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ABSTRACT/RÉSUMÉ 

The role of R&D and technology diffusion in climate change mitigation: new perspectives using 
the WITCH Model 

 This paper uses the WITCH model, a computable general equilibrium model with endogenous 
technological change, to explore the impact of various climate policies on energy technology choices and 
the costs of stabilising greenhouse gas concentrations. Current and future expected carbon prices appear to 
have powerful effects on R&D spending and clean technology diffusion. Their impact on stabilisation costs 
depends on the nature of R&D: R&D targeted at incremental energy efficiency improvements has only 
limited effects, but R&D focused on the emergence of major new low-carbon technologies could lower 
costs drastically if successful – especially in the non-electricity sector, where such low-carbon options are 
scarce today. With emissions coming from multiple sources, keeping a wide range of options available 
matters more for stabilisation costs than improving specific technologies. Due to international knowledge 
spillovers, stabilisation costs could be further reduced through a complementary, global R&D policy. 
However, a strong price signal is always required. 

JEL classification: H0; H2; H3; H4; O3; Q32; Q43; Q54. 

Keywords: Climate policy; Energy R&D; Fund; Stabilisation costs. 

++++++++++++++++ 

Le rôle de la R&D and de la diffusion des technologies dans l’atténuation du changement 
climatique : nouvelles perspectives à l’aide du modèle WITCH 

 Cet article utilise le modèle WITCH, un modèle d’équilibre général calculable à progrès 
technique endogène, afin d’explorer l’impact de diverses politiques climatiques sur les choix de 
technologies énergétiques et les coûts de stabilisation des concentrations de gaz à effet de serre. Il apparaît 
que les prix courants et anticipés du carbone ont des effets puissants sur la dépense en R&D et la diffusion 
des technologies propres. Leur impact sur les coûts de stabilisation dépend de la nature de la R&D : une 
R&D améliorant l’efficacité énergétique de façon incrémentale a des effets limités, mais une R&D visant à 
l’émergence de nouvelles technologies sobres en carbone pourrait drastiquement réduire les coûts en cas de 
succès – notamment dans le secteur non-électrique, où de telles options sobres en carbone sont aujourd’hui 
rares. Les émissions provenant de sources multiples, garder un éventail d’options aussi large que possible 
influence davantage les coûts de stabilisation qu’améliorer certaines technologies spécifiques. Du fait des 
externalités internationales liées à la R&D, les coûts de stabilisation peuvent être encore réduits par un 
politique complémentaire de R&D mondiale. Cependant, un signal de prix fort est toujours nécessaire.   

Classification JEL : H0 ; H2 ; H3 ; H4 ; O3 ; Q32 ; Q43 ; Q54.  

Mots-Clés : Politique climatique ; R&D énergétique ; Fonds ; Coûts de stabilisation. 

Copyright OECD 2009 

Application for permission to reproduce or translate all, or part of, this material should be made to: 
Head of Publications Service, OECD, 2 rue André Pascal, 75775 Paris CEDEX 16. 
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THE ROLE OF R&D AND TECHNOLOGY DIFFUSION IN CLIMATE CHANGE 
MITIGATION: NEW PERSPECTIVES USING THE WITCH MODEL 

By 

Valentina Bosetti, Carlo Carraro, Romain Duval, Alessandra Sgobbi and Massimo Tavoni1 

 

1. Introduction and summary of main findings 

1. Any cost-effective policy framework to address climate change should foster efficient R&D, 
innovation and diffusion of greenhouse gas (GHG) emission-reducing technologies. Technological 
progress will be needed both to bring down the cost of available technologies  which in many key emitting 
areas remains significantly more expensive than the fossil-fuel based technologies they could potentially 
displace, and to expand the pool of available technologies and their mitigation potential (Anderson, 2006; 
IEA, 2008). Currently, it would appear that the scope and scale of low-carbon technologies envisaged for 
the future might be limited (Anderson, 2006). Most are of a specific rather than general purpose nature, 
with their potential use being restricted to a narrow range of economic activities (e.g. wind, solar and 
nuclear energy to power generation, hydrogen and biofuels to transport etc.). Furthermore, constraints 
remain (e.g. related to energy storage possibilities) on the extent to which emissions from any industry 
could be abated through the use of one single mitigating option. For these reasons, a broad portfolio of 
technological options will probably have to be involved in mitigating climate change (see e.g. Pacala and 
Socolow, 2004).2  

2. Speeding up the emergence and deployment of low-carbon technologies will ultimately require 
increases in, and reallocation of, the financial resources channelled into energy-related R&D. Average 
public energy-related R&D expenditure across the OECD has declined dramatically since its peak in the 
early 1980s, and even though no comprehensive data exist on private sector energy-related R&D, available 
evidence suggests that its share in overall private R&D spending is low compared with other sectors and 

                                                      
1  The authors are researchers at Fondazione Eni Enrico Mattei (FEEM), with the exception of Romain Duval 

who is a Senior Economist at the OECD Economics Department 
(Email:valentina.bosetti@feem.it;carlo.carraro@feem.it;romain.duval@oecd.org;alessandra.sgobbi@feem.
it;massimo.tavoni@feem.it). They want to express gratitude to Christine de la Maisonneuve for statistical 
assistance and Irene Sinha for editorial assistance. Thanks are also due to Jorgen Elmeskov, Nick 
Johnstone, Giuseppe Nicoletti and Jean-Luc Schneider for helpful comments. The authors retain full 
responsibility for errors and omissions. 

2.  This would reduce not only future abatement costs but also their sensitivity to emission-reduction 
objectives, thereby providing some hedging against the risk of a larger than expected need for action 
against climate change (Stern, 2007, Chapter16). This is because broadening the portfolio of low-cost 
options would flatten the slope of the marginal abatement curve, thereby limiting the cost of unexpected 
shifts in required (optimal) abatement levels due e.g. to unexpected shifts in climate damages. 
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decreasing over the past two decades (IEA, 2008).3 More broadly, climate change mitigation will involve 
increased expenditure at all stages of the technology development process, ranging from R&D upstream to 
demonstration, deployment, and ultimately diffusion downstream. In particular, empirical evidence 
suggests that most emerging low-carbon energy technologies are subject to sizeable “learning effects”, i.e. 
their costs decrease as experience accumulates through cumulative production (see below). In that context, 
significant technology deployment costs may have to be incurred before low-carbon technologies can 
become competitive at market prices.4  

3. Against this background, this paper explores the question of how to induce technological change 
that enhances the efficiency of existing energy technologies and/or makes new carbon-free technologies 
available. Various types of public policies may influence the rate and direction of technological change, 
including carbon pricing, R&D policies and subsidies to the deployment of existing technologies (for 
recent OECD discussion of these policies and their interactions, see Duval, 2008). These are explored here, 
with the view to assessing the effects of alternative policy mixes on future GHG emission paths and/or on 
the costs of achieving given GHG concentration stabilisation targets. The analysis is carried out with the 
WITCH model, an energy/economy/climate model developed by the climate change modelling group at 
Fondazione Eni Enrico Mattei (FEEM), which has been used extensively for climate policy analysis.5 The 
main conclusions from this work, which feed into broader, recent OECD work on the economics of climate 
change and future policy options (Burniaux et al. 2008), are:  

• A carbon price has sizeable effects on R&D and technology deployment. For instance, the 
WITCH model’s (inter-temporally optimal) world carbon price path to stabilise long-run CO2 
concentration at 450 ppm and overall GHG concentration at about 550 ppm CO2eq6 is estimated 
to induce a four-fold increase in energy R&D expenditure and investment in deployment of 
renewable power generation by 2050, compared with the baseline scenario. These effects 
increase over time and/or as concentration targets become more stringent, reflecting a higher CO2 
price. In fact, because marginal abatement costs rise disproportionately with emission reductions, 
investment in technology also increases disproportionately with the stringency of the emission 
reduction objective. 

• Expectations of future carbon prices and, therefore, the credibility of future climate policy 
commitments, matter a great deal for today’s investment in low-carbon R&D and technology 
deployment. For instance, under similar carbon price levels, R&D investment is found to be 
noticeably higher under a 550 ppm CO2eq GHG (450 ppm CO2 only) concentration stabilisation 

                                                      
3.  In power generation, R&D spending as a share of total turnover was about eight times lower than in the 

manufacturing sector as a whole (OECD Roundtable on Sustainable Development, 2006). This is 
consistent with disaggregated sectoral analysis for the United States (Alic et al. 2003). 

4.  For example, based on learning rate assumptions across a wide range of technologies and in the absence of 
any carbon price, IEA (2008) puts cumulative (undiscounted) deployment costs of low-carbon technologies 
consistent with a 50% cut in world emissions by 2050 at about $US7 trillion. These costs are computed in 
the absence of a carbon price and would, therefore, be smaller in the presence of such a price. 

5  See, for example, Bosetti, Carraro et al. (2007a). A list of applications and papers can be found at 
www.feem-web.it/witch. 

6.  This is the optimal world carbon price path under the non-cooperative solution of the model when a 
450 ppm long-run CO2 concentration stabilisation target is imposed. Emissions of non-CO2 gases are not 
covered by the WITCH model and are thus excluded from the simulations, However, stabilisation of CO2 
concentration at 450 ppm roughly corresponds to stabilisation of overall GHG concentration at 550 ppm. 
See below for details. 
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objective than under a 650 ppm CO2eq (550 ppm CO2 only) scenario, reflecting higher expected 
future increases in carbon prices. 

• In the absence of major technological breakthroughs, induced technological change associated 
with higher R&D investment and technology deployment may have only modest effects on 
policy costs, especially under less stringent GHG concentration stabilisation objectives. This is 
mainly for two reasons. First, decreasing marginal impacts of R&D on energy efficiency and 
fading learning effects in renewable energies ultimately limit the gains to be reaped from induced 
technological change. Second, in the electricity sector, low-carbon options already exist today, 
including nuclear energy and carbon capture and storage (CCS). Both are projected to account for 
an increasing share of the future energy mix under a rising carbon price. If, for technological, 
political or safety reasons the penetration of nuclear energy and CCS were constrained, 
investments in R&D and renewable power generation would be increased, but at the same time 
overall mitigation costs would rise significantly as some of the few widely deployable abatement 
opportunities would be lost. This suggests that exploiting all currently available technological 
options may be more important than boosting R&D on energy efficiency in minimising the costs 
of climate change mitigation. 

• By contrast, R&D focusing on major technological breakthroughs could significantly reduce 
future mitigation costs and would give a far greater role to induced technological change in 
containing such costs. Under a 550 ppm CO2eq (450 ppm CO2 only) concentration stabilisation 
scenario with world carbon pricing and R&D targeted at two carbon-free backstop technologies 
in the electricity and non-electricity sectors, mitigation costs in 2050 are halved – from about 4% 
of world GDP to under 2% – compared with a “no-backstop” scenario, and the pay-off from 
these innovative technologies becomes increasingly large in the second half of the century. The 
non-electricity backstop technology contributes most to such reduction in long-term mitigation 
costs. This reflects the fact that in the absence of backstops, the electricity sector can count on a 
wider array of low-carbon abatement options (nuclear power and CCS, wind and solar) than the 
non-electricity sector. 

• However, lower long-term mitigation costs come at the price of higher medium-run costs. This 
reflects the large and sustained increase in R&D investment needed to develop the two backstop 
technologies, which in the simulations push energy R&D spending as a share of GDP above its 
previous historical peak of the mid-1980s.  

• Even assuming R&D could achieve major technological breakthroughs, a strong price signal is 
still needed to spur the necessary investments. The optimal carbon price path in the “backstops” 
scenario is virtually unchanged from its level in the “no backstop” case until 2020, falling 
significantly below the latter only at a later stage, as the innovative technologies account for a 
rising share of the energy mix. 

• WITCH simulations suggest that a global R&D fund to subsidise R&D and/or low-carbon 
technology deployment could further reduce mitigation costs if it came on top of a carbon price. 
However, the optimal size of such a fund, and its effects, are found to be typically small. This 
partly reflects the assumption in WITCH that social returns are almost entirely appropriated by 
each region, resulting in rather small international spillovers. Further research on the existence, 
nature and magnitude of international spillovers is warranted. 

• Finally, while raising world R&D spending over and above the increase induced by a carbon 
price can reduce mitigation costs, R&D alone is not an effective option to address climate 
change. Even under optimistic assumptions, no global R&D policy of any size – even if 
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implausibly large, e.g. 1 percentage point of world GDP, representing a 30-fold increase with 
respect to current levels – appears to be able on its own to stabilise carbon concentrations during 
this century. For instance, under a global R&D fund that would gradually bring world energy-
related R&D spending back to its early-1980s peak level, CO2 concentration is found to rise 
continuously, reaching over 650 ppm (corresponding to over 750 ppm CO2eq all gases included) 
by the end of the century. This reflects the lags required for any breakthrough technologies to 
penetrate the market and, more fundamentally, the difficulty of out-performing fossil fuel-based 
energy production if the external costs of GHG emissions are not priced into traditional 
technologies. Qualitatively similar findings hold for a global policy to subsidise the deployment 
of existing technologies. 

4. The remainder of this paper is organised as follows. Section 2 presents the structure of the 
WITCH model and describes the specification of technological improvements, namely R&D and "learning 
by doing". Section 3 explores the impact of carbon pricing on R&D, technology diffusion and mitigation 
policy costs. Section 4 introduces the possibility for R&D to develop and diffuse two breakthrough carbon-
free backstop technologies in the electricity and non-electricity sectors, and reassesses the results from 
Section 3 in that context. Section 5 analyses the extent to which a global R&D policy could contribute to 
climate change mitigation and to reduce mitigation costs, either as a complement to carbon pricing or as a 
stand-alone policy, and with and without the possibility to develop breakthrough carbon-free backstop 
technologies. Comparable analysis is also carried out in that section, assuming the global fund subsidises 
the deployment of existing low-carbon technologies, rather than R&D in energy efficiency or backstop 
technologies. Despite wide recognition of the importance of technological development for climate change 
control and for the costs of any stabilisation policies, significant uncertainty remains on the appropriate 
way of modelling technological change and parameterisation of the models. Against this background, 
Section 6 provides some elements of sensitivity analysis of the main results to key technological 
parameters for both existing and new technologies. 

2. The World Induced Technical Change Hybrid (WITCH) model 

5. Full details on the WITCH model can be found in Bosetti, Massetti et al. (2007), as well as in 
Bosetti, Carraro et al. (2006). The description below focuses on the overall model structure, the 
specification of endogenous technical change processes and the extensions introduced as part of this paper 
to explore specific R&D policies. 

Overall model structure 

6. WITCH is a dynamic optimal growth general equilibrium model with a detailed (“bottom-up”) 
representation of the energy sector, thus belonging to a new class of hybrid (both “top-down” and “bottom-
up”) models. It is a global model, divided into 12 macro-regions. A reduced form climate module 
(MAGICC) provides the climate feedback on the economic system. The model covers CO2 emissions but 
does not incorporate other GHGs, whose concentration is typically added exogenously to CO2 
concentration in order to obtain overall GHG concentration – a 450 ppm CO2 concentration scenario is 
roughly assumed to correspond to a 550 ppm overall GHG concentration scenario in the simulations 
below. In addition to the full integration of a detailed representation of the energy sector into a macro 
model of the world economy, distinguishing features of the model are: 

• Endogenous technical change. Advances in carbon mitigation technologies are described by both 
diffusion and innovation processes. "Learning by doing" (LbD) and "Learning by researching" 
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(R&D) processes are explicitly modelled and enable to identify the “optimal”7 public investment 
strategies in technologies and R&D in response to given climate policies. Some international 
technology spillovers are also modelled.  

• Game-theoretic set up. The model can produce two different solutions:  a co-operative one that is 
globally optimal (global central planner) and a decentralised, non-cooperative one that is 
strategically optimal for each given region (Nash equilibrium). As a result, externalities due to 
global public goods (CO2, international knowledge spillovers, exhaustible resources etc.) and the 
related free-riding incentives can both be accounted for, and the optimal policy response (world 
CO2 emission reduction policy, world R&D policy) be explored. A typical output of the model is 
an “optimal” carbon price path and the associated portfolio of investments in energy technologies 
and R&D under a given environmental target. 

Endogenous Technical Change (ETC) in the WITCH model 

7. In the basic version of WITCH, technical change is endogenous and is driven both by LbD and 
by public energy R&D investments.8 These two drivers of technological improvements display their effects 
through two different channels: LbD is specific to the power generation industry, while energy R&D 
affects overall energy efficiency in the economy. 

8. The effect of technology diffusion is incorporated based on experience curves that reproduce the 
observed negative empirical relationship between the investment cost of a given technology and 
cumulative installed capacity. Specifically, the cumulative installed world capacity is used as a proxy for 
the accrual of knowledge that affects the investment cost of a given technology: 

( ) ( )∑ −⋅=+
n

PRtnKAtSC 2log,1                   (1) 

Where SC is the investment cost of technology j, PR is the so-called progress ratio that defines the speed of 

learning, A is a scale factor and K  is the cumulative installed capacity for region n at time t. With every 

doubling of cumulative capacity the ratio of the new investment cost to its original value is constant and 
equal to 1/PR. With several electricity production technologies the model is flexible enough to change the 
power production mix and modify investment strategies towards the most appropriate technology for each 
given policy measure, thus creating the conditions to foster the LbD effects associated with emission-
reducing, but initially expensive, electricity production techniques. Experience is assumed to fully spill 
over across countries, thus implying an innovation market failure associated with the non-appropriability 
of learning processes.  

9. R&D investments in energy increase energy efficiency and thereby foster endogenous technical 
change. Following Popp (Popp, 2004), technological advances are captured by a stock of knowledge 
combined with energy in a constant elasticity of substitution (CES) function, thus stimulating energy 
efficiency improvements: 

( ) ( ) ( )[ ] ρρρ αα /1
),(),(, tnENntnHEntnES ENH +=  (2) 

                                                      
7  Insofar as the solution concept adopted in the model is the Nash equilibrium (see below), “optimality” 

should not be interpreted as a first-best outcome but simply as a second-best outcome resulting from 
strategic optimisation by each individual world region. 

8  Due to data availability constraints only public R&D is used to calibrate the current version of WITCH. 
However, public R&D is assumed to respond in a qualitatively similar way as private R&D to climate 
change mitigation policies. 
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Where ),( tnEN denotes the energy input, ),( tnHE is the stock of knowledge and ),( tnES is the amount of 
energy services produced by combining energy and knowledge. The stock of knowledge ),( tnHE derives 
from energy R&D investments in each region through an innovation possibility frontier characterized by 
diminishing returns to research, a formulation proposed by Jones (Jones, 1995) and empirically supported 
by Popp (Popp, 2002) for energy-efficient innovations in the United States: 

)1)(,(),(),(1, && DR
cb

DR tnHEtnHEtn aI) tHE(n δ−+=+  (3) 

Where DR&δ  is the depreciation rate of knowledge, and b and c are both between 0 and 1 so that there are 
diminishing returns to R&D both at any given time and across time periods. Reflecting the high social 
returns from energy R&D, it is assumed that the return on energy R&D investment is four times higher 
than that on physical capital. At the same time, the opportunity cost of crowding out other forms of R&D is 
obtained by subtracting four dollars of private investment from the physical capital stock for each dollar of 
R&D crowded out by energy R&D, DR&ψ , so that the net capital stock for final good production becomes: 

)tnIt) – (n(Itn K) t(nK DRDRCCCC ),(4,)1)(,(1, &&ψδ +−=+   (4) 

where Cδ  is the depreciation rate of the physical capital stock. New energy R&D is assumed to crowd out 

50% of other R&D, as in Popp (2004). This way of capturing innovation market failures was also 
suggested by Nordhaus (2003). 

10. The WITCH model has been extended to carry out the analysis presented in this paper to include 
additional channels for technological improvements, namely learning through research or “learning-by-
searching” (LbS) in existing low carbon technologies (wind and solar electricity, electricity from integrated 
gasifier combined cycle (IGCC) plants with carbon capture and storage (CCS)), and the possibility of 
developing breakthrough, zero-carbon technologies (so-called “backstops”) for both the electricity and 
non-electricity sectors. 

Breakthrough technologies 

11. In the enhanced version of the model used for this paper, backstop technologies in both the 
electricity and non-electricity sectors are developed and diffused in a two-stage process, through 
investments in R&D first and installed capacity in a second stage. A backstop technology can be better 
thought of as a compact representation of a portfolio of advanced technologies. These would ease the 
mitigation burden away from currently commercial options, but they would become commercially 
available only provided sufficient R&D investments are undertaken, and not before a few decades. This 
simplified representation maintains simplicity in the model by limiting the array of future energy 
technologies and, thus, the dimensionality of techno-economic parameters for which reliable estimates and 
meaningful modelling characterisation exist. 

12. Concretely, the backstop technologies are modelled using historical and current expenditures and 
installed capacity for technologies which are already researched but are not yet viable (e.g. fuel cells, 
advanced biofuels, advanced nuclear technologies etc.), without specifying the type of technology that will 
enter into the market. In line with the most recent literature, the emergence of these backstop technologies 
is modelled through so-called “two-factor learning curves”, in which the cost of a given backstop 
technology declines both with investment in dedicated R&D and with technology diffusion (see e.g. 
Kouvaritakis, Soria et al. 2000). This formulation is meant to overcome the limitations of single factor 
experience curves, in which the cost of a technology declines only through “pure” LbD effects from 
technology diffusion, without the need for R&D investment (Nemet, 2006). Nonetheless, modelling long 
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term and uncertain phenomena such as technological evolution is inherently difficult, which calls for 
caution in interpreting the exact quantitative results and for sensitivity analysis (see below).9  

13. Bearing this caveat in mind, the investment cost in a technology tec  is assumed to be driven 
both by LbS (main driving force before adoption) and LbD (main driving force after adoption), with ttecP , , 

the unit cost of technology tec at time t, being a function of the dedicated R&D stock ttecDR ,&  and 

deployment ttecCC , : 

d
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&
                 (5) 

where the R&D stock accumulates with the perpetual inventory method and CC is the cumulative installed 
capacity (or consumption) of the technology. A two-period (10 years) lag is assumed between R&D capital 
accumulation and its effect on the price of the backstop technologies, capturing in a crude way existing 
time lags between research and commercialisation. The two exponents are the LbD index ( d− ) and the 
learning by researching index ( e− ). They define the speed of learning and are derived from the learning 
ratios. The learning ratio lr  is the rate at which the generating cost declines each time the cumulative 
capacity doubles, while lrs  is the rate at which the cost declines each time the knowledge stock doubles. 
The relation between lred ,,  and lrs  can be expressed as follows: 

dlr −=− 21  and elrs −=− 21   (6) 

14. The initial prices of the backstop technologies are set at roughly 10 times the 2002 price of 
commercial equivalents. The cumulative deployment of the technology is initiated at 1000 TWh, an 
arbitrarily low value (Kypreos, 2007). The backstop technologies are assumed to be renewable in the sense 
that the fuel cost component is negligible. For power generation, it is assumed to operate at load factors 
(defined as the ratio of actual to maximum potential output of a power plant) comparable with those of 
baseload power generation. 

15. This formulation has received significant attention from the empirical and modelling literature in 
the recent past (see, for instance, Criqui, Klassen et al. 2000; Bahn and Kypreos, 2003; Söderholm and 
Sundqvist, 2003; Barreto and Klaassen, 2004; Barreto and Kypreos, 2004; Klassen, Miketa et al. 2005; 
Kypreos, 2007; Jamasab, 2007; Söderholm and Klassen, 2007). However, estimates of parameters 
controlling the learning processes vary significantly across available studies. Here, averages of existing 
values are used, as reported in Table 1. The value chosen for the LbD parameter is lower than those 
typically estimated in single factor experience curves, since here technological progress results in part from 
dedicated R&D investment. This more conservative approach reduces the role of “autonomous” learning, 
which has been seen as overly optimistic and leading to excessively low costs of transition towards low-
carbon economies.10  

                                                      
9  This is especially true when looking at the projected carbon prices and economic costs at long horizons – 

typically beyond 2030, while the short-run implications of long-run technological developments are 
comparatively more robust across a range of alternative technological scenarios (see below). 

10  Problems involved in estimating learning effects include: i) selection bias, i.e. technologies that experience 
smaller cost reductions drop out of the market and therefore of the estimation sample; ii) risks of reverse 
causation, i.e. cost reductions may induce greater deployment, so that attempts to force the reverse may 
lead to disappointing learning rates a posteriori; iii) the difficulty to discriminate between “pure” learning 
effects and the impact of accompanying R&D as captured through two-factor learning curves; iv) the fact 
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[Table 1. Learning ratios for diffusion (lr) and innovation (lrs) processes across selected studies 
and technologies] 

16. Backstop technologies substitute linearly for nuclear power in the electricity sector, and for oil in 
the non-electricity sector. Once backstop technologies become competitive, thanks to dedicated R&D 
investment and pilot deployments, their uptake is assumed to be gradual rather than immediate and 
complete. These penetration limits are a reflection of inertia in the system, as presumably the large 
deployment of backstops would require investment in infrastructure and wide reorganisation of economic 
activity. The upper limit on penetration is set equivalent to 5% of the total consumption in the previous 
period by technologies other than the backstop, plus the electricity produced by the backstop in the 
electricity sector, and 7% in the non-electricity sector.  

Spillovers in knowledge and experience 

17. In addition to the international LbD spillovers mentioned above, WITCH also features 
international spillovers in knowledge for energy efficiency improvements. The amount of spillovers 
entering each world region is assumed to depend both on a pool of freely available world knowledge and 
on the ability of each country to benefit from it. In turn, this absorption capacity depends on the domestic 
knowledge stock, which is built up through domestic R&D according to a standard perpetual capital 
accumulation rule. The region then combines knowledge acquired from abroad with the domestic 
knowledge stock to produce new technologies at home. For details, see Bosetti, Carraro et al. (2007b). 

3. Impact of carbon pricing on induced technological change and mitigation policy costs in the basic 
WITCH model 

18. This section proceeds in two steps. It starts by exploring the impact of carbon pricing on induced 
technological change (ITC), which in the basic WITCH model – i.e. the WITCH model without backstop 
technologies – occurs through energy efficiency gains – which in turn result from higher energy R&D 
investments – and technology diffusion. The impact of ITC for mitigation policy costs is then assessed. 

Carbon pricing and induced technological change 

19. The impact of carbon pricing on ITC is assessed under two long-run CO2 concentration targets, 
namely 450 ppm and 550 ppm, corresponding to about 550 ppm and 650 ppm all gases included, 
respectively – all figures and tables in this paper primarily refer to overall concentration including all 
gases. More precisely, two world carbon price paths consistent with such targets – in fact, the 
intertemporally optimal carbon price paths – are considered, and their implications for energy R&D, 
energy efficiency and the diffusion of existing renewable energy are assessed. Given the non-linearity of 
marginal abatement costs as a function of concentration targets, there are increasing differences over time 
across carbon prices under these two scenarios (Figure 1). 

[Figure 2. Carbon price paths under 550 ppm and 650 ppm GHG concentration scenarios] 

20. The emission reductions required in the two scenarios imply both energy savings and energy 
decarbonisation (Figure 2). Over the simulation period, world energy intensity is estimated to fall by 65% 
and 50% under the 550 ppm and 650 ppm GHG concentration scenarios, respectively. The carbon intensity 

                                                                                                                                                                             
that past cost declines may not provide a reliable indication of future cost reductions, as factors driving 
both may differ; v) the use of price – as opposed to cost – data, so that observed price reductions may 
reflect not only learning effects but also other factors such as strategic firm behaviour under imperfect 
competition. 
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of energy falls by about 45% and 25% respectively, in sharp contrast with its projected stagnation under 
the baseline scenario. Energy decarbonisation is achieved mainly in the power sector, where alternative 
technologies (wind and solar, CCS) are available. The share of low-carbon electricity in world power 
generation today is about 35% and it is projected to stay roughly constant in the baseline as the positive 
impact of increased penetration of renewables is offset by the rising importance of coal. By contrast, under 
the 550 ppm and 650 ppm GHG concentration scenarios, electricity would be significantly decarbonised, 
with the share of low-carbon technologies in the world electricity mix rising to about 90% and 70% by 
mid-century, respectively. 

[Figure 3. World energy intensity and carbon intensity trajectories under alternative carbon 
price paths] 

21. The impact of carbon pricing on investment choices is found to be significant, in particular for 
the 550 ppm GHG concentration scenario. Investments in wind and solar power generation are multiplied 
by about four and two relative to baseline by mid-century under the 550 ppm and 650 ppm scenarios, 
respectively (Figure 3, top panel). There are mutual feedback effects between investments in, and the cost 
of, these technologies through LbD, with investment costs of renewables declining by about 16% and 8% 
respectively under both scenarios by 2050, over and above the decrease already embedded in the baseline 
scenario (Figure 3, bottom panel). A strong carbon price signal also induces large investments in other 
low-carbon technologies, such as nuclear and coal with CCS. Nuclear power becomes especially 
competitive when carbon is priced, so that additional capacity would be built up at a slightly higher pace 
than in the 1980s, the period of the maximum expansion of nuclear power (Figure 4, top panel). CCS is 
also estimated to be deployed on a large scale under both 550 ppm and 650 ppm GHG concentration 
scenarios, with annual sequestration rising rapidly starting from 2025 to reach over 6 Gt CO2eq by 2050 
(Figure 4, bottom panel). 

[Figure 3. Investment in and cost of wind and solar power generation under alternative carbon 
price paths] 

[Figure 4. Installed nuclear power capacity and carbon sequestered under alternative carbon 
price paths] 

22. Carbon pricing is found not only to boost the deployment of renewable technologies, nuclear and 
CCS, but also to stimulate investments in energy efficiency enhancing R&D (Figure 5). However, 
differences with respect to baseline are significant only under a 550 ppm GHG concentration scenario. 
This reflects at least three factors: 

• WITCH being a forward-looking model, for a given carbon price today, higher expected carbon 
prices in a 550 ppm GHG concentration scenario have large impacts on R&D spending, 
compared with a less stringent 650 ppm scenario. This effect magnifies the impact of carbon 
pricing on R&D expenditures. 

• Technologies such as nuclear power and CCS are very responsive to carbon pricing. As a result, 
these abatement opportunities are exploited heavily under moderate carbon price scenarios – 
although some innovation might be eventually needed for large scale of deployment, while 
energy-efficiency R&D spending increases mainly when carbon prices get higher.  

• The bulk of world emission cuts under moderate carbon price scenarios are undertaken in 
developing countries, where cheaper abatement opportunities can be exploited without much 
need for innovation.  
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[Figure 5. World investment in energy efficiency improving R&D under alternative carbon 
price paths] 

Impact of induced technological change on mitigation policy costs 

23. Despite a sizeable impact of carbon price signals on innovation and deployment of low-carbon 
technologies, endogenising technological change and diffusion does not appear to make a large difference 
for mitigation policy costs in the basic version of WITCH. This can be inferred from a policy simulation in 
which a world carbon price path consistent with a 550 ppm GHG concentration target is implemented,11 
but regions are assumed not to have the possibility to expand their investment in energy efficiency R&D 
beyond baseline levels, and the deployment of wind and solar energy technologies does not lead to 
investment costs reduction through LbD effects. Under such a scenario, policy costs are estimated to rise 
only marginally compared with a 550 ppm GHG concentration scenario with ITC, from 3.9% to about 
4.15% of world GDP in 2050 (Figure 6).  

[Figure 6. Projected world GDP costs under a 550 ppm GHG concentration scenario in the 
basic WITCH model, with and without induced technological change] 

Impact of technology availability on mitigation policy costs 

24. The main factor behind the low impact of induced technological change on mitigation policy 
costs is that improving the technological and/or economic efficiency of the current portfolio of low-carbon 
options appears to matter far less than the breadth of that portfolio. In other words, mitigation policy costs 
can be reduced to a greater extent by widening the range of technological options available at competitive 
prices than through improvements in existing technologies. As will be discussed below, exploiting current 
technologies may also be more important than improving them. While this conclusion will come out 
forcefully when introducing new backstop technologies in the next section, it can also be shown by 
computing the impact on mitigation policy costs of constraints on the availability of existing technologies. 
Concretely, an illustrative world carbon price scenario consistent with a 550 ppm GHG concentration 
target is run where: i) nuclear energy is assumed to be constrained at current generation levels, e.g. for 
political or safety reasons; ii) CCS is not allowed, e.g. because it does not become competitive at market 
prices; and iii) wind and solar power generation provide at most 35% of total electricity, due e.g. to 
constraints on their deployment on a large-scale. Under such constraints, mitigation policy costs rise 
drastically, from 3.9% to over 7% of world GDP in 2050 (Figure 7).  

[Figure 7. Projected world GDP costs under a 550 ppm GHG concentration scenario in the 
basic WITCH model, with and without constraints on nuclear energy and carbon capture and 

storage] 

4. Major technological breakthroughs and the impact of carbon pricing on induced technological 
change and mitigation policy costs  

25. One major limitation of the previous analysis is that it implicitly focuses on incremental R&D 
aimed at improving energy efficiency and the diffusion of existing low-carbon technologies. In practice, 
mitigation policy may also aim at raising financing for the development and deployment of major new 
low-carbon technologies that would, in the long run, replace existing technologies on a wide scale. The 

                                                      
11  More precisely, a world cap-and-trade system is assumed to be implemented, with equal per capita 

allocation of allowances. Sensitivity analysis shows – as would be expected – that the allocation rule has 
mostly distributional effects and does not fundamentally affect the analysis of mitigation policy costs at the 
world level. 
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mitigation cost implications of possible future development and diffusion of such backstop technologies 
are explored below for a 550 ppm GHG concentration stabilisation scenario. Again, the analysis proceeds 
in two steps. It starts by exploring the effects of carbon pricing on ITC, which now arises not only from 
energy efficiency gains and technology diffusion, but also from the emergence of backstops – through 
dedicated R&D and deployment. In a second step, the impact of ITC on mitigation policy costs is assessed. 

26. Insofar as one motivation for developing backstop technologies in the electricity sector would be 
the existence of limitations to the deployment of already existing technologies, nuclear power installed 
capacity is assumed to be constrained at present levels throughout most of the analysis. Indeed, in the 
absence of such constraints there would be little need for developing breakthrough technologies in the 
electricity sector, at least in the context of the WITCH model. Also, the simulations presented below 
assumed that all agents have perfect knowledge about future backstop availability. An alternative, and an 
area for future work, would be to consider the stochastic programming version of the model in order to 
account for the uncertainty surrounding the emergence of backstops. This would allow assessing the 
impact of such uncertainty on optimal investment decisions in R&D and technology deployment. 

Impact of backstop technologies on R&D and the energy technology mix  

27. Unlike in most of the literature, backstop technologies are not assumed here to become available 
without dedicated investments. More realistically, they become available in the future only if adequate 
R&D investment costs are previously incurred. As a result, under a world carbon price scenario consistent 
with a 550 ppm GHG concentration target, the possible future availability of backstop technologies in the 
electricity and non-electricity sectors is estimated to substantially increase global energy R&D investments 
over the coming decades (Figure 8). This is especially the case when the (current and future) carbon 
pricing policy is announced and implemented, with energy R&D expenditures rising to about 0.12% of 
global GDP, above their peak level of 0.08% of GDP in 1980. The shape of the R&D spending path 
reflects the nature of investment in breakthrough technologies. These are characterised by very high 
marginal returns at the beginning, which then decline gradually as the R&D stock is built up and the 
potential for further cost declines through additional R&D investments fades out – especially once the 
technology becomes available and economically competitive. The cost of the backstop technologies 
follows an inverted S-shaped path (Figure 9). R&D activities bring costs down rapidly in the early phases, 
when backstops remain very expensive. After 2030-2040, further cost declines occur mainly through LbD, 
as the technologies are deployed.12 

[Figure 8. Projected energy R&D investments under a 550 ppm GHG concentration 
stabilisation scenario, with and without backstop technologies] 

[Figure 9. Simulated investment costs of the backstop technologies, 550 ppm GHG 
concentration stabilisation scenario] 

28. The share of backstop technologies in the production of energy increases rapidly in the 
simulations. The backstop in the electricity sector substitutes for the large deployment of nuclear power 
capacity projected in the previous section in the absence of backstops (Figure 10), while the backstop in 
the non-electricity sector mainly relaxes the energy savings constraint that would otherwise be stringent 
(Figure 11). 

[Figure 10. Projected energy technology mix in the electricity sector under a 550 ppm GHG 
concentration stabilisation scenario, with and without electricity backstop technology] 

                                                      
12  Backstop technologies are also adopted at a later stage and to a lesser extent in developing regions. 
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[Figure 11. Projected energy technology mix in the non electricity sector under a 550 ppm GHG 
concentration stabilisation scenario, with and without non-electricity backstop technology] 

29.  Compared with the previous section, where the 550 ppm GHG concentration target was to be 
achieved without the help backstops, R&D investments in backstop technologies are estimated to crowd 
out part of energy efficiency R&D. The electricity backstop technology also crowds out investments in 
wind and solar power generation.13 This is mainly the case after mid-century, however, when the backstop 
technology becomes cost effective. In the first decades, investments in wind and solar are actually higher 
in the backstop case, reflecting the constraint imposed on nuclear power generation and the time lag 
needed for the electricity backstop to become competitive (Figure 12). 

[Figure 12. Investment in wind and solar power generation under a 550 ppm GHG 
concentration stabilisation scenario, with and without backstop technologies] 

30. By contrast, the electricity backstop technology and CCS are found to be complementary. CCS 
remains an important mitigation measure throughout the century, although a saturation effect (at roughly 
8 Gt CO2eq) is embedded in the model, reflecting the exhaustibility of repository sites14 (Figure 13). The 
drivers of this complementarity are the constraints on nuclear power generation and the existence of a 
carbon-free backstop technology in the non-electricity sector. This backstop technology relieves the 
electricity sector from the large mitigation burden that would otherwise limit CCS capacity in the long run, 
due to the imperfect capture rate of carbon.15 

[Figure 13. Carbon sequestred under a 550 ppm GHG concentration stabilisation scenario, with 
and without backstop technologies] 

Impact of backstop technologies on carbon prices and mitigation policy costs 

31. The possibility of investing in breakthrough technologies is estimated to greatly reduce the level 
and steepness of the carbon price path needed to meet the 550 ppm GHG concentration target (Figure 14). 
This is the case essentially at relatively distant horizons, however, as carbon prices behave in a roughly 
similar way with and without backstop technologies up to 2025. The latter point indicates that regardless of 
the possibility of developing breakthrough technologies in the electricity and non-electricity sectors, a 
strong carbon price signal is still needed over the next few decades in order to meet stringent emission 
reduction pathways at least cost. Finally, at distant horizons – especially beyond mid-century - the costs of 
meeting the 550 ppm GHG concentration target are significantly reduced by the availability of backstop 
technologies (Figure 15). However, this comes at the cost of higher GDP losses in the coming decades, due 
to the large increase in R&D effort needed to raise the productivity of the backstops.  

[Figure 14. Carbon price paths under a 550 ppm GHG concentration stabilisation scenario, 
with and without backstop technologies] 

[Figure 15. World GDP costs under a 550 ppm GHG concentration stabilisation scenario, with 
and without backstop technologies] 

                                                      
13  By definition, investments in nuclear power generation are also crowded out in the simulations. 

14  Specifically, supply cost curves for carbon storage sites for each region are endogenous in the model. 

15  In line with the technical estimates, the model assumes that 90% of the carbon is captured, while the 
remainder 10% is vented. 
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32. The backstop technology in the non-electricity sector is found to matter more for mitigation costs 
than its electricity counterpart (Figure 16). In a simulation where only the electricity backstop is assumed 
to be available, the costs of meeting the 550 ppm GHG concentration target rise marginally, compared with 
a 550 ppm GHG concentration stabilisation scenario without backstops. This only partly reflects the 
assumed constraint on the expansion of nuclear power generation, since releasing that constraint would 
merely bring costs in line with a “no-backstops” scenario. By contrast, in a simulation where only the non-
electricity backstop is assumed to be available, costs are drastically reduced, and in fact are not far above 
the estimated costs under a scenario where both backstops are available. These results highlight the 
importance of developing carbon-free technologies in the non-electricity sector, where the abatement 
potential of currently commercially available mitigation options is comparatively smaller than in the 
electricity sector. 

 [Figure 16. World GDP costs under a 550 ppm GHG concentration stabilisation scenario, with 
electricity backstop and non-electricity backstop only] 

5. Impact of global R&D policies on future emissions and mitigation policy costs  

R&D spillovers and the case for dedicated R&D policies 

33. As discussed in the main text, a number of market imperfections are likely, in practice, to 
undermine R&D incentives. As a result, global R&D spending could remain below levels that would be 
optimal even if a world price were put on carbon. This issue cannot be thoroughly explored with the 
WITCH model since most of the relevant market imperfections are not featured in the model. In particular, 
there are no domestic R&D spillovers, i.e. each region is assumed to fully appropriate domestic social 
returns to R&D. One issue that can be explored, however, is whether the existence of international – as 
opposed to domestic – R&D spillovers may justify an international R&D policy, e.g. in the form of a 
global fund that would finance R&D projects (see below). In the WITCH model, international R&D 
spillovers arise from the fact that energy-related knowledge capital – and therefore energy efficiency – is 
increased not only through domestic R&D but also via the absorption of international knowledge, where 
absorption capacity increases with the region’s R&D capital stock (for details, see Bosetti, Carraro et al. 
2007b).16 However, the economics of international R&D spillovers is not entirely settled, and empirical 
evidence is scarce, making it difficult to model and quantify these effects. Therefore, any model-based 
analysis of international R&D spillovers and their implications for optimal international R&D policy 
should be interpreted with great care. 

34. Bearing these concerns in mind, an illustrative global fund is considered, which is financed 
through a given share of each region’s GDP, and provides a subsidy to each region – allocated on an equal 
per capita basis – that adds to their own expenditures on energy efficiency-improving R&D. This 
“additionality” constraint is imposed because otherwise the optimal reaction of each region to the subsidy 
would be to cut their own R&D expenditures, i.e. the R&D spending spurred by the subsidy would fully 
crowd out other domestic R&D investments.17 The optimal size of the fund can then be approximated by 
the international knowledge spillover effect, computed as the difference between R&D under the 
cooperative and non-cooperative solutions of the model, i.e. as the difference between the energy 
efficiency R&D investments that would be undertaken if regions jointly maximised their welfare and the 

                                                      
16  R&D investment in WITCH is a strategic variable, whose optimal value is computed by solving a dynamic 

game. Therefore, its (Nash) equilibrium value is subject to free-riding effects induced by international 
knowledge spillovers. 

17  To implement the additionality constraint, a minimum level of energy efficiency R&D investment is 
imposed in all regions, equal to what would be Pareto optimal under a 550 ppm GHG concentration 
stabilisation scenario. 
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levels prevailing when countries act strategically and maximise their own welfare taking other regions’ 
choices as given (Nash equilibrium).  

35. In practice, however, the optimal size of a global R&D fund is found to be very small – 
amounting to just about $US5 billion by mid-century and $US20 billion by the end of the century, 
resulting in a negligible impact on policy costs. Allowing for R&D investment in backstop technologies – 
and assuming these also yield international spillovers – would yield an optimal fund of larger size, but it 
would not radically change the findings. This fundamentally reflects the limited range of R&D spillovers – 
especially at the domestic level – featured in the model. 

The impact of combining R&D policies and carbon pricing on mitigation costs in a “no-backstops” 
world 

36. Given the limited insights that can be drawn from considering an “optimal” global R&D fund, the 
analysis focuses instead on the effects of a fund of arbitrary, but yet plausible size. Concretely, a fund to 
subsidise a level of investment in energy efficiency R&D equivalent to the global public R&D 
expenditures of the 1980s – or around 0.08% of world GDP, starting at about $US40 billion today – is 
considered.  

37. In a scenario where such an R&D fund is established in association with a global cap-and-trade 
scheme designed to achieve a 550 ppm GHG concentration target, public energy efficiency R&D increases 
significantly, reaching up to 0.11% of world GDP. However, compared with a carbon pricing (cap-and-
trade) policy alone, the paths of energy intensity, carbon intensity of energy, the carbon price and GDP are 
only marginally affected. In particular, the need to finance the R&D fund initially increases GDP costs, and 
the reduction achieved subsequently (with respect to baseline) is found to be very small, from 3.9% to 
3.8% of world GDP in 2050 (Figure 17) : 

• A reduction in GDP costs is found because the fund corrects for the (international) knowledge 
externality by forcing regions – through the “additionality constraint” –to invest more than they 
would consider optimal if they acted alone. This more than offsets the loss in flexibility and costs 
incurred by each region as a result of these forced investments.  

• The reduction in GDP costs is small, however, because carbon pricing alone already boosts R&D 
and energy efficiency substantially, so that additional R&D only has a marginal impact. 

[Figure 17. World GDP costs under a 550 ppm GHG concentration stabilisation scenario in the 
basic WITCH model, with and without energy efficiency improving R&D fund] 

The impact of combining R&D policies and carbon pricing on mitigation costs in the presence of 
backstop technologies 

38. One major limitation of energy efficiency improving R&D is that it cannot help “decarbonise” 
the world economy. Against this background, the effects of a global R&D policy are reassessed here in the 
presence of breakthrough technologies, given that these would contribute to decarbonisation. Concretely, 
the version of WITCH including backstop technologies is used, and the international R&D fund is now 
assumed to finance R&D in such backstops. However, compared with a cap-and-trade policy alone, the 
fund is still found to have small effects on the world carbon price and GDP, although these are somewhat 
larger than in the case of an energy efficiency improving R&D fund (Figure 18). This is again essentially 
because carbon pricing alone would already substantially boost R&D in backstop technologies and because 
the international R&D spillovers to be internalised by the fund are limited. 
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[Figure 18. World GDP costs under a 550 ppm GHG concentration stabilisation scenario in the 
presence of backstop technologies, with and without global fund dedicated to R&D in backstops] 

R&D as a stand-alone policy 

39. One open issue is whether, and at what levels, global R&D spending alone could stabilise future 
greenhouse gas concentrations. Indeed, raising R&D expenditures may be politically easier than pricing 
carbon worldwide, at least in the short-run. Therefore, a global R&D fund of 0.08% of world GDP – 
corresponding to the peak level of public R&D investment efforts reached in the early 1980s – is assumed 
to be established in the absence of any carbon pricing policy. Also, in order for the fund to have the largest 
possible impact on future emissions, the two backstop technologies in the electricity and non-electricity 
sectors are assumed to be available. The fund subsidises investments in R&D for these backstops in all 
regions, based on an equal-per-capita subsidy allocation rule. Finally, the “additionality” constraint applies, 
i.e. R&D spending from the fund comes over and above the expenditures that would be made without it in 
a baseline scenario. 

40. Even under these fairly optimistic assumptions, the R&D policy alone only succeeds in 
stabilising world CO2 emissions by mid-century, reflecting the time needed for R&D spending to pay off 
(Figure 19, top panel). The effect on CO2 concentration is minimal, due to the inertia in the climate system. 
CO2-only concentration is projected to be close to baseline levels until mid-century, diverging afterwards 
but still reaching over 650 ppm by the end of the century (Figure 19, bottom panel). While the 
environmental effectiveness of the R&D policy is found to be very weak, it yields a GDP gain with respect 
to baseline of about 0.3 % of world GDP in 2050 and 2% in 2100, reflecting the internalisation of 
international knowledge spillovers. 

[Figure 19. Projected CO2 emissions and concentration under a global R&D policy only] 

41. Setting a fund of larger size than considered here would not radically improve the environmental 
effectiveness of a stand-alone R&D policy. For instance, even an implausibly large global fund – equal to 
1% of world GDP, representing a 30-fold increase with respect to current public energy R&D spending 
worldwide – is not found to stabilise CO2 concentration during this century. This reflects mainly the loss of 
cheap abatement opportunities over the coming decades, i.e. during the transition period required for R&D 
to foster major breakthroughs, as well as declining marginal returns to R&D. 

Technology deployment policies 

42. One limitation of R&D policies, especially as stand-alone policies, is that they take time to pay 
off. In this context, one open issue is whether a global fund to subsidise the deployment of already existing 
technologies may perform better. There is a theoretical case for such a policy in the WITCH model 
because the cost of existing low-carbon technologies (wind and solar power generation, CCS) falls with 
research and installed capacity at the world level, i.e. there are international knowledge and learning 
spillovers. However, this abstracts from the fact that domestic renewable energy subsidies are already high 
in many OECD countries, which substantially weakens the case for further policy action at the 
international level.  

43. Following previous analysis undertaken to explore R&D policies, the fund is assumed to be 
equivalent to 0.08% of world GDP, and is analysed both as a complement to carbon pricing (cap-and-trade 
scheme under a 550 ppm GHG concentration stabilisation scenario) and as a stand-alone policy. Financial 
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resources are assumed to be split equally between wind and solar technologies and CCS.18 Compared with 
carbon pricing alone, setting up a technology deployment fund speeds up the decrease in costs and 
diffusion of existing low-carbon technologies, and as a result it significantly alters the energy mix 
(Figure 20). In particular, by 2050, wind and solar electricity represents a much larger share of world 
electricity production, while the penetration of CCS is essentially frontloaded but is not radically altered 
over a half-century horizon, reflecting the exhaustibility of repository sites. However, the impact on the 
world carbon price and mitigation policy costs is negligible. Reflecting the need to finance the subsidies, 
GDP costs with respect to baseline are initially increased, and they are only marginally reduced from 3.9% 
to 3.8% of world GDP in 2050 (Figure 21). This negligible impact is similar to that obtained above from a 
global R&D fund in the absence of backstop technologies. 

[Figure 20. Projected energy technology mix in the electricity sector under a 550 ppm GHG 
concentration stabilisation scenario, with and without a global technology deployment fund] 

[Figure 21. World GDP costs under a 550 ppm GHG concentration stabilisation scenario, with 
and without a global technology deployment fund] 

44. When considered as a stand-alone policy, a global technology deployment subsidy is found to 
have a quicker impact on emissions than a global R&D fund, as would be expected (Figure 22, top panel). 
However, this effect gradually fades out, so that emissions resume their upward trend and concentration 
rises unchecked (Figure 22, bottom panel).  

[Figure 22. Projected CO2 emissions and concentration under a global technology deployment 
policy only] 

6. Sensitivity analysis  

45. Existing uncertainty surrounding the appropriate way of modelling and calibrating the drivers of 
technological change calls for sensitivity analysis. Here, the robustness of the results is assessed by varying 
three key parameters for both existing and new technologies: i) LbD in renewable technologies; ii) the 
returns from R&D dedicated to energy efficiency; and iii) learning rates (progress ratios) and the speed of 
deployment of the backstop technologies. In each of these three cases, the parameters subject to sensitivity 
analysis are assumed to vary by +50% or -50% with respect to their central estimates, and 550 ppm GHG 
concentration stabilisation scenarios are run. The main finding is that only the specification of backstop 
technologies has a significant impact on projected carbon prices and mitigation policy costs.  

Learning by doing in wind and solar power generation 

46. Despite vast empirical literature, considerable uncertainty remains regarding LbD for a wide 
range of technologies. In particular, learning rate estimates vary considerably for technologies used in the 
electricity sector, from about 1% to over 40%, around a central estimate of about 20% (Jamasab and 
Köhler, 2007; Kahouli-Brahmi, 2008). In the WITCH model, a learning rate of 13% – corresponding to a 
progress ratio of 0.2 – is considered for wind and solar technologies, a fairly conservative value in view of 
existing estimates (see for instance Junginger, Faaij et al. 2005; IEA, 2000). The sensitivity analysis 
considers two alternative cases where the progress ratio is 50% higher or lower (0.1 or 0.3), i.e. the 
learning rate is 19% or 7%.  

                                                      
18  The fund is assumed to finance research in these existing technologies (LbS) rather than directly subsidise 

their deployment (LbD). The latter option would yield qualitatively similar, but even weaker effects than 
discussed below.  
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47. A 550 ppm GHG concentration stabilisation scenario – achieved through a world cap-and-trade 
scheme, i.e. through a global carbon price – is then run under these two alternative assumptions. As would 
be expected, the uptake of renewable energy is sensitive to, and increases with the learning rate (Figure 23, 
top panel). However, in line with the above results, learning rate assumptions have negligible effects on 
mitigation policy costs (Figure 23, bottom panel).  

[Figure 23. Impact of alternative learning rate assumptions in wind and solar electricity on 
world electricity supply mix and mitigation policy costs] 

Returns from R&D dedicated to energy efficiency 

48. Another important technology parameter in the model is the productivity of energy efficiency 
improving R&D, i.e. parameter a in equation (3) above. This parameter is allowed to vary by 50% around 
the central estimate of 0.3, i.e. 15.03.0 ±=a .  

49. A 550 ppm GHG concentration stabilisation scenario is then run under these two alternative 
assumptions. As would be expected, optimal investments in energy R&D are sensitive to, and increase 
with the productivity of R&D (Figure 24, top panel). However, and again in line with the above results, 
these productivity assumptions have negligible effects on mitigation policy costs (Figure 24, bottom 
panel). 

[Figure 24. Impact of alternative R&D productivity assumptions on world investment in energy 
efficiency improving R&D and mitigation policy costs] 

Specification of the backstop technologies 

50. Although innovative future technologies are hard to specify by nature, one advantage of the 
backstop approach followed in this paper is to allow for model simplicity and tractable sensitivity analysis. 
In particular, the implications of alternative learning rates in research and deployment in the specification 
of “two-factor” learning curves can be explored. Here, both LbD and LbS processes are assumed to be 
either lower or higher than in the central case, by varying the corresponding progress ratios by +50% or -
50% (see equations (5) and (6) in Section 2 above). Learning rate assumptions are found to have a sizeable 
impact on the competitiveness, and thereby on the market penetration of the backstop technologies under a 
550 ppm GHG concentration stabilisation scenario (see Figure 25, top panel for the non- electricity sector). 
The impact of these assumptions is asymmetric, however, with higher learning rates having a limited 
impact due to limits on technology diffusion. This translates into large but asymmetric effects on GDP 
costs (Figure 25, lower panel). Under low learning rates, GDP costs increase significantly to 2.9% of world 
GDP in 2050, versus 1.9% only in the central case (and 3.9% in a “no backstop” central scenario, see 
Figure 6). 

[Figure 25. Impact of alternative learning rate assumptions in backstop technologies on their 
world market penetration and mitigation policy costs] 

51. The speed of deployment of the backstop technologies is another important driver of their future 
market penetration and impact on mitigation policy costs. Varying the relevant parameters by +50% or -
50% has roughly similar effects as varying learning rates in research and deployment, albeit far less 
asymmetric (Figure 26). This confirms the fact that mitigation policy costs are far more sensitive to the 
technology assumptions driving the future development of backstop technologies than to those underlying 
learning processes in existing renewable energies or energy efficiency improving R&D. 
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[Figure 26. Impact of alternative assumptions regarding the deployment speed of backstop 
technologies on their world market penetration and mitigation policy costs] 



ECO/WKP(2009)5 

22 
 

REFERENCES 

Alic, J., D. Mowery and E. Rubin (2006), “US Technology and Innovation Policies: Lessons for Climate 
Change”, Report for the Pew Center on Global Climate Change, Arlington, VA.  

Anderson, D. (2006), “Costs and Finance of Abating Carbon Emissions in the Energy Sector”, Background 
Report for the Stern Review, Imperial College, London.  

Bahn, O. and S. Kypreos (2003), “Incorporating Different Endogenous Learning Formulations in 
MERGE”, International Journal of Global Energy Issues, Vol. 19, No. 4, pp.333-358. 

Barreto, L. and G. Klaassen (2004), “Emissions Trading and the Role of Learning-By-Doing Spillovers in 
the ‘Bottom-Up’ Energy-Systems ERIS Model”, International Journal of Energy Technology and 
Policy, Vol. 2, Nos. 1-2, pp.70-95.  

Barreto, L. and S. Kypreos (2004), "Endogenizing R&D and Market Experience in the "Bottom-Up" 
Energy-Systems ERIS Model", Technovation 2, pp.615-629. 

Bosetti, V., C. Carraro, M. Galeotti, E. Massetti and M. Tavoni (2006), "WITCH: A World Induced 
Technical Change Hybrid Model", The Energy Journal, Special Issue on Hybrid Modeling of 
Energy-Environment Policies: Reconciling Bottom-up and Top-down: pp.13-38. 

Bosetti, V., C. Carraro, E. Massetti, A. Sgobbi and M. Tavoni (2007a), “Optimal Energy Investment and 
R&D Strategies to Stabilise Greenhouse Gas Atmospheric Concentrations”, FEEM Working Paper 
No. 95-2007, CEPR Discussion Paper No. 6549 and CESifo Working Paper No. 2133. 
Forthcoming, Energy and Resource Economics. 

Bosetti, V., C. Carraro, E. Massetti and M. Tavoni (2007b), “International Energy R&D Spillovers and the 
Economics of Greenhouse Gas Atmospheric Stabilization”, Energy Economics, Vol. 30, No. 6. 

Bosetti, V., E. Massetti and M. Tavoni (2007), The WITCH Model: Structure, Baseline, Solutions. FEEM 
Working Paper Series No. 10-2007. 

Burniaux, J-M. J. Chateau, R. Duval and S. Jamet (2008), “The Economics of Climate Change Mitigation: 
Policies and Options for the Future”, OECD Economics Department Working Paper, No. 658. 

Criqui, P.G. Klassen and L. Schrattenholzer (2000), "The Efficiency of Energy R&D Expenditures, 
Economic Modeling of Environmental Policy and Endogenous Technical Change", Amsterdam, 
November . 

Davis, G.A. and B. Owens (2003), "Optimizing the Level of Renewable Electric R&D Expenditures Using 
Real Option Analysis", Energy Policy 31(5): pp.1589-1608. 

Duval, R. (2008), “A Taxonomy of Instruments to Reduce Greenhouse Gas Emissions and Their 
Interactions”, OECD Economics Department Working Papers, No. 636. 



 ECO/WKP(2009)5 

23 
 

Fisher, C. and R.G. Newell (2004), Environmental and Technology Policies for Climate Change and 
Renewable Energy, RFF Discussion paper. 04-05, Resources for the Future, Washington DC. 

IEA (2000), Experience Curves for Energy Technology Policy, International Energy Agency, Paris. 

IEA (2008), Energy Technology Perspectives, Paris. 

Jamasab, T. (2007), "Technical Change Theory and Learning Curves: Patterns of Progress in Electric 
Generation Technologies", The Energy Journal Vol. 28, No3. 

Jamasab, T. and J. Köhler (2007), Learning Curves for Energy Technology Policy Analysis: a Critical 
Assessment, Delivering a Low Carbon Electricity System: Technologies, Economics and Policy, 
M. Grubb, T. Jamasab and M.G. Pollitt, Cambridge, Cambridge University Press. 

Jones, C. (1995), "R&D Based Models of Economic Growth", Journal of Political Economy 103: pp.759-
784. 

Junginger,  M., A. Faaij and W.C. Turkenburg (2005), "Global Experience Curves for Wind Farms", 
Energy Policy 33: pp.133-150. 

Kahouli-Brahmi, S. (2008), "Technological Learning in Energy-Environment-Economy Modelling: a 
Survey", Energy Policy 36, pp.138-162. 

Klassen, G., A. Miketa, K. Larsen and T. Sundqvist (2005), "The Impact of R&D on Innovation for Wind 
Energy in Denmark, Germany and the United Kingdom", Ecological Economics Vol. 54 No.2-3, 
pp.227-240. 

Kouvaritakis, N., A. Soria and S. Isoard (2000), "Endogenous Learning in World Post-Kyoto Scenarios: 
Application of the POLES Model under Adaptive Expectations", International Journal of Global 
Energy Issues Vol. 14(1-4), pp.228-248. 

Kypreos, S. (2007), "A MERGE Model with Endogenous Technical Change and the Cost of Carbon 
Stabilization", Energy Policy 35, pp.5327-5336. 

McDonald, A. and L. Schrattenholzer (2001), "Learning Rates for Energy Technologies", Energy Policy 
Vol. 29, No. 4, pp.255-261. 

Nemet, G.F. (2006), "Beyond the Learning Ccurve: Factors Influencing Cost Reductions in Photovoltaics", 
Energy Policy Vol. 34, No.17,  pp.3218-3232. 

Nordhaus, W.D. (2003), Modelling Induced Innovation in Climate Change Policy. Technological Change 
and the Environment, A. Grubler, N. Nakicenovic and W. D. Nordhaus. Washington D.C., 
Resources for the Future. 

Pacala, S. and R. Socolow (2004), “Stabilization Wedges: Solving the Climate Problem for the Next 50 
Years with Current Technologies”, Science, Vol. 305, No. 5686, pp.968-972. 

Philibert, C. (2003), Technology Innovation, Development and Diffusion. OECD and IEA Information 
Paper, COM/ENV/EPOC/IEA/SLT(2003)4, International Energy Agency, Paris. 

Popp, D. (2002), "Induced Innovation and Energy Prices", American Economic Review Vol. 92, No. 1, 
pp.160–180. 



ECO/WKP(2009)5 

24 
 

Popp, D. (2004), "ENTICE: Endogenous Technological Change in the DICE Model of Global Warming", 
Journal of Environmental Economics and Management 48: pp.742–768. 

Sandén, B. and C. Azar (2005), "Near-Term Technology Policies for Long-Term Climate Targets – 
Economy-Wide versus Technology Specific Approaches." Energy Policy 33: pp.1557-1576. 

Söderholm, P. and G. Klassen (2007), "Wind Power in Europe: a Simultaneous Innovation-Diffusion 
Model", Environmental and Resource Economics Vol.36, No.2: pp.163-190. 

Söderholm, P. and T. Sundqvist (2003), “Pricing Environmental Externalities in the Power Sector: Ethical 
Limits and Implications for Social Choice”, Ecological Economics, Vol. 46, No. 3, pp.333-350. 

Stern, N. (2007), The Economics of Climate Change: The Stern Review, CUP, Cambridge. 

 



 ECO/WKP(2009)5 

25 
 

ANNEX: TABLES AND FIGURES 

 

Table 1: Learning ratios for diffusion (lr) and innovation (lrs) processes across selected studies and 
technologies 

 
Technology Author lr lrs 

Wind Criqui et al. 2000 16% 7% 

Jamasab 2007 13% 26% 

Soderholm and 
Klassens 2007 

3.1% 13.2% 

Klassens et al. 
2005 

 12.6% 

PV Criqui et al. 2000 20% 10% 

Solar Thermal Jamasab 2007 2.2% 5.3% 

Nuclear Power 
(LWR) 

Jamasab 2007 37% 24% 

CCGT (1980-89) Jamasab 2007 0.7% 18% 

CCGT (1990-98) Jamasab 2007 2.2% 2.4% 

Backstop EL  10% 13% 

Backstop NEL  7% 13% 
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Figure 1. Carbon price paths under 550ppm and 650ppm GHG concentration scenarios 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 

scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 2. World energy intensity and carbon intensity trajectories under alternative carbon 

price paths 1 

Decline relative to 2007, in % 

Note: a positive figure indicates a decline.

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 

stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 3. Investment in and cost of wind and solar power generation under alternative carbon 
price paths1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2  only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 4. Installed nuclear power capacity and carbon sequestered under alternative carbon 

price paths 1 

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 

scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 

stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 5. World investment in energy efficiency improving R&D under alternative carbon price 

paths 1 

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 

scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 

stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 6. Projected world GDP costs under a 550ppm GHG
 
concentration scenario in the basic 

WITCH model, with and without induced technological change 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 7. Projected world GDP costs under a 550ppm GHG concentration scenario in the basic 

WITCH model, with and without constraints on nuclear energy and carbon capture and storage 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 

scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 8. Projected energy R&D investments under a 550ppm GHG  concentration stabilisation 

scenario, with and without backstop technologies 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 

scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 

stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 9. Simulated investment costs of the backstop technologies, 550ppm GHG 
concentration stabilisation scenario 1

(Index 2007=100)

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 10. Projected energy technology mix in the electricity sector under a 550ppm GHG 
concentration stabilisation scenario, with and without electricity backstop technology1

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 11. Projected energy technology mix in the non electricity sector under a 550ppm GHG 
concentration stabilisation scenario, with and without non electricity backstop technology1

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 12. Investment in wind and solar power generation under a 550ppm GHG concentration 

stabilisation scenario, with and without backstop technologies 1 

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 

scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 13. Carbon sequestred under a 550ppm GHG concentration stabilisation scenario, with 

and without backstop technologies 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 

stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 14. Carbon price paths under a 550ppm GHG concentration stabilisation scenario, with 

and without backstop technologies 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 

stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 15. World GDP costs under a 550ppm GHG concentration stabilisation scenario, with 

and without backstop technologies 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 16. World GDP costs under a 550ppm GHG concentration stabilisation scenario, with 
electricity backstop and non-electricity backstop only1

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

2007 2012 2017 2022 2027 2032 2037 2042 2047 2052 2057 2062 2067 2072 2077 2082

%
 c

h
an

g
e 

in
 G

D
P

 w
it

h
 r

es
p

ec
t 

to
 b

as
el

in
e

Two backstops

No backstop

Electricity backstop only (with nuclear 
constrained)

Non-electricity backstop only

 



ECO/WKP(2009)5 

42 
 

 

Figure 17. World GDP costs under a 550ppm GHG concentration stabilisation scenario in the 

basic WITCH model, with and without energy efficiency improving R&D fund 1

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 

stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 18. World GDP costs under a 550ppm GHG concentration stabilisation scenario in the 
presence of backstop technologies, with and without global fund dedicated to R&D in 

backstops 1 

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 

simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 

scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm. 
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Figure 19. Projected CO2 emissions and concentration under a global R&D policy only 1

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. 
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Figure 20. Projected energy technology mix in the electricity sector under a 550ppm GHG 
concentration stabilisation scenario, with and without a global technology deployment fund1

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 21. World GDP costs under a 550ppm GHG concentration stabilisation scenario, with 
and without a global technology deployment fund1

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 22. Projected CO 2 emissions and concentration under a global technology deployment 

policy only 1 

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. 
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Figure 23. Impact of alternative learning rate assumptions in wind and solar electricity on world 

electricity supply mix and mitigation policy costs 1

(550ppm GHG concentration stabilisation scenario)

Source: WITCH model simulations.

1. Emissions of non-CO 2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO 2 only 
scenario and greenhouse gas prices are CO 2 prices. Stabilisation of CO 2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 24. Impact of alternative R&D productivity assumptions on world investment in energy 
efficiency improving R&D and mitigation policy costs1

(550ppm GHG concentration stabilisation scenario)

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 25. Impact of alternative learning rate assumptions in backstop technologies on their 
world market penetration and mitigation policy costs1

(550ppm GHG concentration stabilisation scenario)

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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Figure 26. Impact of alternative assumptions regarding the deployment speed of backstop 
technologies on their world market penetration and mitigation policy costs1

(550ppm GHG concentration stabilisation scenario)

Source: WITCH model simulations.

1. Emissions of non-CO2 gases are not covered by the model used in this analysis and are therefore excluded from these 
simulations. The 550ppm greenhouse gas concentration stabilisation scenario run here is in fact a 450 ppm CO2 only 
scenario and greenhouse gas prices are CO2 prices. Stabilisation of CO2 concentration at 450ppm corresponds to 
stabilisation of overall greenhouse gas concentration at about 550ppm.
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