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Abstract. : Answering a question by Honsell and Plotkin, we show that there are two
equations between λ-terms, the so-called subtractive equations, consistent with λ-calculus
but not simultaneously satisfied in any partially ordered model with bottom element. We
also relate the subtractive equations to the open problem of the order-incompleteness of
λ-calculus, by studying the connection between the notion of absolute unorderability in a
specific point and a weaker notion of subtractivity (namely n-subtractivity) for partially
ordered algebras. Finally we study the relation between n-subtractivity and relativized
separation conditions in topological algebras, obtaining an incompleteness theorem for a
general topological semantics of λ-calculus.

Introduction

The lambda calculus was originally introduced by Church [12, 13] as a foundation for logic,
where functions, instead of sets, were primitive, and it turned out to be consistent and
successful as a tool for formalising all computable functions. The rise of computers gave a new
development to its theoretical studies. The lambda calculus is the kernel of the functional
programming paradigm, because its ordinary parameter-binding mechanism corresponds
closely to parameter binding in many functional programming languages.

At the beginning researchers have investigated lambda calculus by using mainly syntac-
tical methods and have focused their interest on a limited number of equational extensions
of lambda calculus, called λ-theories (see [1]). Lambda theories are congruences on the set of
λ-terms, which contain β-conversion. They arise by syntactical or semantical considerations.
Indeed a λ-theory may correspond to a possible operational semantics of the lambda calculus,
as well as it may be induced by a model of lambda calculus through the congruence relation
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associated with the interpretation function. The set of λ-theories is naturally equipped
with a structure of complete lattice, whose bottom element is the least λ-theory λβ, and
whose top element is the inconsistent λ-theory. The lattice of λ-theories is a very rich and
complex structure of cardinality 2ℵ0 (see, for example, [1, 28, 29]). Syntactical techniques
are usually difficult to apply in the study of λ-theories. Therefore, semantic methods have
been extensively investigated.

One of the most important contributions in the area of mathematical programming
semantics was the discovery by Scott [37] in the late 1960s, that complete partial orders,
having their own function space as a retract, are models for the untyped lambda calculus. It
took some time, after Scott gave his model construction, for consensus to arise on the general
notion of a model of the λ-calculus. There are mainly two descriptions that one can give: the
category-theoretical and the algebraic one. Besides the different languages in which they are
formulated, the two approaches are intimately connected (see [1]). The categorical notion of
model is well-suited for constructing concrete models, while the algebraic one is rather used
to understand global properties of models (constructions of new models out of existing ones,
closure properties, etc.) and to obtain results about the structure of the lattice of λ-theories.
The algebraic description of models of λ-calculus proposes two kinds of structures, viz. the
λ-models based on the notion of combinatory algebra of Curry and Schönfinkel (see [16, 36]),
and the λ-abstraction algebras of Pigozzi and Salibra (see [30, 34, 29]). Lambda abstraction
algebras are intended as an alternative to combinatory algebras since they constitute an
equational description of lambda calculus, which keeps the lambda notation and hence all
the functional intuitions.

After the construction of the first model by Scott, a large number of mathematical
models for lambda calculus have been introduced in various categories of domains and
were classified into semantics according to the nature of their representable functions
[1, 5, 6, 32]. Scott continuous semantics [40] is given in the category whose objects are
complete partial orders and morphisms are Scott continuous functions. Other semantics
of lambda calculus were isolated by Berry [8] and Bucciarelli-Ehrhard [10]: Berry’s stable
semantics and Bucciarelli and Ehrhard’s strongly stable semantics are refinements of the
continuous semantics introduced to capture the notion of ‘sequential’ Scott continuous
function. All these semantics are structurally and equationally rich [7, 24, 25] in the sense
that it is possible to build up 2ℵ0-models in each of them, inducing pairwise distinct λ-
theories. On the other hand, there are results that indicate that Scott’s methods, based on
a combination of order-theory and topology, may not in general be exhaustive. The problem
of the theory completeness of a given semantics asks whether every consistent λ-theory arises
as the theory of a model in the semantics. Honsell and Ronchi Della Rocca [21] have shown
that there exists a λ-theory that does not arise as the theory of a Scott model. Analogous
results of incompleteness were obtained by Bastonero and Gouy for the stable semantics [2]
and by Salibra for all models of lambda calculus that involve monotonicity with respect to
some pointed (i.e., with bottom element) partial order [35]. This last result removes the
belief that pointed partial orderings are intrinsic to models of the lambda calculus, and that
the incompleteness of a semantics is only due to the richness of the structure of representable
functions. Instead, it is also due to the richness of the structure of the λ-theories.

The need of more abstract semantics of lambda calculus arises when we recognize the
inadequacy of Scott continuous semantics in order to investigate the structure of the lattice
of λ-theories (see [1, Chapter 4] and [5, 6]) in itself and in connections with the theory of
models. Since topology refines partial orderings through separation axioms, Salibra [35] has
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introduced other topological semantics of lambda calculus, and has shown: (i) the theory
completeness of the semantics of lambda calculus given in terms of metrizable topological
models; (ii) the theory incompleteness of the semantics of lambda calculus given in terms
of topological models, which have no disjoint closures of nonempty open sets. This last
semantics is enough wide to include properly all pointed ordered models.

A natural problem of equational completeness then arises for a semantics of λ-calculus:
whether any two λ-terms equal in all models of the semantics are β-convertible. Theory
completeness implies equational completeness but the opposite direction is trivially false. The
equational completeness problem for Scott continuous semantics is one of most outstanding
open problems of λ-calculus and it seems to have appeared first in the literature in [21].
There is also an analogous equational consistency problem, raised by Honsell and Plotkin
in [20]: whether for every finite set E of equations between λ-terms, consistent with the
λ-calculus, there exists a Scott model contemporaneously satisfying all equations of E. In
this paper we answer negatively to this second question in a very wide way. We provide
two equations (called the subtractive equations) consistent with λ-calculus, which cannot be
contemporaneously satisfied by an arbitrary pointed ordered model of λ-calculus.

Although many familiar models are constructed by order-theoretic methods, it is also
known that there are some models of the lambda calculus that cannot be non-trivially
ordered (see [33, 35, 42]). In general, we define a combinatory algebra A to be unorderable
if there does not exist a non-trivial partial order on A for which the application operation is
monotone. Of course, the existence of unorderable models does not imply that order-theoretic
methods are somehow incomplete for constructing models: an unorderable model can still
arise from an order-theoretic construction, for instance as a subalgebra of some ordered model.
The most interesting result has been obtained by Selinger [42], who, enough surprisingly,
has shown that the standard open and closed term models of λβ and λβη are unorderable.
As a consequence of this result, it follows that if λβ or λβη is the theory of an ordered
model, then the denotations of closed terms in that model are pairwise incomparable, i.e.
the term denotations form an anti-chain. This led Selinger [42] to study the related question
of absolute unorderability: a model is absolutely unorderable if it cannot be embedded in
an orderable one. Plotkin conjectures in [33] that an absolutely unorderable combinatory
algebra exists, but the question is still open whether this is so. Selinger has given in [42] a
syntactic characterisation of the absolutely unorderable algebras in any algebraic variety
(equational class) in terms of the existence of a family of Mal’cev operators. Plotkin’s
conjecture is thus reduced to the question whether Mal’cev operators are consistent with the
lambda calculus or combinatory logic. The question of absolute unorderability can also be
formulated in terms of theories, rather than models. In this form, Selinger [42] refers to it as
the order-incompleteness question: does there exist a λ-theory which does not arise as the
theory of a non-trivially ordered model? Such a problem can be also characterised in terms
of connected components of a partial ordering (minimal subsets which are both upward and
downward closed): a λ-theory T is order-incomplete if, and only if, every ordered model,
having T as equational theory, is partitioned in an infinite number of connected components,
each one containing exactly one element. In other words, the partial order is the equality.

Toward an answer to the order-incompleteness problem, we define a consistent λ-theory
T having the following properties: (i) T includes the subtractive equations; (ii) if an ordered
model M has an equational theory that contains T , then M has an infinite number of
connected components among which that of the looping term Ω ≡ (λx.xx)(λx.xx) is a
singleton set. Moreover, each connected component ofM contains the denotation of at most
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one βη-normal form. Compared to absolute unorderability, the above situation still has
some missing bits. For example we are not in the position to tell where the denotations of
all unsolvable λ-terms other than Ω are placed in the model. Same thing for all the solvable
λ-terms which do not have a βη-normal form.

The inspiration for the subtractive equations comes from the notion of subtractive variety
of algebras introduced by Ursini in [43]. A variety V of algebras is subtractive if it satisfies
the following identities:

s(x, x) = 0; s(x, 0) = x

for some binary term s and constant 0. Subtractive algebras abound in classical algebras. If
we interpret the binary operator “s” as subtraction, and we use the infix notation, then we
can rewrite the above identities as x− x = 0 and x− 0 = x. In the context of λ-calculus,
the subtractive equations make a certain λ-term behave like a binary subtraction operator
(in curryfied form) whose “zero” is the looping λ-term Ω.

We relativize to an element the notion of absolute unorderability. We say that an algebra
A is 0-unorderable if, for every compatible partial order on A, 0 is not comparable with any
other element of the algebra. An algebra A in a variety V is absolutely 0-unorderable if, for
any B ∈ V and embedding f : A → B, B is 0-unorderable. Generalising subtractivity to
n-subtractivity (n ≥ 2), we give a syntactic characterisation of the absolutely 0-unorderable
algebras with Mal’cev-type conditions. The consistency of the two subtractive equations
with λ-calculus implies the existence of absolutely Ω-unorderable combinatory algebras.

The last result of the paper is a theory incompleteness theorem for topological models
of λ-calculus. This result is a strong generalisation of an analogous theorem shown in [35].
The incompleteness theorem is a consequence of a study of conditions of separability for
topological n-subtractive algebras.

This article is organised as follows: in Section 1 we review the basic definitions of
universal algebra, topology and λ-calculus which are involved in the rest of the article.
Section 2 is devoted to the proof of consistency of the subtractive equations. In Section 3,
we negatively answer to the open question of the equational consistency of Scott continuous
semantics. The order incompleteness problem is presented in Section 4. Section 5 is devoted
to the study of the (absolute) 0-unorderability in a variety. The main result of Section 6
is the theory-incompleteness of the semantics of λ-calculus given in terms of topological
models, which are not T21/2-separated in Ω.

1. Preliminaries

1.1. Partial Orderings. Let (A,≤) be a partially ordered set (poset). Two elements a, b
of A are: (1) comparable if either a ≤ b or b ≤ a. A set B ⊆ A is an upward (downward)
closed set if b ∈ B, a ∈ A and b ≤ a (a ≤ b) imply a ∈ B.

We denote by ≈≤ the least equivalence relation on A containing ≤. A connected
component of (A,≤) is an equivalence class of ≈≤. A connected component can be also
characterised as a minimal subset of A which is both upward closed and downward closed.
The poset (A,≤) is called connected if ≈≤ determines a unique equivalence class.
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1.2. Algebras. An algebraic similarity type τ is constituted by a non-empty set of operator
symbols together with a function assigning to each operator f ∈ τ a finite arity. Operator
symbols of arity 0 are called nullary operators or constants.

A τ -algebra A is a tuple (A, fA)f∈τ , where A is a non-empty set and fA : An → A is
an n-ary function for every f ∈ τ of arity n.

Henceforth, the superscript in fA will be dropped whenever the difference between the
operation and the operation symbol is clear from the context, and a similar policy will be
followed in similar cases throughout the paper.

Given two τ -algebras A and B, a homomorphism from A into B is a map g : A→ B
such that g(fA(a1, . . . , an)) = fB(g(a1), . . . , g(an)) for each n-ary operator f ∈ τ and for
all ai ∈ A.

Given a τ -algebra A, a binary relation φ on A is compatible if for all f ∈ τ of arity n,
and for all ai, bi ∈ A we have

a1φb1, . . . , anφbn =⇒ f(a1, . . . , an)φf(b1, . . . , bn).

A compatible equivalence relation on an algebra A is called a congruence.
Let V be a class of τ -algebras and A be a τ -algebra.

Definition 1.1. If X ⊆ A, then we say that A has the universal mapping property for V over
X if, for every B ∈ V and for every mapping g : X → B, there is a unique homomorphism
f : A→ B that extends g (i.e., f(x) = g(x) for every x ∈ X).

Definition 1.2. A is free in V over X if A ∈ V , A is generated by X under the operations
of τ , and A has the universal mapping property for V over X.

In the following we give a concrete characterization of the free algebra in the class of all
algebras of type τ .

Let X be a set of indeterminates. The set Tτ [X] of τ -terms over X is defined by
induction as follows:

• x ∈ Tτ [X] for every x ∈ X;
• c ∈ Tτ [X] for every constant c ∈ τ ;
• if t1, . . . , tn ∈ Tτ [X], then f(t1, . . . , tn) ∈ Tτ [X] for all f ∈ τ of arity n.

A τ -term is ground if it does not contain variables. If t is a term, we write t ≡ t(x1, . . . , xn)
if the variables occurring in t are among x1, . . . , xn. If A is an algebra of type τ then every
term t(x1, . . . , xn) induces a term operation tA : An → A defined in the obvious way.

The free algebra over X in the class of all algebras of type τ is the algebra

Tτ [X] = (Tτ [X], fTτ [X])f∈τ ,

where
fTτ [X](t1, . . . , tn) = f(t1, . . . , tn), for all f ∈ τ .

An identity (or equation) of type τ is a pair (t, u) of τ -terms, written also t = u. A ground
identity is an equation between ground terms. An identity t(x1, . . . , xn) = u(x1, . . . , xn)
holds in a τ -algebra A, and we write A |= t = u, if the n-ary term operations tA and uA

are equal.
A non-empty class V of algebras of the same type is:

(i) a variety if it is closed under subalgebras, homomorphic images and direct products;
(ii) an equational class if it is axiomatisable by a set of equations.
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Theorem 1.3. (Birkhoff [9]) A class of algebras is a variety if, and only if, it is an equational
class.

If V is a variety of type τ , then Eq(V) is the set of equations satisfied by all algebras in
V. The set Eq(V) is a congruence over the free algebra Tτ [X], and the quotient of Tτ [X]
by Eq(V) is the free algebra TV [X] in V over X.

1.3. Topology. By a topological space we shall mean a pair (X, τ), where X is a non-empty
set and τ is a family of subsets of X closed under infinite unions, finite intersections, and
including ∅ and X. Given a point x of a space X, we say that U ⊆ X is a neighbourhood of
x if there exists an open set V such that x ∈ V ⊆ U .

A subset F of a space X is closed if X \ F is open. The closure of U ⊆ X will be

denoted by U (as a matter of notation, we write b for {b}). Recall that a ∈ U if U ∩ V 6= ∅
for every open neighbourhood V of a.

A space X is

• T0 if, for all distinct a, b ∈ X, a has a neighbourhood that does not contain b or vice
versa.
• T1 if, for all distinct a, b ∈ X, a has a neighbourhood that does not contain b and

vice versa.
• T2 (or Hausdorff) if for all distinct a, b ∈ X there exist open sets U and V with
a ∈ U , b ∈ V and U ∩ V = ∅.
• T21/2 (or completely Hausdorff) if for all distinct a, b ∈ X there exist open sets U

and V with a ∈ U , b ∈ V and U ∩ V = ∅.
The previous axioms of separation can be relativized to pairs of elements. For example, a

and b are T21/2-separable, if there exist open sets U and V with a ∈ U , b ∈ V and U ∩V = ∅.
T2-, T1-, T0-separability are similarly defined.

A preorder can be defined on (X, τ) by

a ≤τ b iff a ∈ b iff ∀U ∈ τ(a ∈ U ⇒ b ∈ U).

We have
(X, τ) is T0 iff ≤τ is a partial order.

For any T0-space (X, τ) the partial order ≤τ is called the specialization order of (X, τ). Note
that any continuous map between T0-spaces is necessarily monotone and that the order is
discrete (i.e. satisfies a ≤τ b iff a = b) iff X is a T1-space.

Suppose a space X is not T0. We can obtain a T0-space out of X by the following
well-known construction. Define an equivalence relation ≡ on X as follows: a ≡ b ⇔ a ≤τ
b and b ≤τ a. Then X/ ≡ equipped with the quotient topology is a T0-space.

A space (X, τ) is coconnected if for all opens U, V ∈ τ we have U ∩ V 6= ∅ (see [35]).

1.4. Topological algebras. A topological algebra is a pair (A, τ) where A is an algebra
and τ is a topology on the underlying set A with the property that each basic operation
fA : An → A of A is continuous, where the domain of f is endowed with the product
topology.

A semitopological algebra is a pair (A, τ) where A is an algebra and τ is a topology on
the underlying set A with the property that each unary polynomial of A is continuous w.r.t.
τ . Every topological algebra is a semitopological algebra.
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A map f : An → A is separated-continuous if, for every 1 ≤ i ≤ n and every
a1, . . . , ai−1, ai+1, . . . , an ∈ A, the map g : A→ A, defined by

g(b) = f(a1, . . . , ai−1, b, ai+1, . . . , an), for all b ∈ A,
is continuous. In a semitopological algebra every term operation is separated-continuous.

Lemma 1.4. Let (A, τ) be a topological space. Then every (separated-)continuous map
f : An → A is monotone:

ai ≤τ bi (1 ≤ i ≤ n) ⇒ f(a1, . . . , an) ≤τ f(b1, . . . , bn).

Proof. For the sake of simplicity, assume f is binary. Let a ≤τ b and a′ ≤τ b′. We have to
show that f(a, a′) ≤τ f(b, b′). Let f(a, a′) ∈ U , where U is open. Then by continuity in
first coordinate there exists an open set V such that a ∈ V and f(V, a′) ⊆ U . By a ≤τ b
it follows that b ∈ V so that f(b, a′) ∈ U . By using continuity in second coordinate we get
that there exists an open set W such that a′ ∈ W and f(b,W ) ⊆ U . By a′ ≤τ b′ we get
b′ ∈W and then the conclusion.

If (A, τ) is a semitopological algebra then ≤τ is a compatible preorder.

1.5. Lambda calculus. With regard to the λ-calculus we follow the notation and termi-
nology of [1]. By Λ and Λo, respectively, we indicate the set of λ-terms and of closed
λ-terms. By convention application associates to the left. The symbol ≡ denotes syntactical
equality. The following are some notable λ-terms that will be used throughout the paper:
Ω ≡ (λx.xx)(λx.xx); I ≡ λx.x; T ≡ λxy.x; F ≡ λxy.y.

If M is a λ-term and ~P ≡ P1 . . . Pn is a sequence of λ-terms, we write M ~P for the
application MP1 · · ·Pn.

The β-reduction will be denoted by →β, while the η-reduction by →η. One step of
either β-reduction or η-reduction will be denoted by →βη.

A λ-term M is solvable if it has a head normal form, i.e., M is β-convertible to a term

of the form λ~x.y ~N . A λ-term M is unsolvable if it is not solvable.
A λ-theory is a congruence on Λ (with respect to the operators of abstraction and

application) which contains αβ-conversion. We denote by λβ the least λ-theory. The least
extensional λ-theory λβη is axiomatised over λβ by the equation λx.Mx = M , where M ∈ Λ
and x is not free in M . The λ-theory generated by a set X of identities is the intersection of
all λ-theories containing X. For a λ-theory T we will write T `M = N (or M =T N) to
indicate the existence of an equational proof of the identity M = N that uses equations of
T .

A λ-theory is consistent if it does not equate all λ-terms, inconsistent otherwise. It
turns out that a λ-theory T is inconsistent iff T ` T = F . A λ-theory is semisensible if it
does not equate solvable and unsolvable λ-terms. Semisensible λ-theories are consistent (see
[1]). The set of λ-theories constitutes a complete lattice w.r.t. inclusion, whose top is the
inconsistent λ-theory and whose bottom is the theory λβ.

An unsolvable is called a zero term if it never reduces to an abstraction. A zero term,
that will be used in the rest of the paper, is defined as follows. Let B ≡ λx.x(λy.yx),
C ≡ λz.zB and Θ ≡ BC. By a direct computation we see that the only possible reduction
path starting with Θ is the following:

Θ→β C(λy.yC)→β (λy.yC)B →β BC ≡ Θ.
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The letters ξ1, ξ2, . . . denote algebraic variables (holes in Barendregt’s terminology
[1]). Contexts are built up as λ-terms but also allowing occurrences of algebraic vari-
ables. Substitution for algebraic variables is made without α-conversion. For example,
(λx.xξ)[xy/ξ] = λx.x(xy).

We recall the Genericity Lemma of lambda calculus (see [1, Proposition 14.3.24]).

Lemma 1.5. Let M ∈ Λ unsolvable and N ∈ Λ having a normal form. Then, for every
context C[ξ],

C[M ] =λβ N =⇒ (∀Q ∈ Λ) C[Q] =λβ N.

Throughout the paper we consider different reductions. If →γ is a reduction, then we
denote by �γ the reflexive transitive closure of →γ , and we write =γ to denote the reflexive,
symmetric and transitive closure of →γ . Finally we define, as usual, the γ-reduction graph
of a term M as the set Gγ(M) = {N ∈ Λ : M �γ N}.

1.6. Models of λ-calculus. The algebraic description of models of λ-calculus proposes
two kinds of structures, viz. the λ-algebras and the λ-models, both based on the notion of
combinatory algebra. We will focus on λ-models. A combinatory algebra A = (A, ·,K, S)
is a structure with a binary operation called application and two distinguished elements
K and S called basic combinators. The symbol “·” is usually omitted from expressions
and by convention application associates to the left, allowing to leave out superfluous
parentheses. The class of combinatory algebras is axiomatised by the equations Kxy = x
and Sxyz = xz(yz). Intuitively, elements on the left-hand side of an application are to be
seen as functions operating on arguments, placed on the right-hand side. Hence it is natural
to say that a function f : An → A is representable (in A) if there exists an element a ∈ A
such that f(b1, . . . , bn) = ab1 . . . bn for all b1, . . . , bn ∈ A. For example the identity function
is represented by the combinator I ≡ SKK and the projection on the first argument by the
combinator K.

The axioms of an elementary subclass of combinatory algebras, called λ-models, were
expressly chosen to make coherent the definition of interpretation of λ-terms. In addition to
the axioms of combinatory algebra, we have:

∀xy.(∀z. xz = yz)⇒ 1x = 1y
12K = K
13S = S

where 11 ≡ 1 ≡ S(KI) and 1n+1 ≡ S(K1)(S(K1n)). The combinators 1n are made into
inner choice operators. Indeed, given any a ∈ A, the element 1na represents the same n-ary
function as a and 1nc = 1nd for all c, d representing the same n-ary function.

Let EnvA be the set of A-environments, i.e. , the functions from the set Var of λ-calculus
variables to A. For every x ∈ Var and a ∈ A we denote by ρ[x := a] the environment ρ′

which coincides with ρ everywhere except on x, where ρ′ takes the value a.
When A is a λ-model it is possible to define the following interpretation:

|x|Aρ = ρ(x);

|MN |Aρ = |M |Aρ |N |
A
ρ ;

|λx.M |Aρ = 1a, where a ∈ A is any element representing the function b ∈ A 7→ |M |Aρ[x:=b].

Note that |λx.M |Aρ is well-defined, since each function b ∈ A 7→ |M |Aρ[x:=b] is representable

under the hypothesis that A is a λ-model. This is the kind of interpretation we will refer to.
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By the way when M is a closed λ-term and there is no worry of confusion about the
model being considered, we write |M | for |M |Aρ .

Each λ-model A induces a λ-theory, denoted here by Th(A), and called the equational
theory of A. Thus, M = N ∈ Th(A) if, and only if, M and N have the same interpretation
in A.

An ordered λ-model is a pair (A,≤), where A is a λ-model and ≤ is a partial order on A
which makes the application operator of A monotone in both arguments. An ordered model
(A,≤) is non-trivial if the partial order is not discrete, i.e., a < b for some a, b ∈ A (thus A
is not a singleton). A pointed ordered model is an ordered model with bottom element.

The term model MT of a lambda theory T (see [1, Def. 5.2.11]) consists of the set of
the equivalence classes of λ-terms modulo the lambda theory T together with the operation
of application on the equivalence classes. By Cor. 5.2.13(ii) in [1] MT is a λ-model such
that Th(MT ) = T .

A class C of λ-models is

(1) equationally consistent if, for every finite set E of equations between λ-terms, consistent
with the λ-calculus, there exists a model A ∈ C simultaneously satisfying all equations
of E.

(2) equationally complete if any two λ-terms equal in all models of C are β-convertible.
(3) theory complete if, for every consistent λ-theory T , there exists a model A ∈ C such

that Th(A) = T .

1.7. The Jacopini–Kuper technique. The Jacopini–Kuper technique, introduced by
Jacopini in [22] and generalized by Kuper in [27], can be used to tackle questions of
consistency of equational extensions of lambda calculus. In this section we review this
technique.

Let T be an arbitrary consistent λ-theory, ~P = ~Q be a set of identities Pi = Qi
(i = 1, . . . , n) between closed λ-terms, and T ′ be the λ-theory generated by T ∪ (~P = ~Q).
The idea is to reduce inconsistency of T ′ to that of T . If T ′ is inconsistent, then there exists a
finite equational proof of T =T ′ F , and such a proof contains a finite number of applications

of equations which are in ~P = ~Q. Jacopini–Kuper technique, when applicable, consists in

checking two conditions on the sequences ~P and ~Q, namely that ~P is T -operationally less

defined than ~Q (see Definition 1.7) and that ~P is T -proof-substitutable by ~Q (see Definition
1.8). Under these two conditions, it is possible to remove from the proof of T =T ′ F all

occurrences of equations in ~P = ~Q, thus yielding a proof of T =T F . This is the end of the
method, because T is supposed to be a consistent λ-theory.

A very useful property for the application of Jacopini-Kuper method, and in particular
for proving T -proof-substitutability, is the existence of a Church-Rosser reduction, whose
induced conversion coincides with the equality induced by T on λ-terms. This is not evident
from the abstract formulation given in this section, but will be clear in the next one, when
we will apply the technique.

Lemma 1.6. We have that T ∪ (~P = ~Q) `M = N if, and only if, there exist closed terms
F1, . . . , Fn such that

M =T F1
~P ~Q

Fj ~Q~P =T Fj+1
~P ~Q for 1 ≤ j ≤ n− 1

Fn ~Q~P =T N.
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Proof. By [17, Theorem 1] there exist binary contexts C1(ξ1, ξ2), . . . , Cn(ξ1, ξ2) and identities

Pij = Qij in ~P = ~Q such that

M =T C1(Pi1 , Qi1)
Cj(Qij , Pij ) =T Cj+1(Pij+1 , Qij+1) for 1 ≤ j ≤ n− 1
Cn(Qin , Pin) =T N.

It is sufficient to define Fj ≡ λ~x~y.Cj(xij , yij ), where ~x and ~y are sequences of length k of
fresh variables.

Definition 1.7 (Operational definiteness). We say that ~P is T -operationally less defined

than ~Q if, for every βη-normal form N and every term F , we have that

F ~P =T N ⇒ F ~Q =T N.

Definition 1.8 (Proof-substitutability). We say that ~P is T -proof-substitutable by ~Q if

∀F, F ′ ∈ Λo(F ~P =T F
′ ~P ⇒ ∃G ∈ Λo(G~P ~Q =T F ~Q and G~Q~P =T F

′ ~Q)).

Theorem 1.9. If ~P is T -operationally less defined than ~Q and ~P is T -proof-substitutable

by ~Q, then the λ-theory T ′ generated by T ∪ (~P = ~Q) is consistent.

Proof. Assume T ′ is inconsistent, so that T =T ′ F . Then by Lemma 1.6 there exists an
equational proof of this identity of the form

T =T F1
~P ~Q

Fj ~Q~P =T Fj+1
~P ~Q for 1 ≤ j ≤ n− 1

Fn ~Q~P =T F .

Now we show how to iteratively transform the above proof of T ′ ` T = F in a proof of
T ` T = F .

Suppose n = 1, i.e., we have T =T F1
~P ~Q and F1

~Q~P =T F . Since ~P is T -operationally

less defined than ~Q, from T =T F1
~P ~Q =T (λy.F1y ~Q)~P and F1

~Q~P =T F , we get T =T
F1
~Q~Q =T F .

Suppose n > 1. As before, by the hypothesis we get T =T F1
~Q~Q and Fn ~Q~Q =T F . Let

~y be a sequence of fresh variables. For each j = 1, . . . , n− 1, define

Hj ≡ λ~y.Fj ~Q~y; H ′j+1 ≡ λ~y.Fj+1~y ~Q.

By Fj ~Q~P =T Fj+1
~P ~Q (j = 1, . . . , n− 1) we have that

Hj
~P =T H

′
j+1

~P .

Since ~P is T -proof-substitutable by ~Q, then there exist terms Gj (j = 1, . . . , n−1) such that

Gj ~P ~Q =T Hj
~Q =T Fj ~Q~Q and Gj ~Q~P =T H

′
j+1

~Q =T Fj+1
~Q~Q. Therefore we obtain that

T =T F1
~Q~Q =T G1

~P ~Q

G1
~Q~P =T F2

~Q~Q =T G2
~P ~Q

...
...

Gn−1 ~Q~P =T Fn ~Q~Q =T F

Therefore one can iterate the argument and get a proof of T ` T = F .
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2. On a question by Honsell and Plotkin

In this section we turn to a question posed in [20] by Honsell and Plotkin. The problem is
whether or not there exists a formula ϕ of first-order logic written as a possibly empty list
of universal quantifiers followed by a conjunction of equalities between λ-terms such that ϕ
does not admit pointed ordered models. According to Honsell and Plotkin, this problem
falls under the name of Π1-consistency of the class of pointed ordered models. Since any
equation between λ-terms is equivalent to a suitable equation between closed λ-terms, then
in the context of λ-calculus the Π1-consistency is equivalent to the equational consistency,
which is the particular case of Π1-consistency in which the formula ϕ is quantifier-free.

2.1. The λ-theory λπφ. We introduce two equations between λ-terms, whose models will
be shown to have strong properties with respect to the possible partial orderings they can
be endowed with. Of course we have to prove that the λ-theory λπφ generated by these
equations is consistent and this will be done in Section 2.3.

The two equations we are going to introduce represent within λ-calculus the notion of
subtractivity, which has been introduced in Universal Algebra by Ursini [43].

Definition 2.1. An algebra A is subtractive if there exist a binary term s(x, y) and a
constant 0 in the algebraic similarity type of A such that

s(x, x) = 0; s(x, 0) = x.

Subtractive algebras abound in classical algebras and in algebraic logic since the term s
simulates part of subtraction. If we interpret the binary operator “s” as subtraction “−”
and we use the infix notation, then we can rewrite the above identities as x − x = 0 and
x− 0 = x.

The following lemma explains why we are interested in subtractive equations.

Lemma 2.2. Let A be a subtractive algebra and ≤ be a compatible partial order on A. Then,
every element a 6= 0 of A is incomparable with 0.

Proof. If a ≤ 0 then 0 = s(a, a) ≤ s(a, 0) = a. If 0 ≤ a then a = s(a, 0) ≤ s(a, a) = 0.

A general treatment of subtractivity and orderings in Universal Algebra can be found in
Section 5.

We now define the λ-theory λπφ. Let Θ be the term defined in Section 1.5. We define
s(x, y) ≡ Θxy and 0 ≡ Ω. Then the λ-theory λπφ is defined as the least extensional λ-theory
generated by the following two equations, called the subtractive equations:

(π) Θxx = Ω; (φ) ΘxΩ = x.

The intuitive meaning of the equations (π) and (φ) is that they make the term Θ behave
like a binary subtraction operator (in curried form) whose “zero” is the term Ω. We have
chosen Θ to represent the binary subtraction operator because the reduction graph of Θ is
as simple as possible among the unsolvables distinct from Ω.

The following theorem illustrates a curious aspect of the equations (π) and (φ): the
choice of Ω is the right one.

Theorem 2.3. Let O be a λ-term such that x /∈ FV (O), and let T be any λ-theory including
the identities ΘxO = x and Θxx = O. Then T ` O = Y I for every fixpoint combinator
Y . In particular, if Y ≡ λf.(λx.f(xx))(λx.f(xx)) is the Curry fixpoint combinator, then
T ` O = Ω.
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Proof. We apply a technique introduced by Gordon Plotkin and Alex Simpson (see [42]). Let
Y be an arbitrary fixpoint combinator. Then, for any λ-term M , define µx.M ≡ Y (λx.M).
Now let D ≡ µy.µx.Θxy. Then we have D =β ΘDD =T O and D =β µx.ΘxD =T
µx.ΘxO =T µx.x ≡ Y I. Moreover, Y I =β Ω if Y is the Curry fixpoint combinator.

2.2. The λ-theory λπ. The extensional λ-theory λπ is axiomatised over λβη by the
equation (π). It is consistent because semisensible. We will show the consistency of λπφ
relying on the consistency of λπ.

The following notion of reduction will be useful in the next section to prove the consistency
of the λ-theory λπφ (recall from Section 1.5 the definition of Θ and of its reduction graph
Gβ(Θ)).

Definition 2.4 (λπ-reduction). We introduce here βηπ-reduction, notation →βηπ, as the
contextual closure of →βη ∪ →π, where

ΨMN →π Ω if Ψ ∈ Gβ(Θ) and λπ `M = N.

Of course the conversion =βηπ coincides with the equality induced by λπ. We remark
that in [35] it was introduced a λ-theory axiomatised by Ωxx = Ω. Here we use instead
Θxx = Ω for technical reasons. In fact when we apply the Jacopini–Kuper technique in
Section 2.3, we use the fact that a step of reduction Θxx →π Ω does not create a new
→π-redex, because Ω 6∈ Gβ(Θ).

Note that if a λ-term N is a βη-normal form, then it is also a βηπ-normal form, because
every →π-redex contains also a →β-redex.

Theorem 2.5.

(i) The reduction →βηπ is Church-Rosser;
(ii) For all terms M and N , we have ΘMN =βηπ Ω iff λπ `M = N .

Proof.

(i) First observe that the relation �π is Church-Rosser. Moreover the relations �π and
�βη commute, meaning that whenever Q π � P �βη Z there exists P ′ such that
Q �βη P

′
π � Z. The conclusion follows from the Hindley–Rosen Lemma (see [1,

Prop. 3.3.5]), which states that if two Church-Rosser relations commute, then their
union is Church-Rosser too.

(ii) If ΘMN =βηπ Ω then by (i) there exists a reduction ΘMN �βηπ Ω. But this is
possible only if ΘMN �βηπ ΨM ′N ′ with Θ �β Ψ, M �βηπ M

′, N �βηπ N
′ and

λπ `M ′ = N ′. Therefore λπ `M = N .

Another useful result is the forthcoming lemma, which says that all βηπ-reduction paths
may be “simulated” by a reduction path which contains π-steps only at the end. We indicate
by →=

βη the reflexive closure of →βη.

Lemma 2.6 (Factorization). If M �βηπ N , then there exists P such that M �βη P �π N .

Proof. Use iteratively the fact that whenever M →π N →βη Q, then there exists N ′ such
that M →=

βη N
′ �π Q.

Lemma 2.7. The terms Θ and Ω are not βηπ-convertible.

Proof. By the reduction graph of Θ and the confluence of →βηπ.
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2.3. Jacopini–Kuper technique for λπφ. In this section we apply the Jacopini–Kuper
technique explained in Section 1.7 to prove the consistency of the theory λπφ. More
precisely, the results presented here show that the closure λx.ΘxΩ = I of the equation (φ),
that axiomatizes λπφ over λπ, satisfies the hypotheses of Theorem 1.9.

Lemma 2.8. The term λx.ΘxΩ is λπ-operationally less defined than I.

Proof. Let F be a λ-term and N be a βη-normal form, and suppose F (λx.ΘxΩ) =λπ N .
Since λπ-reduction is confluent and N is βη-normal, we have that F (λx.ΘxΩ) �βηπ N . By
Lemma 2.6 there exists a term M such that

F (λx.ΘxΩ) �βη M �π N.

Since N is a βη-normal form and the reduct Ω of a→π-redex is a β-redex, we must have that
M ≡ N . Therefore we have λβη ` F (λx.ΘxΩ) = N and, since λx.ΘxΩ is unsolvable, we can
apply the Genericity Lemma of lambda calculus (see Lemma 1.5) to obtain λβη ` F I = N ,
and hence obviously λπ ` F I = N which is the desired conclusion.

In Lemma 2.9 below we keep track of the residuals of the λ-term λx.ΘxΩ during the
reduction of the term F (λx.ΘxΩ). We have three kinds of residuals: λx.ΨxΩ, ΨMΩ and Ω
(with Ψ ∈ Gβ(Θ)) as the following informal example shows:

F (λx.ΘxΩ) �λπ · · · (λx.ΘxΩ) · · · (λx.ΘxΩ) · · · (λx.ΘxΩ) · · ·
�β · · · (λx.ΘxΩ) · · · (λx.ΨxΩ) · · · · · · (λx.ΘxΩ) · · · (Θ �β Ψ)
�λπ · · · (λx.ΘxΩ) · · · (λx.ΨxΩ)M · · · (λx.ΘxΩ) · · ·
→β · · · (λx.ΘxΩ) · · · (ΨMΩ) · · · (λx.ΘxΩ) · · · (β-reduction)
�λπ · · · (λx.ΘxΩ) · · · (ΨNΩ) · · · (λx.ΘxΩ) · · · (M �λπ N)
→π · · · (λx.ΘxΩ) · · · (Ω) · · · (λx.ΘxΩ) · · · (N =λπ Ω)
�λπ · · · · · · · · ·

In order to trace the residuals it is useful to enrich the syntax of λ-terms with labels as
follows:

M,N ::= x | λx.M |MN
| (λx.ΨxΩ)n | (ΨMΩ)n | (Ω)n (n ≥ 1 and Ψ ∈ Gβ(Θ))

We denote by ΛN the set of labelled terms and we write M for the λ-term, called erasure of
M , obtained by erasing the labels from M .

Since (Ω)n and (λx.ΨxΩ)n are closed terms, then it is sufficient to extend substitution
to labelled terms by setting (ΨMΩ)n[N/x] = (ΨM [N/x]Ω)n, where Ψ ∈ Gβ(Θ). Then we
define a reduction on labeled terms as the smallest contextual reduction →lab (reduction
under labels is allowed) satisfying the following clauses, for all labelled terms M,N :

(λx.M)N →lab M [N/x]
λx.Mx→lab M if x 6∈ FV(M)
(λx.ΨxΩ)nM →lab (ΨMΩ)n if Ψ ∈ Gβ(Θ)
ΨMN →lab Ω if Ψ ∈ Gβ(Θ) and M =λπ N .

Note that (i)→βηπ⊆→lab; (ii) if M →lab N then (ΨMΩ)n →lab (ΨNΩ)n. If σ is a reduction
path of labelled terms, then we denote by σ the corresponding reduction path, where all
labels are erased.

We will make use of an additional operation on labelled terms. Given terms M,N ∈ ΛN

such that M ≡ N , we define their superposition as the labelled term obtained from the
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syntax tree of M by adding a possible label k to each subtree T of M according to the
following schema:

• Put k = m+ n if T has label m in M and n in N ;
• Put k = m if T has label m in M and no label in N ;
• Put k = n if T has label n in N and no label in M ;
• Put no label otherwise.

Lemma 2.9. The term λx.ΘxΩ is λπ-proof-substitutable by I.

Proof. In this proof Ψ ranges over Gβ(Θ). Let F1, F2 be closed λ-terms and suppose
F1(λx.ΘxΩ) =λπ F2(λx.ΘxΩ). Since the reduction →βηπ is confluent, then the two sides of
the equality are the beginning of two reduction paths σ1 and σ2 that end in a common term
R. Consider now the labelled terms Fi(λx.ΘxΩ)i for i = 1, 2. Then there exists a labelled
reduction path σ′i starting with Fi(λx.ΘxΩ)i such that σ′i ≡ σi. Notice that the label 1 is

the unique label occurring in the reduction path σ′1, while the label 2 is the unique label
occurring in the reduction path σ′2. We denote by Ri the last labelled term in the reduction
path σ′i. Then we have that R ≡ R1 ≡ R2.

Let P be the term obtained by superposition of R1 and R2. Then the labels of P
range over the set L = {1, 2, 3}. We now describe how to extract a witness of λπ-proof-
substitutability by suitably modifying P . All residuals with label 3 in P are common to
the reduction paths σ′1 and σ′2. Then, if we mimic the reduction path σi starting from FiI
(i = 1, 2), we will find in place of the residuals with label 3 the term I for (λx.ΨxΩ)3; M for
(ΨMΩ)3 and a term N (λπ-convertible with Ω) for (Ω)3:

Fi(λx.ΘxΩ) �λπ (i = 1, 2)
· · · (λx.ΘxΩ) · · · �β

· · · (λx.ΨxΩ) · · · �λπ (Θ �β Ψ)
· · · (λx.ΨxΩ)M · · · →β

· · ·ΨMΩ · · · →λπ (M �λπ N)
· · ·ΨNΩ · · · →λπ (N =λπ Ω)
· · ·Ω · · ·

FiI �λπ (i = 1, 2)
· · · I · · · ≡
· · · I · · · �λπ

· · · IM · · · →β

· · ·M · · · →λπ (M �λπ N)
· · ·N · · · ≡ (N =λπ Ω)
· · ·N · · ·

Then we substitute all occurrences of the label 3 in the term P as follows:

Q ≡ P [I/(λx.ΨxΩ)3;M/(ΨMΩ)3; Ω/(Ω)3].

The last substitution Ω for (Ω)3 is possible because the term N in the above reduction path
(right column) is λπ-convertible with Ω. We see that, by mimicking the steps in the paths
σ1, σ2, we have that

(∗) FiI =λπ Li, where Li is the erasure of Q[I/(λx.ΨxΩ)i;M/(ΨMΩ)i; Ω/(Ω)i] (i = 1, 2)

Let x1, x2 be fresh variables and let H be the term without labels obtained from Q by
replacing bottom-up the subterms

for i = 1, 2


(λx.ΨxΩ)i with xi;

(ΨMΩ)i with xiM ;

(Ω)i with xiΩ.

Then the following equivalences hold:

(a) L1 =λπ H[I/x1; (λx.ΨxΩ)/x2];
(b) L2 =λπ H[(λx.ΨxΩ)/x1; I/x2].



15

Therefore by setting G ≡ λx2x1.H, we obtain that

• G(λx.ΘxΩ)I �β H[I/x1; (λx.ΨxΩ)/x2] =λπ L1 =λπ F1I, by (∗) and (a)
• GI(λx.ΘxΩ) �β H[(λx.ΨxΩ)/x1; I/x2] =λπ L2 =λπ F2I, by (∗) and (b)

This shows that G is the witness term we were looking for.

Now we are ready to give the main theorem of the section.

Theorem 2.10. The λ-theory λπφ is consistent.

Proof. Lemma 2.9 and Lemma 2.8 show that the hypotheses of Theorem 1.9 are satisfied by
the equation that axiomatizes λπφ over λπ, and therefore λπφ must be consistent.

3. On the equational inconsistency of the pointed ordered models

In this section we find a counterexample to the equational consistency of the class of pointed
ordered models: we prove that there is no pointed ordered model satisfying the equations
(π) and (φ).

Lemma 3.1. Let M be an ordered model such that M |= Θxx = Ω ∧ ΘxΩ = x (i.e.,
Th(M) ⊇ λπφ). Then for all closed λ-terms P and Q we have:

(i) If M 6|= ΘPQ = Ω, then the interpretations of P and Q are in distinct connected
components of M.

(ii) The connected component of the interpretation of Ω is a singleton set.

Proof. (i) Following [35, Section 4] we define the subtraction sequence of the pair (P,Q):

s1 ≡ ΘPQ; sn+1 ≡ ΘsnΩ.

By hypothesisM |= s1 6= Ω and by subtractivityM |= sn = s1 for all n. Then the conclusion
follows from [35, Corollary 4.6].

(ii) Since M is a subtractive ordered model then the conclusion follows from Lemma
2.2.

The situation described by Lemma 3.1 can be regarded to as a relativized version of
absolute unorderability to one fixed element. In particular the interpretation of Ω is isolated
in every model. This property will be studied in Section 5 in the framework of Universal
Algebra.

The class of pointed ordered models is not consistent with respect to the set of quantifier-
free sentences: the quantifier-free sentence λx.Ωxx = λx.Ω ∧ Ω 6= ΩΩ(ΩT I) is consistent
with the λ-calculus but no pointed ordered model satisfies it. This result was shown by
Salibra for the λ-calculus (see the remark after [35, Corollary 3.6]) and by Honsell–Plotkin
for the extensional λ-calculus (see [20, Theorem 7]): Honsell and Plotkin also ask whether
there exist a finite set of equations consistent with the λ-calculus that are not satisfied by
any pointed ordered model. The following theorem answer their question: the subtractive
equations are indeed a counterexample to the equational consistency for the class of pointed
ordered models.

Theorem 3.2. No pointed ordered model M simultaneously satisfies the equations Θxx =
Ω ∧ ΘxΩ = x.
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Proof. Suppose, by contradiction, thatM |= Θxx = Ω∧ΘxΩ = x. Since |Ω|M is comparable
with ⊥, then by Lemma 3.1(ii) Ω is interpreted as the bottom element ⊥ of M. Since the
bottom element is comparable with all other elements of M, from Lemma 3.1(ii) it follows
that M is trivial.

We can also get a stronger result.

Theorem 3.3. No connected ordered model simultaneously satisfies the equations Θxx =
Ω ∧ ΘxΩ = x.

Proof. By Lemma 3.1(ii).

4. On the order-incompleteness of λ-calculus

The order-incompleteness problem of λ-calculus, raised by Selinger in [42], can be char-
acterised in terms of connected components of a partial ordering: a λ-theory T is order-
incomplete if, and only if, every ordered model M such that Th(M) = T is partitioned in
an infinite number of connected components, each one containing exactly one element. In
other words, the partial order is the equality.

So far we have shown that the subtractive equations force the connected component
of Ω in a model to be a singleton set, so that the model cannot be connected as a partial
order. However, the order-incompleteness is something more than disconnected. Toward
order-incompleteness, we propose a strengthening T of the λ-theory λπφ having the following
property: every ordered modelM such that Th(M) ⊇ T has an infinite number of connected
components among which that of Ω is a singleton set. Moreover each connected component
contains the denotation of at most one βη-normal form.

We define a family of unsolvable terms Θn (for n ≥ 0) obtained as follows:

• Define inductively A0 ≡ x and An+1 ≡ λy.yAn, where y 6≡ x. Note that FV(An) =
{x}, for each n ∈ N.
• Now set Bn ≡ λx.xAn, Cn ≡ λz.zBn (where z 6≡ x) and Θn ≡ BnCn.

Note that Θ0 �β Ω and Θ1 ≡ Θ (recall the definition of Θ from Section 1.5).

Lemma 4.1. The terms Θn are closed zero-terms such that λπ ` Θn = Θm iff m = n.

Proof. It follows from the confluence of the reduction →βηπ and from the form of the
reduction graphs of the terms in question. Each graph Gβηπ(Θn) is a cycle whose edges are
only →β reductions, and Gβηπ(Θn) is disjoint from Gβηπ(Θm) whenever n 6= m.

We are now going to introduce the above-mentioned strenghtening of λπφ. In what
follows we let T be the theory axiomatized over λπφ by the following equations:

Θ2Ω = T ;
Θ2(ΘMN) = F , M and N distinct closed βη-normal forms.

(recall the definiton of T and F from Section 1.5.)
Next we show that T is consistent. In order to do that it suffices, by compactness

reasons, to prove that any finite subset of the above equations is eliminable from a proof of
T ` T = F via the Jacopini–Kuper technique. The proof of this fact closely resembles the
consistency proof given for λπφ (see Section 2.3), so we will just sketch it, only considering
the extension of λπ by three equations Θ2(ΘMN) = F , Θ2Ω = T and λx.ΘxΩ = I, where
(M,N) is an arbitrary but fixed pair of closed distinct βη-normal forms.

Define the two sequences ~P = Θ2(ΘMN),Θ2Ω, λx.ΘxΩ and ~Q = F ,T , I.
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Lemma 4.2. ~P is λπ-operationally less defined than ~Q.

Proof. As the proof of Lemma 2.8.

Lemma 4.3. ~P is λπ-proof-substitutable by ~Q.

Proof. In this proof Ψ and Ψ2 range, respectively, over Gβ(Θ) and Gβ(Θ2). Let F1, F2 be

closed λ-terms and suppose F1
~P =λπ F2

~P . Since the reduction →βηπ is confluent, then the
two sides of the equality are the beginning of two reduction paths σ1 and σ2 that end in a
common term R.

Consider now the labelled term

• A1 ≡ F1(Θ2(ΘMN))1(Θ2Ω)4(λx.ΘxΩ)10

• A2 ≡ F2(Θ2(ΘMN))2(Θ2Ω)5(λx.ΘxΩ)11

Then there exist labelled reduction paths σ′i starting with Ai (i = 1, 2) such that σ′i ≡ σi.

We denote by Ri the last labelled term in the reduction path σ′i. Then we have R ≡ Ri
(i = 1, 2). Let S be the term obtained by superposition of R1 and R2. Then the labels of
S range over the set L = {1, 2, 3, 4, 5, 9, 10, 11}. Note that if S has a labelled subterm of
the shape (Θ2Ω)l, then l ∈ {4, 5, 9} because the contrary would require ΘMN →βηπ Ω (by
Theorem 2.5(ii)), which is impossible because it would imply λπ `M = N , contradicting
the consistency of λπ (as a consequence of Böhm’s Theorem [1, Thm. 10.4.2]).

We now describe how to extract a witness of λπ-proof-substitutability by suitably
modifying S. All residuals with label 3 ,9, or 21 in S are common to the reduction paths σ′1
and σ′2. Then, if we mimic the reduction path σi starting from FiI (i = 1, 2), we will find
in place of the residuals with label 21 the term I for (λx.ΨxΩ)21; M for (ΨMΩ)21 and a
term N (λπ-convertible with Ω) for (Ω)21. Similarly those residuals with labels 3 and 9 are
replaced by F and T , respectively. Then we let

S′ ≡ S[I/(λx.ΨxΩ)21;M/(ΨMΩ)21; Ω/(Ω)21;F /(Θ2(ΘMN))3;T /(Θ2Ω)9]

and we define a term H out of S′ by replacing bottom-up some subterms (labeled by i ∈ L),
using fresh variables x1, x2, x3, x4, x5, x10, x11 as follows

for i = 10, 11


(λx.ΨxΩ)i with xi;

(ΨMΩ)i with xiM ;

(Ω)i with xiΩ.

for i = 4, 5 and j = 1, 2

{
(Ψ2Ω)i with xi;

(Ψ2(ΨMN))j with xj .

Finally, as in the proof of Lemma 2.9, it is possible to find a term G such that:

G~P ~Q �β H[(Ψ2(ΨMN))/x1;F /x2; (Ψ2Ω)/x4;T /x5; I/x10; (λx.ΨxΩ)/x11] =λπ F1
~Q

G~Q~P �β H[F /x1; (Ψ2(ΨMN))/x2;T /x4; (Ψ2Ω)/x5; (λx.ΨxΩ)/x10; I/x11] =λπ F2
~Q

The following proposition, which relies on Lemma 4.3, it is analogous to Theorem 2.10.

Theorem 4.4. The λ-theory T is consistent.

In [35] it is shown that the semantics of λ-calculus given in terms of ordered models
with a finite number of connected components is theory incomplete. In Theorem 4.6 below
we improve this result.

Lemma 4.5. Let M be an ordered model such that Th(M) ⊇ T . Then M has an infinite
number of connected components and it has the following properties:
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(i) The interpretation in M of two distinct βη-normal forms belongs to different connected
components;

(ii) The connected component of Ω is a singleton set.

Proof. Let M,N be two distinct βη-normal forms and suppose, by way of contradiction, that
M and N lie in the same connected component of M. Then M |= ΘMN = Ω by Lemma
3.1(i). From M |= F = Θ2(ΘMN) and M |= Θ2Ω = T we derive that M |= F = T , which
contradicts the non-triviality of M. Hence each denotation of a βη-normal form belongs to
exactly one connected component. The second part of the statement follows directly from
Lemma 3.1(ii).

Theorem 4.6. The following classes of ordered models are theory-incomplete:

(i) Models with a finite number of connected components.
(ii) Models with an infinite number of connected components such that the connected

component of Ω has cardinality > 1.

Proof. By Lemma 4.5.

5. Subtractivity and orderings

The inspiration for the subtractive equations comes from a general algebraic framework,
developed by Ursini [43], called subtractivity. Salibra in [35] investigated the weaker notion
of semi-subtractivity, linking it to properties of ordered models of λ-calculus. Here we follow
that path illustrating the stronger properties of subtractivity.

We start the section reviewing the connection established by Selinger in [42] between
the absolute unorderability and the validity of certain Mal’cev-type conditions.

5.1. Unorderability and absolute unorderability. Let τ be an algebraic similarity type
and A be an algebra of type τ . We say that A is unorderable if it admits only equality as a
compatible partial order.

The following result is due to Hagemann [18, 19] (see also Coleman [15, Theorem 1.6]).

Theorem 5.1. Let V be a variety. Then the following conditions are equivalent:

(1) Every algebra in V is unorderable;
(2) Every compatible preorder on an algebra in V is symmetric (and thus a congruence).
(3) There exist a natural number n ≥ 2 and ternary terms p1, . . . , pn−1 in the type of V

such that the following Mal’cev identities hold in V:
x = p1(x, y, y);

pi(x, x, y) = pi+1(x, y, y) (i = 1, . . . , n− 2);
pn−1(x, x, y) = y.

Proof. The equivalence of (2) and (3) is [15, Theorem 1.6]. We now prove that (1) implies
(2). Let A ∈ V and ≤ be a compatible preorder on A. Let ≈ be the congruence on A
generated by ≤, that is,

a ≈ b iff a ≤ b and b ≤ a (for all a, b ∈ A).

By hypothesis the partial ordering on the quotient algebra A/ ≈, defined by [a]≈ v [b]≈ iff
a ≤ b, is trivial. Then ≤ is symmetric.
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Definition 5.2. Let C be a class of algebras of type τ and A ∈ C. We say that A is
absolutely unorderable in C if, for every algebra B ∈ C and every embedding f : A→ B (i.e.,
injective homomorphism), the algebra B is unorderable.

Let V be a variety of type τ and A ∈ V . We denote by τ(A) the algebraic similarity type
τ enriched by a constant ā for each element a ∈ A. The algebra A becomes a τ(A)-algebra
by interpreting each constant ā with the element a ∈ A. The equational diagram of A is
defined as the set of all ground identities t = u of type τ(A) such that A |= t = u.

We denote by VA the variety of type τ(A) axiomatized by the equational theory Eq(V)
of V and the equational diagram of A.

There is a bijective correspondence between algebras of VA and pairs (B, f), where
B ∈ V and f : A→ B is a τ -homomorphism. Indeed, the algebra B can be turned into a
τ(A)-algebra in VA, by interpreting each constant ā with the element f(a) of B.

If X is a set of indeterminates, then the free extension A[X] of A by X in the variety
V is the free τ(A)-algebra over X in the variety VA. The algebra A[X] can be also defined
up to isomorphism by the following universal mapping properties: (1) A ∪ X ⊆ A[X];
(2) A[X] ∈ V; (3) for every B ∈ V, τ -homomorphism h : A → B and every function
f : X → B, there exists a unique τ -homomorphism g : A[X]→ B extending h and f . When
X = {x1, . . . , xn} is finite, we write A[x1, . . . , xn] for A[X].

We are now ready to give the main result of this subsection that characterizes those
algebras which are absolutely unorderable in a variety. Notice that the equivalence of items
(1) and (3) below was shown by Selinger in [42, Theorem 3.4], while the equivalence of (1)
and (2) was suggested by a referee.

Theorem 5.3. Let V be a variety of type τ and A ∈ V. Then the following conditions are
equivalent:

(1) A is absolutely unorderable in V;
(2) Every algebra in the variety VA is unorderable;
(3) The algebra A[x, y] satisfies the Mal’cev identities of Theorem 5.1.

Proof. (1) ⇒ (2) Assume, by contradiction, B to be a τ(A)-algebra in VA, which admits a
nontrivial compatible partial order ≤. Then there are two distinct elements a, b ∈ B such
that a ≤ b. If f : X → B is an onto map from a set X of indeterminates to B, then there are
two indeterminates x, y ∈ X such that f(x) = a and f(y) = b. Let θ be the least compatible
preorder on A[X] such that xθy, and let ≈ be the congruence on A[X] generated by θ, that
is,

t ≈ u iff tθu and uθt (for all t, u ∈ A[X]).

Then the relation v, defined by [t]≈ v [u]≈ iff tθu, is a compatible partial ordering on
A[X]/≈. By the hypothesis xθy we obtain [x]≈ v [y]≈. Since the map ι : A → A[X]/≈,
defined by ι(a) = [a]≈, is an embedding and A is absolutely unorderable in V, then we
get [y]≈ = [x]≈, so that yθx holds. Since B ∈ VA, then the map h : A → B, defined by
h(a) = āB, is a τ -homomorphism. Consider the unique τ -homomorphism g : A[X] → B
extending h and f . Since θ ⊆ {(t, u) : g(t) ≤ g(u)}, then by yθx we get b = g(y) ≤ g(x) = a,
that together with a ≤ b implies a = b. Contradiction.

(2)⇐ (1) If B ∈ V and f : A→ B is an embedding, then B can be seen as a τ(A)-algebra
in VA, which is unorderable by hypothesis.

(2) ⇔ (3) follows from Theorem 5.1.
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It is unknown whether there exist absolutely unorderable algebras in the variety of
combinatory algebras. Plotkin and Simpson have shown that the Mal’cev identities are
inconsistent with combinatory logic for n = 2, while Plotkin and Selinger have obtained the
same result for n = 3 (see [42]). It is unknown whether the Mal’cev identities are consistent
with combinatory logic for n ≥ 4.

In [35] the second author has shown that there exists a quasi-variety of combinatory
algebras which only admits absolutely unorderable algebras. We recall that a quasi-variety
is a class of algebras axiomatized by quasi-identities (i.e., equational implications with a
finite number of equational premises).

Theorem 5.4. ([35]) Let Q be the quasi-variety of combinatory algebras axiomatized by
the identity Ωxx = Ω and the quasi-identity Ωxy = Ω⇒ x = y. Then Q is nontrivial and
every algebra A ∈ Q is absolutely unorderable in Q.

Proof. Q is nontrivial because the term model of the consistent λ-theory axiomatised by
Ωxx = Ω belongs to Q. Moreover, it is easy to show that every algebra of Q is unorderable.

5.2. Absolute 0-unorderability. In the case a variety V has two constants 0 and 1, the
Mal’cev identities of Theorem 5.1 give:

0 = p1(0, 1, 1);
pi(0, 0, 1) = pi+1(0, 1, 1) (i = 1, . . . , n− 2);

pn−1(0, 0, 1) = 1.

If we define the unary term operations fi(x) = pi(0, x, 1), then the above identities can be
written as follows:

0 = f1(1); fi(0) = fi+1(1) (i = 1, . . . , n− 2); fn−1(0) = 1. (5.1)

This suggests the following theorem, whose proof is similar to the proof of Theorem 5.9
below and it is omitted.

Theorem 5.5. Let V be a variety with two constants 0 and 1. Then the constants 0 and 1
are incomparable in all ordered algebras in V if, and only if, there exist a natural number
n ≥ 2 and unary terms f1, . . . , fn−1 in the type of V such that the identities (5.1) hold in V.

In the case a variety V has a constant 0, then we can relativise the Mal’cev identities of
Theorem 5.1 as follows:

0 = p1(0, y, y);
pi(0, 0, y) = pi+1(0, y, y) (i = 1, . . . , n− 2);

pn−1(0, 0, y) = y.

If we define the binary term operations si(y, x) = pi(0, x, y), then the above identities can
be written as follows:

0 = s1(x, x)
si(x, 0) = si+1(x, x) (i = 1, . . . , n− 2);

sn−1(x, 0) = x.
(5.2)

This suggests that the absolute unorderability relative to the element 0 can be expressed
by the following identities defining n-subtractivity.



21

Definition 5.6. An algebra A is n-subtractive (n ≥ 2) if there exist a constant 0 and
n− 1 binary terms s1(x, y), . . . , sn−1(x, y) such that A satisfies identities (5.2). A variety
of algebras is n-subtractive if every algebra in V is n-subtractive with respect to the same
constant and term operations.

Then Ursini’s subtractivity of Definition 2.1 means 2-subtractivity: this is the strongest
notion since it is easy to verify that an n-subtractive algebra is also m-subtractive for every
m > n.

Every model of the two equations (π) and (φ) is subtractive, when we define the binary
subtractivity operator s1(x, y) as the λ-term Θxy. As a consequence of the consistency of
the λ-theory λπφ, it follows that there exists a non-trivial subtractive variety of combinatory
algebras.

Definition 5.7. An algebra A with 0 is

(i) 0-unorderable if, for every compatible partial order ≤ on A and every a ∈ A \ {0},
neither 0 ≤ a nor a ≤ 0.

(ii) 0-symmetric if, for every compatible preorder ≤ on A and every a ∈ A \ {0}, we
have 0 ≤ a⇔ a ≤ 0.

Proposition 5.8. Every n-subtractive algebra is 0-unorderable and 0-symmetric.

Proof. Let A be n-subtractive and ≤ be a compatible preorder on A. If a ∈ A and a ≤ 0,
then

0 = s1(a, a) ≤ s1(a, 0) = s2(a, a) ≤ · · · ≤ sn−2(a, 0) = sn−1(a, a) ≤ sn−1(a, 0) = a.

If 0 ≤ a a similar reasoning works.

The following theorem relativizes Theorem 5.1 to 0-unorderability.

Theorem 5.9. Let V be a variety with a constant 0. Then the following conditions are
equivalent:

(1) Every algebra in V is 0-unorderable;
(2) Every compatible preorder on an algebra in V is 0-symmetric.
(3) V is n-subtractive for some n.

Proof. (2) ⇒ (3): Define a compatible relation ≺ on the free algebra TV [x] as follows: t ≺ u
iff there exists a binary term p(x, y) such that V |= t = p(x, x) and V |= p(x, 0) = u. The
condition x ≺ 0 is witnessed by the polynomial p(x, y) ≡ y. The reflexive and transitive
closure ≺∗ of ≺ is a compatible preorder on TV [x]. Then by hypothesis we derive 0 ≺∗ x.
This implies the existence of binary terms s1, . . . , sn−1 which witness n-subtractivity.

(3) ⇒ (2): By Proposition 5.8.
(1) ⇔ (2): as in Theorem 5.1.

Definition 5.10. Let C be a class of algebras with a constant 0. An algebra A ∈ C is said
to be absolutely 0-unorderable in C if, for any algebra B ∈ C and embedding f : A→ B, B
is 0-unorderable.

Theorem 5.11. Let V be a variety of type τ and A ∈ V. Then the following conditions are
equivalent:

(1) A is absolutely 0-unorderable in V;
(2) Every algebra in the variety VA is 0-unorderable;
(3) The algebra A[x] is n-subtractive for some n.
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Proof. (2) ⇔ (3) follows from Theorem 5.9.
(1)⇒ (2): As the corresponding proof of Theorem 5.3, where the role of the indeterminate

y is taken by the constant 0.
(2) ⇒ (1): If B ∈ V and f : A → B is an embedding, then B can be seen as a

τ(A)-algebra in VA, which is 0-unorderable by hypothesis.

Corollary 5.12. Every λ-model satisfying the subtractive identities π and φ is absolutely
Ω-unorderable in the variety of combinatory algebras.

Proof. Let A be a λ-model satisfying the subtractive identities π and φ. By [41, Proposition
20] and [31, Theorem 4.2], for all λ-terms M and N , A |= M = N if, and only if, A[x] |=
M = N . Then A[x] is also subtractive. Then the conclusion follows from Theorem 5.11.

We would like to conclude this section by remarking that Ursini [43] has shown that
subtractive algebras have a good theory of ideals. We recall that ideals in general algebras
generalize normal subgroups, ideals in rings, filters in Boolean or Heyting algebras, ideals in
Banach algebra, in l-groups, etc. One feature of subtractive varieties is that their ideals are
exactly the congruence classes of 0, but one does not have the usual one-one correspondence
ideals-congruences: mapping a congruence θ to its equivalence class 0/θ only establishes a
lattice homomorphism between the congruence lattice and the ideal lattice. This points
to another feature: the join of two congruences is a tricky thing to deal with. The join of
two ideals in a subtractive algebra behaves nicely: for I, J ideals, we have that b ∈ I ∨ J
iff for some a ∈ I, s(b, a) ∈ J . Thanks to the consistency of the subtractive equations with
λ-calculus, the theory of ideals for subtractive varieties can be applied to all λ-theories
extending λπφ.

6. Subtractivity and topology

In this section we provide a topological incompleteness theorem for the λ-calculus as a
consequence of a study of conditions of separability for n-subtractive algebras.

The classification of the models of lambda calculus into orderable/unorderable models
was refined as follows in [35]. For every algebra A, let TA

i (i = 0, 1, 2, 21/2) be the set of all
topologies τ on A which make (A, τ) a Ti-topological algebra. It is obvious that in general
we have

TA
0 ⊇ TA

1 ⊇ TA
2 ⊇ TA

21/2
.

A topology τ with a non-trivial specialization order (we have a <τ b for some a, b) would be
T0 yet not T1, so that

A is unorderable iff TA
0 = TA

1 .

Definition 6.1. We say that A is of topological type i (i = 1, 2, 21/2) if TA
0 = TA

i . A variety
V of algebras is of topological type i if every algebra A ∈ V is of topological type i.

Example 6.2. We recall from [35] that a lambda theory T is of topological type i (i =

1, 2, 21/2) if the term modelMT of T satisfies TMT0 = TMTi . The lambda theory B, generated
by equating two lambda terms if they have the same Böhm tree, is not of type 1 (see [1]).
λβ and λβη are of type 1 by Selinger’s result [42], while the lambda theory Π, generated by
the equation Ωxx = Ω, was shown of type 21/2 in [35].

We now refine the topological axioms of separability as follows.
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Definition 6.3. Let (X, τ) be a space and a ∈ X. We say that X is Ti-separated in a
(i = 0, 1, 2, 21/2) if, for all b ∈ X \ {a}, a and b are Ti-separated.

For every algebra A and a ∈ A, let TA
i (a) (i = 0, 1, 2, 21/2) be the set of all topologies τ

on A which make (A, τ) a topological algebra which is Ti-separated in a. We have

A is a-unorderable iff TA
0 (a) = TA

1 (a).

Definition 6.4. We say that A is of topological type i in a (i = 1, 2, 21/2) if TA
0 (a) = TA

i (a).
A variety V of algebras, whose type contains a constant a, is of topological type i in a if
every algebra A ∈ V is of topological type i in a.

We know from Proposition 5.8 that the variety of combinatory algebras generated by
the term model of λπφ is of topological type 1 in Ω. This result will be improved in the
next subsection.

6.1. The topological incompleteness theorem for λ-calculus. The i-diagonal Diagi(A)
of an n-subtractive algebra A is the set of elements a ∈ A such that si(a, a) = 0. Notice
that (i) Diag1(A) = A; (ii) 0 ∈ Diagi(A) for all i; (iii) Diagi(A) ⊇ Diagn−1(A) for every i.

Lemma 6.5. Every n-subtractive T0-semitopological algebra (A, τ) is T1-separated in the
element 0.

Proof. By Lemma 1.4 the specialisation order ≤τ is compatible. Then the conclusion follows
from Proposition 5.8.

Corollary 6.6. Let (A, τ) be an n-subtractive T0-semitopological algebra. Then we have:

(i) The singleton set {0} is closed;
(ii) The sets Diagi(A) (1 ≤ i ≤ n− 1) are closed.

Proof. (i) An element a belongs to the closure of {0} if, and only if, a ≤τ 0. By Proposition
5.8 A is 0-unorderable. Then the set {0} is closed.

(ii) Diagi(A) is the inverse image of the closed set 0 with respect to the continuous
unary polynomial si(x, x).

Lemma 6.7. Let (A, τ) be a semitopological algebra in an arbitrary similarity type, t(x, y)
be a binary term operation and a, b ∈ A be two elements such that

t(a, a) = t(b, b); t(a, b) 6= t(a, a).

If t(a, b) and t(a, a) are T0-separated, then a and b are T1-separated.

Proof. Let c ≡ t(a, a) in this proof. Assume first there exists a neighbourhood U of c with
t(a, b) /∈ U . From t(a, a) = c ∈ U and t(b, b) = c ∈ U and from the separated continuity of t
it follows that there exist an open neighbourhood V of a and an open neighbourhood W of
b such that t(a, V ) ⊆ U and t(W, b) ⊆ U . The condition b ∈ V or a ∈ W contradicts the
hypothesis that t(a, b) /∈ U .

Assume now there exists a neighbourhood U of t(a, b) with c /∈ U . From t(a, b) ∈ U and
from the separated continuity of s it follows that there exist an open neighbourhood V of a
and an open neighbourhood W of b such that t(a,W ) ⊆ U and t(V, b) ⊆ U . The condition
b ∈ V or a ∈W contradicts the hypothesis that c /∈ U .
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Corollary 6.8. Let (A, τ) be an n-subtractive T0-semitopological algebra and let a, b ∈
Diagi(A). If si(a, b) 6= 0 then a and b are T1-separated.

Proof. By Lemma 6.5 si(a, b) and 0 are T1-separated. Then the conclusion follows from
Lemma 6.7.

The following theorem is a slight generalization of [35, Theorem 5.2]. We are indebted
to [3] for the technique used in the proof.

Theorem 6.9. Let (A, τ) be an n-subtractive T0-topological algebra and let a, b ∈ Diagi(A).

(i) If si(a, b) 6= 0, then a and b are T2-separated in the subspace Diagi(A).
(ii) If si(a, b) and 0 are T2-separated, then a and b are T21/2-separated in the subspace

Diagi(A).

Proof. (i) By Lemma 6.5 there exists an open neighborhood U of si(a, b) such that 0 /∈
U . From si(a, b) ∈ U and from the continuity of si it follows that there exist an open
neighborhood V of a and an open neighbourhood W of b such that si(V,W ) ⊆ U . If there
exists d ∈ V ∩W ∩Diagi(A) then 0 = si(d, d) ∈ U contradicting the hypothesis.

(ii) By hypothesis there exist an open neighbourhood V ′ of si(a, b) and an open neigh-
bourhood W ′ of 0 such that V ′∩W ′ = ∅. Since si is continuous and si(a, b) ∈ V ′, there exist
two other open sets V and W containing a and b, respectively, such that si(V,W ) ⊆ V ′. The
pre-image of V ′ under the map si is closed. From si(V,W ) ⊆ V ′ ⊆ V ′ the pre-image of V ′,
that is closed, contains V ×W , so si(V ,W ) ⊆ V ′. We now prove that V ∩W ∩Diagi(A) = ∅.
Assume, by the way of contradiction, that there is e ∈ V ∩W∩Diagi(A). Since si(V ,W ) ⊆ V ′
it follows that 0 = si(e, e) ∈ V ′. But by definition of closure of a set this is possible only if
for every open neighbourhood Z of 0, we have that Z ∩ V ′ 6= ∅. But this contradicts our
initial choice of V ′ and W ′ as two open neighbourhoods of s(a, b) and 0 respectively with
empty intersection.

Corollary 6.10. Let (A, τ) be a 2-subtractive T0-topological algebra and let a, b ∈ A. If
s1(a, b) 6= 0, then a and b are T21/2-separated. In particular, for all a ∈ A \ {0}, a and 0 are
T21/2-separated.

Proof. Recall that Diag1(A) = A. By Theorem 6.9(i) and s1(s1(a, b), 0) = s1(a, b) we have
that s1(a, b) and 0 are T2-separated. Then we apply Theorem 6.9(ii) to get the conclusion.

We cannot generalise Theorem 6.9 and Corollary 6.10 to semitopological algebras as
explained by the following counterexample.

Example 6.11. The Visser topology of λ-calculus (see [1, 44]) on the set Λ of λ-terms is
the topology generated by the following family of sets: U ⊆ Λ is a base open set if it is
closed under β-conversion and it is the complement of an r.e. set. The Visser topology on
the term model of the λ-theory λπφ is the quotient topology of the Visser topology on Λ.
It makes the term model of λπφ a semitopological algebra, but not a topological algebra,
because Theorem 6.9 and Corollary 6.10 are false for the term model of λπφ with the Visser
topology. In fact, the Visser topology on Λ was shown hyperconnected by Visser in [44]. We
recall that a topology is hyperconnected if the intersection of two arbitrary nonempty open
sets is nonempty.

We conclude the section by applying the above results to λ-calculus.

Corollary 6.12. The variety of combinatory algebras generated by the term model of λπφ
is of topological type 21/2 in Ω.
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The topological incompleteness theorem of [35] states that the semantics of λ-calculus
given in terms of coconnected topological models is incomplete (see Section 1.3 for the
definition of coconnected space). Coconnected topological models include all pointed ordered
models of λ-calculus.

In the following theorem we strongly improve the topological incompleteness theorem of
[35]. Notice that a topological modelM is not T21/2-separated in Ω if there exists an element

a in the model such that for all opens U, V with a ∈ U and Ω ∈ V we have U ∩ V 6= ∅.

Theorem 6.13. The semantics of λ-calculus given in terms of topological models which are
not T21/2-separated in Ω is theory incomplete.

6.2. Separability in n-subtractive varieties. In this last subsection we study conditions
of separability for n-subtractive varieties of (semi)topological algebras. After some general
results about n-subtractive semitopological algebras, we show how n-subtracivity in T0-
topological algebras induces a generalized version of Hausdorffness due to J.P. Coleman’s.
Of course the focus is on T0-topological algebras because they include the vast majority of
partially ordered models of λ-calculus. As a particular case of this study we obtain a result
stating that any 2-subtractive T0-topological algebra is T2-separated in 0.

Definition 6.14. Let A be an n-subtractive algebra (n ≥ 2) and a ∈ A \ {0}. The rank
κ(a) of a is the least natural number k such that sk(a, 0) 6= 0.

Since sn−1(a, 0) = a, then the rank κ(a) exists and we have 1 ≤ κ(a) ≤ n− 1.

Lemma 6.15. a ∈ Diagκ(a)(A).

Proof. If κ(a) = 1 the result follows from the identity s1(x, x) = 0. If κ(a) > 1 we have
sκ(a)(a, a) = sκ(a)−1(a, 0) = 0.

Define, for every 0 ≤ i ≤ n − 1, Ri = {a : κ(a) ≤ i}. Then R0 = ∅, Ri ⊆ Ri+1 and
Rn−1 = A/{0}.

Lemma 6.16. Let (A, τ) be an n-subtractive semitopological algebra. Then Ri is open for
every i.

Proof. If a ∈ A then κ(a) ≤ i if, and only if, there is j ≤ i such that sj(a, 0) 6= 0. Then

Ri =

i⋃
j=1

{a : sj(a, 0) 6= 0}.

Each set {a : sj(a, 0) 6= 0} is open because {0} is closed, A\{0} is open and {a : sj(a, 0) 6= 0}
is the inverse image of A \ {0} by the continuous function sj(x, 0).

We define for i ≥ 1

Σi = {a : (∃U, V ∈ τ) a ∈ U , 0 ∈ V and U ∩ V ⊆ Ri−1}
We have: (i) Σ1 is the set of all elements a such that a and 0 are T2-separated; (ii)
Σn = A \ {0}; Σi ⊆ Σi+1 for every i.

Lemma 6.17. Let (A, τ) be an n-subtractive semitopological algebra. We have for every
1 ≤ i ≤ n:

(i) Σi is open.
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(ii) Ri−1 ⊆ Σi.

Proof. (i) Let a ∈ Σi. We have to show that there exists an open neighborhood of a contained
within Σi. If a ∈ Σi then the exist U, V ∈ τ such that a ∈ U , 0 ∈ V and U ∩ V ⊆ Ri−1.
Then U is an open neighborhood of a contained within Σi.

(ii) By Lemma 6.16 Ri−1 is open. Moreover, Ri−1 is an open neighborhood of each
of its elements and we trivially have Ri−1 ∩ V ⊆ Ri−1 for every (and then some) open
neighborhood V of 0.

In this theorem we improve Lemma 6.17(ii) in the hypothesis that A is a T0-topological
algebra.

Theorem 6.18. Let (A, τ) be an n-subtractive T0-topological algebra. Then we have:
(i) a ∈ Σκ(a) for every a ∈ A \ {0}.
(ii) Ri ⊆ Σi.
(iii) Σn−1 = A \ {0}.

Proof. (i) Since sκ(a)(a, 0) 6= 0, then by Lemma 6.5 there exists an open neighbourhood W
of sκ(a)(a, 0) such that 0 /∈W . Then we have

sκ(a)(a, 0) ∈W.
By the continuity of sκ(a) there exist two open neighbourhoods U and V of a and 0 respectively
such that

sκ(a)(U, V ) ⊆W.
If κ(a) = 1 and there exists b ∈ U ∩ V , then 0 = s1(b, b) ∈ W , contradicting the

hypothesis on W . Then V ∩ U = ∅; thus a and 0 are T2-separated, and a ∈ Σ1.
If κ(a) > 1, then U ∩ V 6= ∅. For every b ∈ U ∩ V we have that

sκ(a)(b, b) ∈W,
that implies

sκ(a)−1(b, 0) = sκ(a)(b, b) 6= 0.

This means that the rank of b is less than the rank of a for every b ∈ U ∩ V . Then
U ∩ V ⊆ Rκ(a)−1, so that a ∈ Σκ(a).

(ii) Trivial by (i).
(iii) follows from (ii).

Let (A, τ) be a topological space. For every a ∈ A, define by induction the following
family of subsets of A:

(1) Γ0(a) = ∅;
(2) Γi+1(a) = {b : ∃ open U, V with a ∈ U , b ∈ V and U ∩ V ⊆ Γi(a)}.

Coleman [14, 15] defines (A, τ) to be n-step Hausdorff if Γn(a) = A\{a} for all a ∈ A. 1-step
Hausdorff is equivalent to T2. A variety of algebras is n-step Hausdorff if every topological
algebra in the variety is n-step Hausdorff.

A variety V of algebras is n-permutable (n ≥ 2) iff every algebra in V satisfies the
Mal’cev identities of Theorem 5.1 (see [11]). Every n-permutable variety has been shown to
be bn/2c-step Hausdorff by Kearnes and Sequeira [23].

We define a topological algebra (A, τ) to be n-step Hausdorff in 0 if Γn(0) = A/{0}.
1-step Hausdorff in 0 is equivalent to T2-separated in 0.
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Proposition 6.19. Let (A, τ) be an n-subtractive T0-topological algebra. Then (A, τ) is
n− 1-step Hausdorff in 0.

Proof. We show by induction that Σi ⊆ Γi(0) for all 1 ≤ i ≤ n. For i = 0 the result is trivial.

Σi+1 = {b : ∃ open U, V with a ∈ U , b ∈ V and U ∩ V ⊆ Ri} by definition
⊆ {b : ∃ open U, V with a ∈ U , b ∈ V and U ∩ V ⊆ Σi} by Thm. 6.18(ii)
⊆ {b : ∃ open U, V with a ∈ U , b ∈ V and U ∩ V ⊆ Γi(0)} by induction hypothesis
= Γi+1(0) by definition

The conclusion follows because Σn−1 = A \ {0}.
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