −p and go to Step 4.

Step 3. Set α = 0 and return.

Step 4. Let β = α/δ.

Step 5. If f([y + βp+]+) > f(y)− γβ2 return.

Step 6. Set α = β and go to Step 4.

It is worth noting that in Algorithm DFNsimple the next iterate xk+1 is required to satisfy
f(xk+1) ≤ f(x̃k). This allows in principle to compute xk+1 by minimizing suitable approximating
models of the objective function, thus possibly improving the efficiency of the overall scheme.

In the following results we analyze the global convergence properties of Algorithm DFNsimple. In
particular, in the next proposition we prove that the procedure described in Algorithm DFNsimple

cannot cycle.
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Proposition 3.5. Algorithm DFNsimple is well-defined.

Proof. In order to show that Algorithm DFNsimple is well-defined we prove that the Projected
Continuous Search cannot infinitely cycle between Step 4 and Step 6. Let us consider the Pro-
jected Continuous Search, we proceed by contradiction assuming that an infinite monotonically
increasing sequence of positive numbers {βj} exists such that

f([y + βjp
+]+) ≤ f(y)− γβ2

j .

The above relation contradicts the fact that X is compact, by definition, and that function f is
continuous, thus concluding the proof. ✷

Now, in the following proposition we prove that the stepsizes computed by the procedure Pro-
jected Continuous Search eventually go to zero.

Proposition 3.6. Let {αk}, {α̃k} be the sequences generated by Algorithm DFNsimple, then

lim
k→∞

max{αk, α̃k} = 0. (7)

Proof. We split the iteration sequence {k} into two sets K1, K2, with K1 ∪ K2 = {k} and
K1 ∩K2 = ∅. We denote by

- K1 the set of iterations when α̃k+1 = αk;

- K2 the set of iterations when α̃k+1 = θα̃k and αk = 0.

Note that K1 and K2 cannot be both finite. Let us first suppose that K1 is infinite, then the
instructions of the algorithm imply, for k ∈ K1,

f(xk+1) ≤ f([xk + αkd̃k]+) ≤ f(xk)− γα2
k. (8)

Taking into account the compactness of X and the continuity of f , we get from the above relation
that {f(xk)} tends to a limit f̄ . Then, by (8), it follows

lim
k→∞,k∈K1

αk = 0, (9)

which also implies

lim
k→∞,k∈K1

α̃k = 0. (10)

Now, let us suppose that K2 is infinite. Then, directly limk→∞,k∈K2 αk = 0 and, by recalling
that θ ∈ (0, 1),

lim
k→∞,k∈K2

α̃k = 0. (11)

Relations (9), (10) and (11) yield (7), thus concluding the proof. ✷

Using the latter result, along with the map M satisfying Assumption 1, we can provide the
next technical lemma, which will be necessary to prove the main global convergence result for
algorithm DFNsimple.
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Lemma 3.7. Let {xk}, {dk} and {αk} be the sequences generated by Algorithm DFNsimple,
and let Assumption 1 hold. Then, for any accumulation point x̄ of {xk} and for any direction
d̄ ∈ D(x̄), d̄ 6= 0, there exists a subsequence of indices K such that

lim
k→∞,k∈K

xk = x̄, (12)

lim
k→∞,k∈K

dk = d̄, (13)

lim
k→∞,k∈K

α̃k = 0. (14)

Moreover,

(i) for k ∈ K sufficiently large, an α > 0 exists such that

[xk + αdk]+ 6= xk,

(ii) the following limit holds
lim

k→∞,k∈K
vk = d̄,

where

vk =
[xk + α̃kdk]+ − xk

α̃k
. (15)

Proof. Relations (12) and (13) follow from Corollary 3.3; on the other hand, Proposition 3.6
yields relation (14).
Now, in order to prove items (i)-(ii), let us recall that for any i = 1, . . . , n

{[xk + αdk]+}i = max{li,min{ui, (xk + αdk)i}}.

Now we show that, for k ∈ K sufficiently large, an α > 0 exists such that

[xk + αdk]+ 6= xk. (16)

By contradiction, let us assume that for k ∈ K sufficiently large, for all α > 0, we have

[xk + αdk]+ = xk. (17)

Let us choose α = α̃k for all k and, since d̄ 6= 0 an index i exists such that one of the following
three cases holds.

1) x̄i = li (which implies d̄i > 0): we can write

{[xk + α̃kdk]+}i = max{li, (xk + α̃kdk)i};

since xk is feasible and (13) holds, for k sufficiently large we have

max{li, (xk + α̃kdk)i} ≥ max

{

li,

(

xk +
α̃k

2
d̄

)

i

}

,

and by (14) we get

max

{

li,

(

xk +
α̃k

2
d̄

)

i

}

=

(

xk +
α̃k

2
d̄

)

i

6= (xk)i. (18)
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2) x̄i = ui (which implies d̄i < 0): we can write

{[xk + α̃kdk]+}i = min{ui, (xk + α̃kdk)i};

since xk is feasible and (13) holds, for k sufficiently large we have

min{ui, (xk + α̃kdk)i} ≤ min

{

ui,

(

xk +
α̃k

2
d̄

)

i

}

,

and by (14) we get

min

{

ui,

(

xk +
α̃k

2
d̄

)

i

}

=

(

xk +
α̃k

2
d̄

)

i

6= (xk)i. (19)

3) li < x̄i < ui (which implies d̄i 6= 0): we can write

{[xk + α̃kdk]+}i = (xk + α̃kdk)i;

since xk is feasible and (13) holds, for k sufficiently large we have

(xk + α̃kdk)i 6= (xk)i. (20)

Then, by (18), (19) and (20) we have a contradiction with (17), which proves (i).

Now, we recall definition (15) and note that, by (16), the vector vk is eventually nonzero. By
the definition of the vector vk, we have for its i−th entry

(vk)i =
max{li,min{ui, (xk + α̃kdk)i}} − (xk)i

α̃k
(21)

=
min{ui,max{li, (xk + α̃kdk)i}} − (xk)i

α̃k
. (22)

Now, let us distinguish among the following three cases, for k sufficiently large and k ∈ K:

1) x̄i = li: then by (21) we have

(vk)i =
max{li, (xk + α̃kdk)i} − (xk)i

α̃k

and recalling that whenever x̄i = li it must be d̄i ≥ 0, we distinguish two subcases:

a) when d̄i > 0, then (vk)i = max
{

li−(xk)i
α̃k

, (dk)i

}

= (dk)i;

b) when d̄i = 0, then

lim
k→∞,k∈K

(vk)i = lim
k→∞,k∈K

max

{

li − (xk)i
α̃k

, (dk)i

}

= 0 = (d̄)i.

2) x̄i = ui: then by (22) we have

(vk)i =
min{ui, (xk + α̃kdk)i} − (xk)i

α̃k

and recalling that whenever x̄i = ui it must be d̄i ≤ 0, we distinguish two subcases:
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a) when d̄i < 0, then (vk)i = min
{

ui−(xk)i
α̃k

, (dk)i

}

= (dk)i;

b) when d̄i = 0, then

lim
k→∞,k∈K

(vk)i = lim
k→∞,k∈K

min

{

ui − (xk)i
α̃k

, (dk)i

}

= 0 = (d̄)i;

3) li < x̄i < ui: then by (21) or (22) we have (vk)i = (xk + α̃kdk − xk)i/α̃k = (dk)i;

which imply that limk→∞,k∈K vk = d̄, so that (ii) is proved. ✷

Finally, we are now ready to prove the main convergence result for Algorithm DFNsimple. We
highlight that according to the following proposition, every limit point of the sequence of iterates
{xk}, generated by Algorithm DFNsimple, is a stationary point for problem (4).

Proposition 3.8. Let {xk} and {dk} be the sequences generated by Algorithm DFNsimple. Then,
every limit point of {xk} is stationary for problem (4).

Proof. We recall that by Definition 3.4 we consider the stationarity condition at x̄:

f◦(x̄; d̄) = lim sup
y → x̄, y ∈ X

t ↓ 0, y + td̄ ∈ X

f(y + td̄)− f(y)

t
≥ 0, ∀d̄ ∈ D(x̄). (23)

Let x̄ be a limit point of {xk} and K̃ ⊆ {1, 2, . . . } be a subset of indices such that

lim
k→∞,k∈K̃

xk = x̄.

We proceed by contradiction and assume that a direction d̄ ∈ D(x̄) ∩ S(0, 1) exists such that

f◦(x̄; d̄) = lim sup
xk → x̄, xk ∈ X,

t ↓ 0, xk + td̄ ∈ X

f(xk + td̄)− f(xk)

t
< 0. (24)

Now, let K ⊆ K̃ be the set of indices considered in Corollary 3.3 such that

lim
k→∞,k∈K

xk = x̄, (25)

lim
k→∞,k∈K

dk = d̄, (26)

lim
k→∞,k∈K

α̃k = 0. (27)

Further, let vk be defined as in Lemma 3.7 relation (15), and set yk = xk along with, for every
k ∈ K,

ηk =

{

αk/δ if αk > 0
α̃k otherwise.

Then, by the instructions of the Algorithm DFNsimple and recalling the results of Lemma 3.7,
we have for every k ∈ K and sufficiently large,

f(xk + ηkvk) > f(xk)− γη2k,
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that is

f(xk + ηkvk)− f(xk)

ηk
> −γηk. (28)

Then, considering that ηk → 0 by Proposition 3.6,

lim sup
xk → x̄, xk ∈ X

t ↓ 0, xk + td̄ ∈ X

f(xk + td̄)− f(xk)

t
≥ lim sup

k→∞,k∈K

f(xk + ηkd̄)− f(xk)

ηk
=

lim sup
k→∞,k∈K

f(xk + ηkd̄) + f(xk + ηkvk)− f(xk + ηkvk)− f(xk)

ηk
≥

lim sup
k→∞,k∈K

f(xk + ηkvk)− f(xk)

ηk
− L‖d̄− vk‖,

where L is the Lipschitz constant of f . By (25)–(28) and (ii) of Lemma 3.7 we get, from the
latter relation,

lim sup
xk → x̄, xk ∈ X

t ↓ 0, xk + td̄ ∈ X

f(xk + td̄)− f(xk)

t
≥ 0

which contradicts (24) and concludes the proof. ✷

3.2. Combining DFNsimple with coordinate searches

A possible way to improve the efficiency of Algorithm DFNsimple can be to take advantage of the
experience in the smooth case. For example, we can draw inspiration from the paper [25] where
the objective function is repeatedly investigated along the directions ±e1, . . . ,±en in order to
capture the local behavior of the objective function. In fact, the use of a set of search directions,
which is constant with iterations, allows to store the actual and tentative steplengths, i.e. αi and
α̃i, respectively, that roughly summarize the sensitivity of the function along those directions.
Thus, when the function is further investigated along such search directions, we can exploit
information gathered in the previous searches along them.

In the following, we propose a new algorithm, where the search along coordinate directions
is performed until the steplengths αi and α̃i are greater than a given threshold η > 0. In
particular, the sampling along the coordinate directions is performed by means of a Continuous
Search procedure [25, 23].



13.

Algorithm CS-DFN

Data. θ ∈ (0, 1), η > 0, x0 ∈ X, α̃0 > 0, α̃i
0 > 0, di0 = ei, for i = 1, . . . , n, the map

M : N 7→ IRn such that, for k ≥ 0, dk = M(k) and ‖dk‖ = 1.

For k = 0, 1, . . .
Set y1k = xk
For i = 1, . . . , n

Compute α by the Continuous Search(α̃i
k , y

i
k, d

i
k;α, d

i
k+1).

If (α == 0) then set αi
k = 0 and α̃i

k+1 = θα̃i
k

else set αi
k = α and α̃i

k+1 = α

Set yi+1
k = yik + αi

kd
i
k+1.

End For
If
(

maxi=1,...,n{α
i
k, α̃

i
k} ≤ η

)

then

Set dk = M(k).
Compute αk by the Projected Continuous Search(α̃k , y

n+1
k , dk;αk, d̃k).

If (αk == 0) then α̃k+1 = θα̃k and yn+2
k = yn+1

k

else α̃k+1 = αk and yn+2
k = [yn+1

k + αkd̃k]+
else Set α̃k+1 = α̃k and yn+2

k = yn+1
k

Find xk+1 ∈ X such that f(xk+1) ≤ f(yn+2
k ).

End For

Continuous search (α̃, y, p;α, p+)

Data. γ > 0, δ ∈ (0, 1).
Step 1. Compute the largest ᾱ such that y + ᾱp ∈ X. Set α = min{ᾱ, α̃}.

Step 2. If α > 0 and f(y + αp) ≤ f(y)− γα2 then set p+ = p and go to Step 6.

Step 3. Compute the largest ᾱ such that y − ᾱp ∈ X. Set α = min{ᾱ, α̃}.

Step 4. If α > 0 and f(y − αp) ≤ f(y)− γα2 then set p+ = −p and go to Step 6.

Step 5. Set α = 0 and return.

Step 6. Let β = min{ᾱ, (α/δ)}.

Step 7. If α = ᾱ or f(y + βp+) > f(y)− γβ2 return.

Step 8. Set α = β and go to Step 6.

The following three propositions concern the convergence analysis of Algorithm CS-DFN. The
third proof is omitted since it is very similar to the corresponding one for Algorithm DFNsimple.

Proposition 3.9. Algorithm CS-DFN is well-defined.

Proof. In order to show that Algorithm CS-DFN is well-defined we have to prove that both
the Continuous Search and the Projected Continuous Search cannot infinitely cycle, respectively,
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between Step 6 and Step 8, and between Step 4 and Step 6. Let us first consider the Continuous
Search. We proceed by contradiction and assume that an infinite monotonically increasing
sequence of positive numbers {βj} exists such that

βj < ᾱ and f(y + βjp
+) ≤ f(y)− γβ2

j .

The above relation contradicts the fact that X is compact, by definition, and that function f in
problem (4) is continuous. The rest of the proof trivially follows from Proposition 3.5. ✷

The proposition that follows concerns convergence to zero of the steplengths in Algorithm CS-
DFN. In particular, since αi

k and α̃i
k tend to zero, it results that the search along the dense

direction dk is performed eventually infinitely many times.

Proposition 3.10. Let {αi
k}, {α̃i

k}, {αk} and {α̃k} be the sequences generated by Algorithm
CS-DFN, then

lim
k→∞

max{α1
k, α̃

1
k, . . . , α

n
k , α̃

n
k} = 0, (29)

lim
k→∞

max{αk, α̃k} = 0. (30)

Proof. Reasoning as in the proof of Proposition 1 in [25], we can prove (29).

Now we have to show (30). By virtue of (29), we know that an index k̄ exists such that the
dense direction dk is investigated for all k ≥ k̄.
Then, without loss of generality, we split the iteration sequence {k} into two sets K1 and K2,
with K1 ∪K2 = {k} and K1 ∩K2 = ∅. We denote by

- K1 the set of iterations when α̃k+1 = αk;

- K2 the set of iterations when α̃k+1 = θα̃k.

Hence, the proof follows by reasoning as in the proof of Proposition 3.6. ✷

Proposition 3.11. Let {xk} and {dk} be the sequences generated by Algorithm CS-DFN. Then,
every limit point of {xk} is stationary for problem (4).

Proof. The proof trivially follows from Proposition 3.8. ✷

4. The nonsmooth nonlinearly constrained case

In this section, we consider Lipschitz-countinuous nonlinearly constrained problems of the fol-
lowing form:

min f(x)
s.t. g(x) ≤ 0,

l ≤ x ≤ u,
(31)

where f : IRn → IR, g : IRn → IRm and l, u ∈ IRn. The vectors l and u correspond respectively
to lower and upper bounds on the variables x ∈ IRn, and satisfy the additional condition l < u.
We also assume throughout the paper that f(x) and g(x) are Lipschitz continuous functions,
though they may be possibly nondifferentiable. Furthermore, F indicates the feasible set of
problem (31), i.e.

F = {x ∈ X : g(x) ≤ 0}.

We highlight that, by definition, X = {x ∈ IRn : l ≤ x ≤ u} is a compact subset of IRn.
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4.1. Assumption and preliminary material

We further introduce some definitions and assumptions related to problem (31). First, in order
to carry out the theoretical analysis, we use a version of the Mangasarian-Fromowitz Constraint
Qualification (MFCQ) condition for nonsmooth problems.

Assumption 2 (MFCQ) Given problem (31), for any x ∈ X \ F a direction d ∈ D(x) exists
such that

(ξgi)⊤d < 0, (32)

for all ξgi ∈ ∂gi(x), i ∈ {1, . . . ,m : gi(x) ≥ 0}.

The nonlinearly constrained problem (31) can be handled partitioning the constraints in two dif-
ferent sets, the first one defined by general inequality constraints, and the second one consisting
of simple bound constraints. Then, for this kind of problem, we can state necessary optimality
conditions that explicitly take into account the presence of these two different sets of constraints.

Proposition 4.1 (Fritz John Optimality Conditions) Let x⋆ ∈ P be a local minimum of
the problem (31). Then, multipliers λ⋆

0, λ
⋆
1, . . . , λ

⋆
m ∈ IR not all zero exist such that

max
ξf ∈ ∂f(x⋆)
ξgi ∈ ∂gi(x

⋆)







(

λ⋆
0ξ

f +
m
∑

i=1

λ⋆
i ξ

gi

)⊤

d







≥ 0, ∀ d ∈ D(x⋆), (33)

λ⋆
i ≥ 0 and λ⋆

i gi(x
⋆) = 0, ∀ i = 1, . . . ,m. (34)

Proof. We refer the interested reader to the proof of Proposition A.1 in Appendix, where the
more general case of problems with both equality and inequality constraints is considered. ✷

Corollary 4.2 (KKT Necessary Optimality Conditions) Let x⋆ ∈ P be a local minimum
of the problem (31) such that, for all ξgi ∈ ∂gi(x

⋆), i ∈ {1, . . . ,m : gi(x
⋆) = 0}, a direction

d ∈ D(x⋆) exists such that:

(ξgi)⊤d < 0, ∀ i ∈ {1, . . . ,m : gi(x
⋆) = 0}.

Then, multipliers λ⋆
1, . . . , λ

⋆
m ∈ IR exist such that

max
ξf ∈ ∂f(x⋆)
ξgi ∈ ∂gi(x

⋆)







(

ξf +

m
∑

i=1

λ⋆
i ξ

gi

)⊤

d







≥ 0, ∀d ∈ D(x⋆), (35)

λ⋆
i ≥ 0 and λ⋆

i gi(x
⋆) = 0, ∀ i = 1, . . . ,m.

Proof. The proof follows from Proposition A.2 in Appendix, where again the more general case
of problems with both equality and inequality constraints is considered. ✷

As regards the stationarity conditions for problem (31), taking into account the above proposi-
tions, we can now give the following definition.

Definition 4.3 (Stationary point) Given the problem (31), x̄ is a stationary point of (31) if
the multipliers λ̄1, . . . , λ̄m exist such that the following conditions hold:

max
ξf ∈ ∂f(x̄)
ξgi ∈ ∂gi(x̄)

{

(ξf +
m
∑

i=1

λ̄iξ
gi)⊤d

}

≥ 0, ∀d ∈ D(x̄), (36)

λ̄i ≥ 0 and λ̄igi(x̄) = 0, ∀ i = 1, . . . ,m. (37)
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4.2. The penalty approach

Given problem (31), we introduce the following penalty function

Zε(x) = f(x) +
1

ε

m
∑

i=1

max {0, gi(x)}

and define the penalized problem

min Zε(x)
s.t. x ∈ X.

(38)

Remark 4.4. Observe that, since f and gi, i = 1, . . . ,m, are Lipschitz continuous, with Lip-
schitz constants Lf and Lgi, i = 1, . . . ,m, the penalty function Zε is Lipschitz continuous too,
with Lipschitz constant

L = Lf +
1

ε

m
∑

i=1

Lgi .

Remark 4.5. Note that problem (38), for any ε > 0, has the same structure and properties of
problem (4).

We further note that our penalty approach differs form the ones previously proposed in the
literature (see e.g. [12] and references therein), since only the general nonlinear constraints are
penalized. The minimization of the penalty function is then carried out on the set defined by the
bound constraints. We report in the following proposition the equivalence between the problem
(38) and the nonlinearly constrained problem (31).

Proposition 4.6. Let Assumption 2 hold. Given problem (31) and considering problem (38),
a threshold value ε⋆ > 0 exists such that, for every ε ∈ (0, ε⋆], every point x̄ ∈ X such that

max
ξ∈∂Zε(x̄)

ξ⊤d ≥ 0, ∀ d ∈ D(x̄), (39)

is stationary for Problem (31).

The proof of the latter result is reported in Appendix B. We note that condition (39) is equivalent
to the fact that the Clarke directional derivative of Zε at x̄ is non-negative (see [9]).

4.3. A derivative-free algorithm

Now we report the algorithm adopted for solving problem (38), which is obtained from Algo-
rithm CS-DFN by replacing f with Zε. For the sake of simplicity, we omit to report also the
extension of Algorithm DFNsimple to the general inequality constrained case, which requires
trivial modifications.
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Algorithm DFNcon

Data. θ ∈ (0, 1), x0 ∈ X, ε > 0, α̃0 > 0, α̃i
0 > 0, di0 = ei, for i = 1, . . . , n, the map

M : N 7→ IRn such that dk = M(k) and ‖dk‖ = 1.

For k = 0, 1, . . .
Set y1k = xk
For i = 1, . . . , n

Compute α by the Continuous Search(α̃i
k , y

i
k, d

i
k;α, d

i
k+1).

If (α == 0) then set αi
k = 0 and α̃i

k+1 = θα̃i
k

else set αi
k = α and α̃i

k+1 = α

Set yi+1
k = yik + αi

kd
i
k+1.

End For
If (maxi=1,...,n{α

i
k, α̃

i
k} ≤ η) then (maxi=1,...,n{α

i
k, α̃

i
k, α̃k} ≤ δk)

Set dk = M(k).
Compute αk by the Projected Continuous Search(α̃k, y

n+1
k , dk;αk, d̃k).

If (αk == 0) then α̃k+1 = θα̃k and yn+2
k = yn+1

k

else α̃k+1 = αk and yn+2
k = [yn+1

k + αkd̃k]+
else set α̃k+1 = α̃k, y

n+2
k = yn+1

k
Find xk+1 ∈ X such that Zε(xk+1) ≤ Zε(y

n+2
k ).

End For

We observe that Algorithm DFNcon can be used to solve the constrained problem (31) provided
that the penalty parameter ε is sufficiently small, as the following proposition states.

Proposition 4.7. Let ε ∈ (0, ε∗] where ε∗ is defined in Proposition 4.6; let {xk} and {dk} be
the sequences generated by Algorithm DFNcon. Then, every limit point of {xk} is stationary for
problem (31).

Proof. By Proposition 3.11, every limit point x̄ of {xk} is stationary for problem (38), namely

Z◦
ε (x̄; d) ≥ 0, ∀ d ∈ D(x̄).

Recalling (5), the latter result implies

lim sup
y → x̄, t ↓ 0

Zε(y + td)− Zε(y)

t
≥ Z◦

ε (x̄; d) ≥ 0, ∀ d ∈ D(x̄).

Since the limit in the above relation is the Clarke directional derivative, and by [9]

lim sup
y → x̄, t ↓ 0

Zε(y + td)− Zε(y)

t
= max

ξ∈∂Zε(x̄)
ξ⊤d ≥ 0, ∀ d ∈ D(x̄),

then, by Proposition 4.6, we have that x̄ is also stationary for problem (31). ✷
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5. Implementation details and numerical results

This section is devoted to investigate the numerical issues related to the implementation of
the proposed algorithms. We first report the numerical experience related to bound-constrained
problems, then we analyze the computational results related to the nonlinearly constrained case.
All the experiments, have been conducted allowing for a maximum number of 20000 function
evaluations (which is quite reasonable considered the dimensions of our test problems).

For the parameters included in the proposed algorithms (DFNsimple, CS-DFN, DFNcon) we
considered the following setting: θ = 0.5, γ = 10−6, δ = 0.5, η = 10−3,

α̃i
0 = max

{

10−3,min{1, |(x0)i|}
}

, i = 1, . . . , n,

α̃0 =
1

n

n
∑

i=1

α̃i
0.

Regarding the choice of the new iterate xk+1, we remark that:

- in Algorithm DFNsimple, xk+1 is computed starting from x̃k and performing Projected
continuous searches along a set of n − 1 directions which define an orthonormal basis in
IRn along with dk;

- in Algorithms CS-DFN and DFNcon, if (maxi=1,...,n{α
i
k, α̃

i
k} ≤ η) then xk+1 is computed

as above but starting from yn+2
k . Otherwise, we set xk+1 = yn+2

k .

In the implementation of Algorithm DFNcon we used a vector of penalty parameters ε ∈ IRm

and considered the penalty function

Zε(x) = f(x) +

m
∑

i=1

1

εi
max{0, gi(x)},

which trivially preserves all the theoretical results proved in Section 4. The vector of penalty
parameters is iteratively updated during progress of the algorithm and, in particular, we chose

(ε0)i =

{

10−3 if max{0, gi(x0)} < 1
10−1 otherwise,

i = 1, . . . ,m,

and adopted the updating rule

(εk+1)i =

{

10−2(εk)i if (εk)igi(xk) > max{αk, α̃k}
(εk)i otherwise,

i = 1, . . . ,m.

The above updating rule is applied right before computation of the new iterate xk+1. We
notice that the rule described above takes inspiration from derivative-based exact penalty ap-
proaches (see e.g. [22], [27]) where the updating rule for the penalty parameter is based on the
(scaled) comparison between the stationarity measure of the point and the constraint violation.
In a derivative-free context, the stationarity measure can be approximated by means of the
steplengths selected along the search directions, as showed in [19].

As a final note, in the implementation of our algorithms, we used as termination condition

max{αk, α̃k} ≤ 10−13. (40)
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However, we highlight that the algorithms are compared by means of performance and data
profiles [26], that is by using a normalized convergence test on the function values. Thus, we
adopted the tight convergence test (40) in order to provide enough information on all the codes
compared.

The codes DFNsimple, CS-DFN and DFNcon are freely available for download at the url:
http://www.dis.uniroma1.it/∼lucidi/DFL

5.1. Box constrained problems

The first part of the numerical experience has been carried out on a set of 142 bound-constrained
problems from [31], [24] and [26], with a number of variables in the range [1, 200] (see Table 1).

n 1 2 3 4 5 6 7 8 9 10 11 12 15 20 50 100 200
# of problems 4 34 12 17 10 8 6 6 6 10 6 6 1 8 4 2 2

Table 1: Distribution of problem dimensions for the bound-constrained case

As showed in the theoretical analysis of the different algorithms, our linesearch-based approach
is able to guarantee convergence towards stationary points of the nonsmooth problem, by using
search directions generated by a mapping M satisfying Assumption 1. This assumption is not
particularly strong since it allows a wide choice of different mappings. In particular, we can
adopt the mapping based on the Halton sequence [14], which is the one implemented in the
NOMAD package [1, 20, 2]. But, unlike NOMAD, further mappings can be easily embedded
into our algorithms, since we are not committed to use a modified Halton sequence in order to
generate points on a mesh (see e.g. [14]). For instance, we implemented a mapping based on
the Sobol sequence [30, 8], which is a pseudorandom sequence widely used in practice.
In order to show the behavior of the above pseudorandom sequences, we preliminarily compared
two versions of the Algorithm DFLsimple, which respectively use the Halton and the Sobol se-
quence, on the test set of bound-constrained problems described above. The resulting experience
is reported in Figure 1 using data and performance profiles [26].
As we can see, the Sobol pseudorandom sequence outperforms the Halton one for all precision
levels, both in terms of efficiency and robustness. Then, we compared both our Algorithms
DFNsimple and CS-DFN and reported the results in Figure 2 in terms of performance and data
profiles.
As we can see, the combination of coordinate and dense directions can improve the performance
of the algorithm.

Finally, we compared CS-DFN with two state-of-the-art derivative free optimization codes,
namely NOMAD [1, 20, 2] and BOBYQA [29]. In order to obtain a fair comparison, we ran
NOMAD by using the default parameters, except for the MODEL SEARCH which was disabled.
Furthermore, BOBYQA was run by setting RHOBEG = 1 and RHOEND = 10−13. The latter choice
is motivated by the fact that the main focus of this paper is not on the effectiveness of models,
but rather on the potentialities of the linesearch approach when using a dense set of directions.
By taking a look at Figure 3, we can notice that BOBYQA is outperformed both by NOMAD
and CS-DFN. This shows on the one hand that as expected BOBYQA, which is devised for
continuously differentiable problems, suffers on nondifferentiable problems. On the other hand,
this suggests that the chosen test set is composed of hard nonsmooth problems. Further, from
Figure 3 we can infer that CS-DFN and NOMAD are quite comparable, with a slight preference
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Figure 1: Data (top) and performance (bottom) profiles for the 142 bound-constrained problems.
Comparison between Sobol and Halton pseudorandom sequences within DFNsimple
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Comparison between DFNsimple and CS-DFN
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Figure 3: Data (top) and performance (bottom) profiles for the 142 bound-constrained problems.
Comparison among CS-DFN, NOMAD and BOBYQA

for CS-DFN (at least for high precision levels).

5.2. Nonlinearly constrained problems

In the second part of our numerical experience, we defined a set of hard nonsmooth nonlinearly
constrained test problems, by pairing the objective functions of the collection [24] with the
constraint families proposed in [17], thus obtaining 296 problems. The problems in this collection
have a number of constraints m in the range [1, 199] and a number of variables n in the range
[1, 200] (see Table 2). We note that 205 out of 296 problems have a starting point x0 which is
not feasible, that is

h(x0) > 10−6, with h(x) = max

{

0, max
i=1,...,m

{gi(x)}

}

. (41)

In order to adapt the procedure for constructing performance and data profiles, as proposed in
[26], to the nonlinearly constrained case, we considered the convergence test

f̃0 − f(x) ≥ (1− τ)(f̃0 − fL),

where f̃0 is the objective function value of the worst feasible point determined by all the solvers
(note that in the bound-constrained case, f̃0 = f(x0)), τ > 0 is a tolerance, and fL is computed
for each problem as the smallest value of f (at a feasible point) obtained by any solver within
20000 function evaluations. We notice that when a point is not feasible (i.e. h(x) > 10−6) we
set f(x) = +∞.
In Figure 4, we report the comparison among CS-DFN, NOMAD and COBYLA [28]. NOMAD
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Figure 4: Data (top) and performance (bottom) profiles for the 296 constrained problems.
Comparison among CS-DFN, NOMAD and COBYLA

was run by setting the constraints type to PEB, so that constraints are treated first with the
progressive barrier, and once satisfied, with the extreme barrier approach. COBYLA was run
by setting RHOBEG = 1 and RHOEND = 10−13. We note that, when relatively small precision is
required, COBYLA has an initial fast progress, but is not as robust as the other two codes.
When high precision is required, CS-DFN outperforms both NOMAD and COBYLA.

n 2 3 4 5 6 10 20 50 100 200
# of problems 96 30 40 10 10 20 40 10 20 20

m 1 2 3 4 5 6 8 9 11 12
# of problems 151 39 17 24 9 1 3 2 3 2

m 18 19 22 23 48 49 98 99 198 199
# of problems 9 6 3 2 3 2 6 4 6 4

Table 2: Distribution of problem dimensions (n number of variables, m number of constraints)
for the nonlinearly constrained test set

6. Conclusions

In this paper, we described new methods for dealing with nonsmooth optimization problems
when no first-order information is available. We adopted a projected linesearch approach and
we combined it with an asymptotically dense set of search directions. First, we considered
problems with only bound constraints on the variables and we proposed two different algorithms
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for their solution. Then, when dealing with nonlinear inequality constraints, we introduced the
use of an exact penalty function to transform the given nonlinearly constrained problem into a
bound-constrained problem, which is solved by adapting the method proposed for the bound-
constrained case.

The numerical results reported in the paper show that the use of linesearches gives a large
freedom in the choice of the way the set of directions is generated. Furthermore our analysis
highlights the fact that coordinate searches can somehow improve the performance of the pro-
posed algorithms. Finally, the comparison with other state-of-the-art codes on two large test
sets of bound-constrained and nonlinearly-constrained nonsmooth problems points out that the
proposed framework is efficient and sufficiently robust.

A. Necessary optimality conditions

In this section we consider the following nonlinear programming problem featuring both equality
and inequality nonlinear constraints beside the bound constraints on the variables:

min f(x)
s.t. h(x) = 0,

g(x) ≤ 0,
x ∈ X,

(42)

where f : IRn → IR, h : IRn → IRp and g : IRn → IRm are Lipschitz continuous functions. In the
following, we denote

P = {x ∈ IRn : g(x) ≤ 0, h(x) = 0} ∩X.

The following propositions extend the results in [15] to the case where both equality and in-
equality constraints are present beside an additional convex set of constraints. The proofs follow
by combining results reported in [7] and [15].

Proposition A.1 (Fritz John Optimality Conditions) Let x⋆ ∈ P be a local minimum of
the problem (42). Then, multipliers λ⋆

0, λ
⋆
1, . . . , λ

⋆
m, µ⋆

1, . . . , µ
⋆
p ∈ IR not all zero exist such that

max
ξf ∈ ∂f(x⋆)
ξgi ∈ ∂gi(x

⋆)

ξ
hj ∈ ∂hj (x

⋆)













λ⋆
0ξ

f +

p
∑

j=1

µ⋆
jξ

hj +

m
∑

i=1

λ⋆
i ξ

gi





⊤

d











≥ 0, ∀ d ∈ D(x⋆) (43)

λ⋆
i ≥ 0 and λ⋆

i gi(x
⋆) = 0 ∀ i = 1, . . . ,m. (44)

Proof. Let

B = {y ∈ IRn : ‖y − x⋆‖ ≤ ǫ}.

For each k = 1, 2, . . . , let us consider the penalized problem

min Fk(x) = f(x) +
k

2

p
∑

j=1

[hj(x)]
2 +

k

2

m
∑

i=1

[g+i (x)]
2 +

1

2
‖x− x⋆‖2

s.t. x ∈ B ∩X,

(45)
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with ǫ > 0 such that f(x⋆) ≤ f(x), for all x ∈ B ∩ X. Let xk be a solution of problem (45).
Then {xk} admits limit points. Since

Fk(xk) = f(xk) +
k

2

p
∑

j=1

[hj(xk)]
2 +

k

2

m
∑

i=1

[g+i (xk)]
2 +

1

2
‖xk − x⋆‖2 ≤ Fk(x

⋆) = f(x⋆) (46)

we get, for every limit point x̄, dividing the above relation by k and taking the limit

p
∑

j=1

[hj(x̄)]
2 +

m
∑

i=1

[g+i (x̄)]
2 = 0.

Hence, every limit point x̄ is feasible. Furthermore, relation (46) yields f(xk) +
1
2‖xk − x⋆‖2 ≤

f(x⋆) for all k; thus by taking the limit for k → ∞ we get

f(x̄) +
1

2
‖x̄− x⋆‖ ≤ f(x⋆). (47)

Since x̄ ∈ B ∩X and x̄ is feasible, we have f(x⋆) ≤ f(x̄); combining the latter inequality with
(47) yields ‖x̄ − x⋆‖ = 0, so that x̄ = x⋆. Thus, we can conclude that the entire sequence {xk}
converges to x⋆ and it follows that, for sufficiently large k, xk is an interior point of the closed
ball B.
Let us now define the following quantities:

Nk =







1 +

p
∑

j=1

[khj(xk)]
2 +

m
∑

i=1

[

kg+i (xk)
]2







1/2

,

λk
0 = 1/Nk,

λk
i = kg+i (xk)/Nk,

µk
j = khj(xk)/Nk.

Then, it results that (λk
0 , λ

k
1 , . . . , λ

k
m, µk

1 , . . . , µ
k
p) is a unit and nonnegative vector so that the

sequence {(λk
0 , λ

k
1 , . . . , λ

k
m, µk

1 , . . . , µ
k
p)} admits limit points. Let us consider a subsequence of

{xk}, which we relabel {xk} again, for which the subsequence {(λk
0 , λ

k
1 , . . . , λ

k
m, µk

1 , . . . , µ
k
p)}

converges to (λ⋆
0, λ

⋆
1, . . . , λ

⋆
m, µ⋆

1, . . . , µ
⋆
p). Note that, by definition, λ⋆

i = 0 for all i such that
gi(x

⋆) < 0.
Now we proceed by contradiction and assume that a direction d̄ ∈ D(x⋆) exists such that

max
ξf ∈ ∂f(x⋆)
ξgi ∈ ∂gi(x

⋆)

ξ
hj ∈ ∂hj(x

⋆)













λ⋆
0ξ

f +

p
∑

j=1

µ⋆
jξ

hj +
m
∑

i=1

λ⋆
i ξ

gi





⊤

d̄











< 0, d̄ ∈ D(x⋆). (48)

Since, for all k, xk is a solution of problem (45), by (6), we can write

F ◦
k (xk; d) = max

ξ∈∂Fk(xk)
ξ⊤d ≥ 0, ∀ d ∈ D(xk),

which is satisfied if


ξfk +

p
∑

j=1

khj(xk)ξ
hj

k +

m
∑

i=1

kg+i (xk)ξ
gi
k + (xk − x⋆)





⊤

d ≥ 0, ∀ d ∈ D(xk),
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where ξfk ∈ ∂f(xk), ξ
hj

k ∈ ∂hj(xk) and ξgik ∈ ∂gi(xk). Recalling Proposition 3.2, for k sufficiently
large D(x⋆) ⊆ D(xk), and we have



ξfk +

p
∑

j=1

khj(xk)ξ
hj

k +

m
∑

i=1

kg+i (xk)ξ
gi
k + (xk − x⋆)





⊤

d ≥ 0, ∀ d ∈ D(x⋆).

Dividing the above relation by Nk and taking the limit for k → ∞, we obtain



λ⋆
0ξ̄

f +

p
∑

j=1

µ⋆
j ξ̄

hi +
m
∑

i=1

λ⋆
i ξ̄

gi





⊤

d ≥ 0, ∀ d ∈ D(x⋆),

where ξ̄f ∈ ∂f(x⋆), ξ̄hj ∈ ∂hj(x
⋆) and ξ̄gi ∈ ∂gi(x

⋆). The above relation contradicts (48). ✷

Corollary A.2 (KKT Necessary Optimality Conditions) Let x⋆ ∈ P be a local minimum
of the problem (42) such that, for all ξhj ∈ ∂hj(x

⋆), j = 1, . . . , p, ξgi ∈ ∂gi(x
⋆), i ∈ {1, . . . ,m :

gi(x
⋆) = 0}, a direction d ∈ D(x⋆) exists such that:

(ξhj )⊤d = 0, ∀ j = 1, . . . , p, (49)

(ξgi)⊤d < 0, ∀ i ∈ {1, . . . ,m : gi(x
⋆) = 0}, (50)

and, there does not exist scalars µ⋆
1, . . . , µ

⋆
p not all zero such that





p
∑

j=1

µ⋆
jξ

hj





⊤

d ≥ 0, ∀ d ∈ D(x⋆). (51)

Then, multipliers λ⋆
1, . . . , λ

⋆
m, µ⋆

1, . . . , µ
⋆
p ∈ IR exist such that

max
ξf ∈ ∂f(x⋆)
ξgi ∈ ∂gi(x

⋆)

ξ
hj ∈ ∂hj(x

⋆)













ξf +

p
∑

j=1

µ⋆
jξ

hj +
m
∑

i=1

λ⋆
i ξ

gi





⊤

d











≥ 0, ∀d ∈ D(x⋆). (52)

λ⋆
i ≥ 0 and λ⋆

i gi(x
⋆) = 0 ∀ i = 1, . . . ,m.

Proof. By Proposition A.1, we know that multipliers λ⋆
0, λ

⋆
i , i = 1, . . . ,m, µ⋆

j , j = 1, . . . , p,
exist such that (43) and (44) hold. Now, we proceed by contradiction and assume that λ⋆

0 = 0.
Reasoning as in the proof of Proposition A.1, we can obtain





p
∑

j=1

µ⋆
j ξ̄

hj +

m
∑

i=1

λ⋆
i ξ̄

gi





⊤

d ≥ 0, ∀ d ∈ D(x⋆), (53)

where ξ̄hj ∈ ∂hj(x
⋆) and ξ̄gi ∈ ∂gi(x

⋆). If λ⋆
i were all zero, then a contradiction would arise

between (53) and (51). Otherwise, a contradiction would arise considering (53), (49) and (50),
which concludes the proof. ✷
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B. Exactness properties of Zε(x)

We assume throughout this section that the Assumption 2 holds.

Proposition B.1. Given problem (31) and considering problem (38), a threshold value ε⋆ > 0
exists such that, for every ε ∈ (0, ε⋆], the function Zε(x) has no stationary points in X \ F .

Proof. We proceed by contradiction and assume that for any integer k an εk ≤ 1/k and a point
xk ∈ X \ F exist such that

Z◦
ε (xk; d) ≥ 0, ∀ d ∈ D(xk). (54)

Since, by definition Z◦
ε (x; d) = maxξ∈∂Zε(x) ξ

⊤d,

∂Zε(x) ⊆ ∂f(x) +
1

ε

m
∑

i=1

∂
(

max {0, gi(x)}
)

and (see Proposition 2.3.12 in [9])

∂(max {0, gi(x)})























= ∂gi(x), if gi(x) > 0,

⊆ Co {∂gi(x) ∪ {0}} , if gi(x) = 0,

= {0}, if gi(x) < 0.

Then (54) can be written as

(

ξfk +
1

εk

m
∑

i=1

βi
kξ

gi
k

)⊤

d ≥ 0, ∀ d ∈ D(xk), (55)

0 ≤ βi
k ≤ 1 and βi

k = 0, ∀ i : gi(xk) < 0

with ξfk ∈ ∂f(xk), ξ
gi
k ∈ ∂gi(xk). Let us consider a limit point x̄ ∈ X \ F of {xk} and let us

relabel the corresponding subsequence again {xk}.
Further, by the fact that the generalized gradient of a Lipschitz continuous function is bounded
on bounded sets, we get that

lim
k→∞

ξfk = ξ̄f ,

lim
k→∞

ξgik = ξ̄gi ,

lim
k→∞

βi
k = β̄i.

Since ∂f and ∂gi, i = 1, . . . ,m are upper semicontinuous at x̄ (see Proposition 2.1.5 in [9])
ξ̄f ∈ ∂f(x̄), ξ̄gi ∈ ∂gi(x̄), i = 1, . . . ,m. As x̄ 6∈ F , then by Assumption 2 we know that a
direction d̄ ∈ D(x̄) exists such that





∑

i:gi(x̄)≥0

β̄iξ̄gi





⊤

d̄ < 0. (56)

Multiplying (55) by εk we have
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(

εkξ
f
k +

m
∑

i=1

βi
kξ

gi
k

)⊤

d ≥ 0, ∀ d ∈ D(xk), (57)

when k is sufficiently large, we have {i : gi(xk) ≥ 0} ⊇ {i : gi(x̄) ≥ 0}, then



εkξ
f
k +

∑

i:gi(x̄)≥0

βi
kξ

gi
k





⊤

d ≥



εkξ
f
k +

∑

i:gi(xk)≥0

βi
kξ

gi
k





⊤

d ≥ 0, ∀ d ∈ D(xk). (58)

Then recalling [21], D(x̄) ⊆ D(xk) we can write



εkξ
f
k +

∑

i:gi(x̄)≥0

βi
kξ

gi
k





⊤

d̄ ≥ 0,

which yields a contradiction with (56) since limk→∞ εk = 0. ✷

Now we report three further results concerning the exactness of Zε(x) from reference [12].

Proposition B.2. A threshold value ε⋆ > 0 exists such that, for any ε ∈ (0, ε⋆], every local
minimum point of problem (38) is also a local minimum point of Problem (31).

Proposition B.3. A threshold value ε⋆ > 0 exists such that, for any ε ∈ (0, ε⋆], every global
minimum point of problem (38) is also a global minimum point of Problem (31), and conversely.

In order to give stationarity results for problem (38), we have the following proposition.

Proposition B.4. For any ε > 0, every stationary point x̄ of problem (38), such that x̄ ∈ F ,
is also a stationary point of problem (31).

Proof. Since x̄ is, by assumption, a stationary point of problem (38), then reasoning as in the
proof of Proposition B.1, we can write

(

ξf +
1

ε

m
∑

i=1

βiξgi

)⊤

d ≥ 0, ∀ d ∈ D(x̄), (59)

0 ≤ βi ≤ 1 and βi = 0, ∀ i : gi(x̄) < 0

with ξf ∈ ∂f(x̄), ξgi ∈ ∂gi(x̄). Now, defining

λ̄i =
βi

ε
, i = 1, . . . ,m

then, by (59), we have

max
ξf ∈ ∂f(x̄)
ξgi ∈ ∂gi(x̄)







(

ξf +

m
∑

i=1

λ̄iξ
gi

)⊤

d







≥

(

ξf +

m
∑

i=1

λ̄iξ
gi

)⊤

d ≥ 0, ∀d ∈ D(x̄). (60)

Moreover, by definition of βi and λ̄i it is easy to see that condition (37) holds, so that x̄ is a
stationary point of (31). ✷
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Finally we can prove Proposition 4.6.
Proof of Proposition 4.6. The proof easily follows by considering Propositions B.1 and B.4.
✷

Observe that the extension of the previous result to the case with equality constraints hj(x),
j = 1, . . . , p, needs stronger assumptions on the differentiability of hj [12].
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