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ABSTRACT

Motivation: The general-time-reversible (GTR) model is one of the

most popular models of nucleotide substitution because it constitutes

a good trade-off between mathematical tractability and biological

reality. However, when it is applied for inferring evolutionary distances

and/or instantaneous rate matrices, the GTR model seems more

prone to inapplicability than more restrictive time-reversible models.

Although it has been previously noted that the causes for intractability

are caused by the impossibility of computing the logarithm of a matrix

characterised by negative eigenvalues, the issue has not been

investigated further.

Results: Here, we formally characterize the mathematical conditions,

and discuss their biological interpretation, which lead to the inapplicab-

ility of the GTR model. We investigate the relations between, on one

hand, the occurrence of negative eigenvalues and, on the other

hand, both sequence length and sequence divergence. We then

propose a possible re-formulation of previous procedures in terms

of a non-linear optimization problem. We analytically investigate

the effect of our approach on the estimated evolutionary distances

and transition probability matrix. Finally, we provide an analysis

on the goodness of the solution we propose. A numerical example is

discussed.

Contact: mcmilink@ulb.ac.be

1 INTRODUCTION

Currently, the GTR model of DNA sequence evolution (Barry and

Hartigan, 1987; Felsenstein, 1984; Lanave et al., 1984; Lio and

Goldman, 1998; Rodriguez et al., 1990; Tavare, 1987; Zharkikh,

1994) is probably one of the best available trade-off between math-

ematical tractability and biological reality (Felsenstein, 2004,

pp. 210–211; Li, 1997, pp. 81–86; Page and Holmes, 1998,

pp. 152–156; Swofford et al., 1996, pp. 433–434; Yang, 1994.

The GTR model describes DNA sequence evolution in terms of

transition probabilities, pij(t), from one nucleotide to another, and

assumes that instantaneous substitution rate matrix, R, remains

constant over time. This stationary homogeneous Markov process

can be expressed in a matrix form using Kolmogorov differential

equation (Lio and Goldman, 1998):

_PPðtÞ ¼ PðtÞR‚ ð1Þ

where P(t) ¼ {pij(t)} is usually referred as the transition probability

matrix and R ¼ {rij} as the instantanueous substitution rate matrix

(Felsenstein, 2004; Lanave et al., 1984; Lio and Goldman, 1998;

Yang, 1994). The solution of Equation (1) is the following expo-

nential matrix:

PðtÞ ¼ eRt: ð2Þ

R is a real matrix with four non-positive eigenvalues [of which

one is equal to zero (see, e.g. Lanave et al., 1984)], non-diagonal

elements that must be non-negative and diagonal elements that

must be the opposite of the sum of the non-diagonal elements

(from the corresponding row). In turn, these conditions, together

with Equation (2), imply that, for any value of t, P(t) is a real positive

matrix characterised by four positive eigenvalues (of which one is

equal to 1).

The GTR model also assumes reversibility: the net rate from

nucleotides j to nucleotide i is equal to the net rate from i to j
(Yang, 1994), i.e.

pirij ¼ pjrji: ð3Þ

From (2) and (3) it follows (Rodriguez et al., 1990)

PPðtÞ ¼ PðtÞT
P‚ ð4Þ

where P is the diagonal matrix whose elements are the respective

nucleotides equilibrium frequencies. Equation (4) can be rewritten

(e.g. when considering a pair of aligned sequences separated by a

time t̂t), as

Pð̂ttÞ ¼ P ¼ P�1ðPð̂ttÞT
PÞ ¼ P�1

F#: ð5Þ

F# is called the symmetrized form (Waddell and Steel, 1997) of

the divergence matrix (Rodriguez et al., 1990) of the observed pair

of sequences. Estimating t̂t and/or R [e.g. to compute Pð̂ttÞ] from

aligned sequences is at the core of many methods used for phylo-

geny inference [e.g. maximum likelihood, distance matrix methods,

invariants (Felsenstein, 2004)].�To whom correspondence should be addressed.
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On the basis of conditions (1)–(5), Rodriguez et al. (1990)

showed that the evolutionary distance t̂t between two aligned

sequences and the corresponding instantaneous substitution rate

matrix R can be obtained by

t̂t ¼ �trace½P logðPÞ� ð6Þ

R ¼ logðPÞ
�trace½PlogðPÞ� ¼

logðP�1
F#Þ

�trace½PlogðP�1
F#Þ�

: ð7Þ

where log(·) is the logarithmic matrix function defined for a square

matrix with positive eigenvalues, and evaluated via diagonalization:

logðPÞ ¼ Vlog½L�V�1 ð8Þ

where V and L are, respectively, the eigenvector matrix of P and the

diagonal matrix of the eigenvalues of P.

Rodriguez noted that this strategy is inapplicable in some

cases: some conditions of inapplicability are related to the signs

of the eigenvalues of P. More specifically, when at least one of

the four eigenvalues of P is non-positive, the logarithm matrix

function is not defined and computation of Equations (6) and (7)

is not possible.

Here, starting from the seminal work of Lanave et al. (1984),

Rodriguez et al. (1990), and Waddell and Steel (1997), (1) we

formally characterize the mathematical and biological conditions

under which the GTR model is not applicable; (2) we present suf-

ficient criteria to a priori reject incongruent estimations of P; (3) we

extend the estimation procedures proposed by Rodriguez et al.
(1990) and Waddell and Steel (1997) in the form of a non-linear

optimization problem that makes the GTR model always applicable;

(4) we discuss the properties and the goodness of solutions obtained

with our approach; (5) we suggest a procedure, different from the

one proposed by Waddell and Steel (1997), to overcome the inap-

plicability of distance matrix methods when the entries of the dis-

tance matrix are undefined and (6) we provide a numerical example

to clarify the procedure we propose.

2 APPROACH

Here, we characterize, from both a mathematical and a biological

point of view, the GTR model and identify necessary and sufficient

conditions that P must satisfy to allow the estimation of R using

Equation (7).

2.1 On mathematical assumptions of the GTR model

As indicated earlier, the GTR model assumes that R is a constant

matrix with a non-positive spectrum (i.e. all eigenvalues must be

non-positive). In addition, let us note that, even if we relax the

assumption of a constant instantaneous rate matrix R, the corres-

ponding net transition matrix P(t) must still be characterized by

positive eigenvalues. Indeed, if (1) we decompose R as the product

of P and B, where B is the symmetric matrix of rates [see

(Felsenstein, 2004), p. 207] and (2) we allow R to be time variant

(this translates into B being time variant as P is assumed time

invariant), we have

PðtÞ ¼ e

R t

0
RðtÞ dt ¼ e

R t

0
PBðtÞ dt ¼ e

�RRt‚ ð9Þ

where the average instantaneous rate matrix

�RR ¼
R t

0
PBðtÞ dt

t
ð10Þ

must still be characterized by a non-positive spectrum as it is the

product of a positive-definite matrix P times the sum of (an infinite

number of) negative semi-definite matrices B(t). Hence, for any

time t̂t, if we observe that at least one eigenvalue of P ¼ Pð̂ttÞ is not

positive, P cannot be considered as a net transition matrix of a

Markovian process described by Equation (2).

If not stated otherwise, we consider throughout the present paper

that the matrices P and F# are computed from the observed pair of

aligned sequences using the procedure described in Waddell and

Steel (1997).

2.2 On the congruency between P and theGTRmodel

Here, we determine the conditions under which the net transition

matrix P is congruent with the GTR model in general, and with

Equation (2) in particular.

Because P ¼ P�1 F# and both P and F# are symmetric, P is

characterized by positive eigenvalues if and only if both P and F
#

have positive eigenvalues (i.e. are positive-definite). We note also

thatP is a diagonal matrix with positive diagonal entriespi, hence, is

characterized by positive eigenvalues, if all four types of nucleotides

(A,T,C,G) are observed in the two aligned DNA sequences Sa and Sb
(obviously, negative entries pi would be biologically meaningless)

(Keilson, 1979). Consequently, we can conclude that P is character-

izedby positive eigenvalues, hence is congruent with (2), if and only if

F# is characterized by positive eigenvalues (i.e. is positive-definite).

As F# is symmetric, it is positive definite if and only if the

Sylvester’s criterion is satisfied [(Brinkhuis and Tikhomirov,

2005), p. 409] i.e.

detðF#
kÞ > 0‚ k ¼ 1‚ . . . ‚4 ð11Þ

where F#
k is a minor (a submatrix) of F# made of its first k rows and

k columns. Conditions (11) are explicitly reported in Table 1,

assuming that F# is written as follows:

F# ¼

f 11 f 12 f 13 f 14

f 12 f 22 f 23 f 24

f 13 f 23 f 33 f 34

f 14 f 24 f 34 f 44

0
BB@

1
CCA: ð12Þ

Table 1. The table explicitly shows the k-conditions of the Sylvester’s

criterion (11)

Value of k k-th condition of the Sylvester’s criterion

k ¼ 1 f11 > 0

k ¼ 2 f 11f 22 > f 2
12

k ¼ 3
2f 12 f 13 f 23 þ f 11 f 22 f 33 >
f 2

23 f 11 þ f 2
12 f 33 þ f 2

13 f 22

k ¼ 4

f 11 f 22 f 33 f 44 þ f 2
14 f 2

23 þ f 2
13 f 2

24þ
f 2

12 f 2
34 þ 2 f 12 f 14 f 24 f 33 þ 2 f 13 f 14 f 34 f 22þ

2 f 12 f 13 f 23 f 44 þ 2 f 23 f 24 f 34 f 11 > f 2
14 f 22 f 33þ

f 2
13 f 22 f 44 þ f 2

24 f 11 f 33 þ f 2
12 f 33 f 44þ

f 2
34f 11 f 22 þ 2 f 13 f 14 f 23 f 24 þ 2 f 12 f 14 f 23 f 34þ

2f 12 f 13 f 24 f 34 þ f 2
23 f 11 f 44
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2.3 Biological interpretation of Sylvester’s conditions

When k ¼ 1 the criterion indicates that, for each state (A,T,C,G),

the two aligned sequences must exhibit the same state at minimum

one site. Note that this condition makes a five-state GTR models

[with ‘gap’ as a fifth state; (McGuire et al., 2001)] inapplicable

unless one forces any pair of sequence to always share a ‘gap’ state

at minimum one character, a condition that is not biologically

meaningful. For k > 1, Sylvester’s conditions impose constraints

on (subsets of) nucleotide transition probabilities. For example,

when k ¼ 2, the criterion indicates that for any pair of states 1

and 2, the geometric mean between the frequency of homologous

sites with identical state 1 and the frequency of homologous sites

with identical state 2 must be greater than the frequency of homo-

logous sites exhibiting different states (1 and 2). A direct con-

sequences is that the risk of not satisfying that condition (hence,

the probability of obtaining negative eigenvalues of F#) increases

with an increasing number of observed substitutions between the

two aligned sequences.

Unfortunately, given the analytical complexity of the expressions

when k � 3, biological interpretation of the Sylvester’s conditions is

much less straightforward than in the previous cases. Roughly

speaking, we interpret that Sylvester’s conditions when k � 3

impose a ‘relative’ uniformity among the different possible

nucleotide transitions. To illustrate our point, let us consider,

given sequences Sa and Sb, that k ¼ 3 and let us assume that

f23 ¼ 0. Then, the Sylvester’s condition becomes f 11 f 22 f 33 >
f 2

12 f 33 þ f 2
13 f 22. If we further assume f22 � f33 > 0 (i.e. f22/

f33 � 1), then Sylvester’s condition becomes f 11 f 22 > f 2
12 þ

f 2
13 f 22=f 33 > f 2

12 þ f 2
13. The latter inequality implies that if f23 ¼ 0,

then it cannot occur that both f12 and f13 reach their maximum values

allowed when k ¼ 2.

2.4 Sufficient conditions to exclude incongruent

estimations of F#

Here, we show how one can use the Sylvester’s criterion to

determine some conditions that are sufficient for a priori identi-

fication of estimated F# matrices characterized by non-positive

eigenvalues. In particular, given two generic sequences Sa and

Sb, we prove that, for any pair of character states (nucleotides),

F# cannot be estimated through the procedures proposed by

Waddell and Steel (1997) (because it would be characterized by

non-positive eigenvalues) when the ratio between, on one hand,

the number of sites exhibiting different nucleotides in Sa and Sb
and, on the other hand, the length of the sequences (l12), exceeds a

given threshold.

Let us consider first the Sylvester’s criterion for k ¼ 2. Let us

define

x1 ¼ f 11 þ f 12 ð13Þ

x2 ¼ f 22 þ f 12: ð14Þ

Accordingly, if one estimates F# as in Waddell and Steel (1997),

l12 ¼ x1 + x2 is, trivially, a constant that corresponds to the overall

number of sites with a nucleotide of type 1 or 2 in the two sequences

under consideration. Then, Sylvester’s criterion for k ¼ 2 can be

translated into

ðx1 � f 12Þðx2 � f 12Þ > f 2
12: ð15Þ

From (15), we obtain

f 12 >
x1x2

x1 þ x2

� l12

4
‚ ð16Þ

where the second inequality derives from the fact that

l12

4
¼ sup

x1‚x2

x1x2

x1 þ x2

: x1 þ x2 ¼ l12

� �
ð17Þ

and such value is obtained when

x1 ¼ x2 ¼ l12

2
ð18Þ

Hence, we can claim that F#, as estimated using procedure from

(Waddell and Steel, 1997), is surely not positive definite when

2f12 � (l12/2) that, given (13) and (14) implies

2f 12 � f 11 þ f 22: ð19Þ

In plain words, condition (19) indicates that, when two aligned

sequences Sa and Sb are characterized by a number of homologous

sites with different states greater than the number of homologous

sites with identical states, this condition is sufficient to affirm that

the procedures suggested by Waddell and Steel (1997) cannot be

used.

Following the same line of reasoning, we can use Sylvester’s third

and fourth conditions to prove that an F# estimated following

Waddell and Steel (1997) is surely not positive definite when at

least one of the following conditions is met:

2ðf 12 þ f 13 þ f 23Þ � 2ðf 11 þ f 22 þ f 33Þ ð20Þ

2ðf 12 þ f 13 þ f 14 þ f 23 þ f 24 þ f 34Þ� 3ð f 11 þ f 22 þ f 33 þ f 44Þ ð21Þ

Note that conditions (20) and (21) are not worth checking as they

can be directly derived from condition (19) by summation.

2.5 Some notes about the Logdet distance

Similarly to GTR-corrected distances, some conditions can lead to

the inapplicability of the logdet correction (Lake, 1994; Lockahart

et al., 1994; Steel, 1994). By referring to the original logdet distance

formulation given by Steel (1994), we interpret that the logdet

correction becomes uncomputable when the determinant of the

matrix F is negative (its natural logarithm would be undefined).

Unfortunately, the Sylvester’s criterion cannot be applied in this

case because F is not symmetric. Hence, we cannot readily extend to

the logdet distance the analysis described above for GTR correc-

tions. This issue is out of the scope of the present work and warrants

additional analysis.

3 METHODS

Here, we generalize Rodriguez et al.’s (1990) procedure [extended in

Waddell and Steel (1997)] as a non-linear optimization problem such that

it returns estimates of F# and P that (1) are congruent with Equation (2), and

(2) optimize a measure relevant to the evolution of the sequence Sa and Sb.

Our procedure returns the same results as Rodriguez et al.’s (1990) when the

latter yields F
# and P matrices characterized by a positive spectrum.

D.Catanzaro et al.
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3.1 An alternative way to estimate P

Let us consider the generic aligned homologous sequences Sa and Sb, each of

length L. Let us define G as the set of the four different bases (A,C,G,T) and

nabij as the number of nucleotides of state j of Sa that underwent substitution

into state i of Sb. Analogously, let us define nbaij .

We then estimate matrices P and F
# by determining the net transition

probabilities that maximize the probability dP(Sa, Sb) of observing the two

sequences, given P.

dPðSa‚SbÞ ¼
Y

ij

p
nabij þnbaij

ij ¼
Y

ij

ðp�1
j f ijÞ

nabij þnbaij ð22Þ

This is equivalent to maximizing LogðdPðSa‚SbÞÞ ¼P
ij ðn

ab
ij þ nbaij ÞLogðPijÞ. We chose this measure (among many others

possible) because it is also maximized when using Rodriguez et al.’s

(1990) procedure. When the likelihood of observing the sequences pair

is maximal, dP(Sa, Sb) is minimal and vice versa.

Consider now the following non-linear optimization problem:

maxF ¼ LogðdPðSa‚SbÞÞ ð23Þ

P ¼ P�1F# ð24Þ

F# � 0 ð25Þ
X
i2G

f ij ¼ pj 8j 2 G ð26Þ

X
i2G

pj ¼ 1 ð27Þ

f ij � 0 8i‚ j 2 G ð28Þ

pj 2 Qj 8j 2 G: ð29Þ

Constraint (24) imposes to search for a net transition probability matrix that

can be written as the product of P and F
#: if one would only search for a

positive semi-definite net transition matrix such that its rows sum to one, one

could obtain (as solution of the optimization problem) a matrix P that

respects all the constraints but that might not be written as the product of

two symmetric matrices. This would cause problems when computing R

using Rodriguez et al’s (1990) procedure, because P would be unknown.

Constraint (25) imposes to search for a symmetric and positive semi-definite

matrix F#, i.e. a matrix characterised by non-negative eigenvalues. It

is implemented by imposing conditions (11). Constraints (26) and (27)

impose the condition of normalization on the rows of the solution and on

the nucleotide frequencies. Constraints (28) and (29) trivially impose that

the elements fij of the solution of the problem are non-negative and that the

variables pj are included in given sets Qj of feasible values for nucleotide

equilibrium frequencies.

The solution of problem (24)–(29) depends on which values are assumed

included in the set Qj. One reasonable choice is to directly use the average of

the observed frequencies of state j in the two homologous sequences. One

alternative would be that the set Qj includes all possible values between the

observed frequencies of nucleotide j in each of the two homologous

sequences. Using the first option (in accordance with Rodriguez et al’s

(1990) approach), pj can be computed using

pj ¼
1

2L
nab

jj þ nba
jj þ nab

ij þ nbaij

� �
: ð30Þ

This choice is a reasonable trade–off between generalisation of the model

and the efficiency of solving it algorithmically. Indeed, when P is assigned,

both the objective function and the set of feasible solutions are convex, such

that the solution of the problem (23) is unique (Papadimitriou and Steiglitz,

1998, p. 15). Conversely, if neither F# nor P are assigned, the set of feasible

solutions is not convex, such that the optimal solution might not be unique

anymore. Hence, when P is assigned the optimization problem (23)–(29)

becomes:

maxF ¼ Log½dPðSa‚SbÞ� ð31Þ

P ¼ P�1
F# ð32Þ

F#� 0 ð33Þ
X
i2G

f ij ¼ pj 8j 2 G ð34Þ

f ij � 0 8i‚ j 2 G ð35Þ

The above problem can be solved by applying any standard non-linear

optimization technique [see, e.g. (Bertsekas, 1999)].

Note that the optimal solution ~PP to problem (31)–(35) might lie either

inside the set of feasible solutions defined by the constrains or along its

boundary. In the former case, F# and ~PP are each characterized by a positive

spectrum, and these correspond, respectively, to the symmetrized form of the

divergency matrix and to the net transition matrix obtained by applying

the procedures from Rodriguez et al. (1990) and Waddell and Steel

(1997). In the latter case (optimal solution along the boundary of the set

of feasible solutions), F
# and ~PP have positive spectra but at least one

eigenvalue is equal to 0. The presence of null eigenvalue(s) implies that

t̂t ¼ �trace½
Q

logð~PPÞ�!1:

In this latter case, note that, despite t̂t!1‚ we can still estimate R using

R ¼ lim
«!0

logð~PP«Þ
�trace½Plogð~PP«Þ�

‚ ð36Þ

where ~PP« ¼ 1
1þ«

VðLþ «I«ÞV�1with I, V and L that, respectively are: the

identical matrix; the matrix of the eigenvectors of ~PP; and the diagonal matrix

of the eigenvalues of matrix ~PP, i.e., ~PP¼VLV�1. Roughly speaking, ~PP«

differs from ~PP only by changing the eigenvalues li of the latter into liþ«

1þ«

in the former.

Let us finally observe that, if three eigenvalues of ~PP are equal to 0, then

~PP ¼ Pð1Þ ¼ lim
t!1

PðtÞ ¼ 1P ð37Þ

where 1 is a matrix whose elements are all equal to 1. Actually, as shown by

(Lanave et al., 1984), the matrix R can be decomposed into:

rij ¼ pj þ
X4

k¼2

ffiffiffiffiffi
pj

pi

r
lkw

ðkÞ
i w

ðkÞ
j ð38Þ

where fw
ðkÞ
i g and fw

ðkÞ
j g are vectors forming an orthogonal base. Then,

using (2), the transition probabilities pij(t) take the following form

pijðtÞ ¼ pj þ
X4

k¼2

ffiffiffiffiffi
pj

pi

r
e�lk tw

ðkÞ
i w

ðkÞ
j ð39Þ

By applying the spectral decomposition theorem to P̂P, we obtain:

~ppij ¼
X4

r¼1

lrv
ðrÞ
i u

ðrÞ
i ¼ pj þ

X4

r¼2

lrv
ðrÞ
i u

ðrÞ
i ð40Þ

where fv
ðrÞ
i g and fu

ðrÞ
i g are the left and right eigenvectors. From (39) and

(40) follows (37):

pijðtÞ ! pj‚ t!1 ð41Þ

~ppij ! pj‚ lr¼2...4 ! 0: ð42Þ

Cases in which just one or two eigenvalues of P̂P are equal to zero, are

particularly interesting. Indeed, if t̂t ¼ !1, all the eigenvalues different

from 1 should be equal to 0. Let us observe that using our model, or

Rodriguez et al.’s (1990) model, one estimates continuous probability values

on the basis of a finite dataset made of discrete characters (roughly speaking,

Non-linear optimization of GTR distances
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we count how many sites have been subjected to substitution). Hence, the

distribution of potential optimal solutions ~PP (and, consequently, of times t̂t)

of the problem (31)–(35) is not continuous. Therefore, in cases with just one

or two null eigenvalues, increasing the length of the sequences to infinity

would generate slightly different proportions of nucleotide substitution and a

different net transition matrix, close to ~PP, but with all eigenvalues different

from zero (although one or two of them very small). As a consequence, if ~PP

obtained from an observed (finite) dataset presents only one or two null

eigenvalues, we conclude that t̂t should be considered a great, but not an

infinite, value.

3.2 Consequences on evolutionary distances

Application of the non-linear optimization techniques described above has

major consequences on evolutionary distances. The spectrum of the net

transition matrix can be considered as a measure of the level of divergence

between the two analyzed sequences: the difference between the greater

and the smaller eigenvalues of Rt tends to zero as the evolutionary distance

between the two observed sequences becomes smaller. Conversely, the dif-

ference between the greater and the smaller eigenvalues of Rt tends to

infinite when the evolutionary distance between the two sequences increases.

Hence, the use of distance matrix methods remains restricted to cases

characterized by a positive definite matrix F
#, i.e. for pairs of sequences

characterized by relatively small divergences. As, from a biological point

of view, undefined (i.e. infinite) evolutionary distances are meaningless, a

practical solution to overcome such a problem would be to replace ~PP with an

appropriate ~PP«, e.g. choosing « ¼ l5
2, where l2 is the smaller non-null

eigenvalue of ~PP. The rationale behind such a choice is that it is generally

accepted (e.g. in experimental physics) what follows. Consider two expo-

nential processes whose asymptotic values are zero (as it occurs in our case)

and such that the second process decays five times as fast as the first one.

By the time the first process has assumed a value that is 1/e times its

initial value, the second process has practically reached its steady state,

i.e. its value is less than one hundredth of its initial value.

Furthermore, this solution has the advantage of assigning different

distances for different pairs of sequences initially characterized by

undefined distances (i.e. the procedure we propose provides estimates of

distances) and, therefore, it might generally lead to better results than

when using a fixed arbitrary value (Waddell and Steel, 1997). Note

however that the approach we propose (1) introduces arbitrariness in

computing the evolutionary distances (it is arbitrary to use « ¼ l5
2 rather

than, e.g. « ¼ l6
2) and (2) would not be applicable if also the second

eigenvalue of P is negative (because ~PP would be characterized by three

null eigenvalues). However this case should be very rarely encount-

ered (i.e. it corresponds to a very high divergency between the two

sequences) and should be preceded by other problems such as ambiguities

in alignment.

3.3 Goodness of solutions

Let us suggest that the net transition matrix ~PP can be considered valid

(reasonable) from a biological point of view if, by random sampling of a

population of sequences evolving according to P(t) ¼ eRt, there is a relatively

high probability to pick up a pair of sequences (Sr, Ss) whose d~PP ðSr‚SsÞ is

greater than or equal to d~PP ðSa‚SbÞ. By indicating with nxy
ij the number of

nucleotides of type i in Sx that have undergone a substitution into the type j in

Sy, with N nucleotides in each sequence, such a probability P can be written

as follows:

P ¼
X

ðnrs
AA ;n

rs
AC
; ...; nrs

TT ;n
sr
AA ;n

sr
AC
; ...; nsr

TT Þ2K
f ðp‚nÞ ð43Þ

where

K ¼ fnsr
ij ‚nrs

ij :
X
ði‚ jÞ

ðnsr
ij þ nrs

ij Þlog pij �
X
ði‚ jÞ

ðnabij þ nbaij Þ log pijg‚ ð44Þ

X
ðijÞ

nrs
ij ¼ N‚ ð45Þ

X
ðijÞ

nsr
ij ¼ N‚ ð46Þ

nrs
ij � 0‚ ð47Þ

nsr
ij � 0‚ ð48Þ

i‚ j 2 G ð49Þ
and

f ðp‚nÞ ¼ ½ðnabAA‚nabAC‚ . . . ‚ nab
TTÞ!Pði‚ jÞp

nrs
ij

ij

ðnbaAA‚nbaAC‚ . . . ‚ nbaTTÞ!Pði‚ jÞp
nsr

ij

ij �:
ð50Þ

Condition (44) imposes to consider only the indices (and therefore all the

corresponding pairs of sequences) such that the observed numbers of sub-

stitutions nsr
ij and nrs

ij are smaller than the respective nabij and nbaij under the

same transition probabilities pij. Conditions (45) and (46) impose that the

sums of the substitutions nrs
ij and nsr

ij are equal to the length N. Finally,

condition (47) and (48) trivially imposes that the number of substitutions

cannot be negative.

The overall probability [cf. Equation (43)] can be interpreted as the

goodness of the stochastic model to predict the likelihood of observing

the actual sequences. From this point of view, P(1) is better than ~PP

because the former implies a greater P than the latter does. In fact, for

P(1), condition (44) of K becomesX
ði‚ jÞ

ðnsr
ij þ nrs

ij Þ logpj �
X
ði‚ jÞ

ðnabij þ nbaij Þ logpj ð51Þ

and

f ðp‚nÞ ¼ ½ðnab
AA‚nabAC‚ . . . ‚ nabTTÞ!Pði‚ jÞp

nrs
ij

j

ðnbaAA‚nbaAC‚ . . . ‚ nba
TTÞ!Pði‚ jÞp

nsr
ij

j �:
ð52Þ

Constraint (51) is weaker than constraint (44), therefore the set K (hence, the

overall probability P) is greater under P(1) than under ~PP.

Notice that if one aims to obtain the transition probability matrix that

maximizes P, then one should consider the matrix P̂P, i.e. the matrix char-

acterized by all events being equiprobable (e.g. all entries ¼ 1/4). In this

situation, the set K becomes

K ¼ fnsr
ij ‚nrs

ij :
X
ðijÞ

nsr
ij ¼ N‚ ð53Þ

X
ðijÞ

nrs
ij ¼ N‚ ð54Þ

nrs
ij � 0‚ ð55Þ

nsr
ij � 0‚ ð56Þ

8i‚ j 2 G: ð57Þ

Condition (44) in this case becomesX
ði‚ jÞ

ðnsr
ij þ nrs

ij Þ �
X
ði‚ jÞ

ðnabij þ nbaij Þ ð58Þ

Constraint (58) is weaker than constraints (51), (48) and (54). Hence, when P̂P

is assumed, P ¼ 1; i.e. the probability to obtain the observed pair of

sequences is maximum. However, one should realize that, when using P̂P,
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P is always equal to 1 for any (observed or not observed) pair of sequences,

i.e. all sequences are equiprobable. Our interpretation for this phenomenon is

that the P̂P model does not tell us anything about the substitution process.

Therefore, we suggest that, although the goodness of P̂P and of P(1) are

higher than that of ~PP, the information content (regarding the substitution

process of the specific pair of observed sequences) of ~PP is higher (depending

on its rank) than those of P̂P and P(1).

In summary, P̂P represents the asymptotic value of the transition probab-

ility matrix relative to any pair of sequences; P(1) represents the asymptotic

value of the transition probability matrix relative to any pair of sequences

characterized by a distribution P, and ~PP is the limit transition probability

matrix that best describes a substitution process [modeled by Equation (2)]

for the two observed sequences characterized by a distribution P. In other

words we consider that ~PP is the most reliable matrix when the evolution of a

pair of sequences is both assumed to follow (2) and characterized by negative

eigenvalues of the net transition matrix P.

4 DISCUSSION: A NUMERICAL EXAMPLE

In this section we show a numerical example of the non-linear

optimization problem described above. This example is deliberately

made of short and divergent sequences both to insure the occurrence

of negative eigenvalues and allow the reader to easily (manually)

verify each step of the procedure. Although generally not

mentioned in publications, negative eigenvalues with real data

do occur (e.g. the comparison ‘human versus cow’ for the cyto-

chrome b gene third positions yield the following eigenvalues: (1.,

0.423996, �0.137941, 0.111731). Whether negative eigenvalues

are widespread with real data warrants further investigation.

Let us assume we want to compute the distance matrix from the

following alignment:

AACGTGGCCAAAT
TTCGTCGTTAACC
CATTTCGTCACAA
GGTATTTCGGCCT
GGGACCTCGACTC

2
66664

3
77775: ð59Þ

Let us consider the first two sequences. If we use Rodriguez et al.’s
(1990) procedure as proposed in Waddell and Steel (1997), we

obtain the following symmetrized divergency matrix

F# ¼

0:15385 0:03846 0:0 0:07692

0:03846 0:07692 0:03846 0:11538

0:0 0:03846 0:15385 0:0
0:07692 0:11538 0:0 0:07692

0
BB@

1
CCA: ð60Þ

Accordingly, the matrix P is

P ¼

0:269231 0 0 0

0 0:269231 0 0

0 0 0:192308 0

0 0 0 0:269231

0
BB@

1
CCA ð61Þ

with

X4

i¼1

pii ¼ 1:00000 ð62Þ

Finally, the net transition matrix P is

P ¼

0:57143 0:14286 0:0 0:28571

0:14286 0:28571 0:14286 0:42857

0:0 0:2 8:0 0:0
0:28571 0:42857 0:0 0:28571

0
BB@

1
CCA: ð63Þ

This matrix is characterized by the following eigenvalues:

LðPÞ ¼ f1‚0:78886‚0:326206‚ � 0:172209g: ð64Þ

The occurrence of a negative eigenvalue makes Rodriguez et al.’s
(1990) procedure inapplicable. Let us also observe that, in our

example, all pairwise evolutionary distances are undefined, as

each pairwise comparison leads to a P matrix characterized by

negative eigenvalues. Following Waddell and Steel (1997), the

distance matrix therefore is

�1 1 1 1
� 1 1 1

� 1 1
� 1

�

2
66664

3
77775 ð65Þ

i.e. no distance matrix method can be used.

On the other hand, solving the non-linear optimization problem

for the specific pair of sequences following the method we propose

above, yields the net transition matrix

~PP ¼

0:58030 0:14702 0 0:27268

0:14702 0:35429 0:16337 0:33531

0 0:22872 0:77128 0

0:27268 0:33531 0 0:39201

0
BB@

1
CCA ð66Þ

with eigenvalues

Lð~PPÞ ¼ f1‚0:77219‚0:32569‚0g: ð67Þ

Note that ~PP satisfies the reversibility condition. The respective

matrices P(1) and P̂P are

Pð1Þ ¼

0:269231 0:269231 0:192308 0:269231

0:269231 0:269231 0:192308 0:269231

0:269231 0:269231 0:192308 0:269231

0:269231 0:269231 0:192308 0:269231

0
BB@

1
CCA ð68Þ

and

P̂P ¼

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0
BB@

1
CCA ð69Þ

As the evolutionary distance between the two first sequences is

undefined, we propose (see Section 3.2) using ~PP«, such that

t̂t ¼ 1:84908: ð70Þ

By iterating the above procedure for all pairwise sequence compar-

isons, all entries of the distance matrix can be computed and any

distance matrix method can be applied.

Let us now observe that, when computing, from the two first

sequences, the substitution rate matrix R by using (36), we obtain

R ¼

� 0:2334 � 0:2538 0:0574 0:4298

� 0:2538 � 1:6795 0:3666 1:5667

0:0803 0:5132 � 0:1602 �0:4334

0:4298 1:5667 � 0:3095 �1:6870

0
BB@

1
CCA ð71Þ

This matrix, with four negative non-diagonal elements, is not

compatible with the description of a continuous Markov process
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and this result is not imputable to the limit (36). Indeed, an instant-

aneous substitution rate matrix of a Markov process must satisfy the

so-called conservative hypothesis, requiring that (1) non-diagonal

entries are non-negative and (2) the diagonal negative elements, row

by row, are equal to the opposite of the sum of the non-diagonal

elements.

The only explicit hypothesis of the estimation procedures pro-

posed by (Rodriguez et al., 1990; Waddell and Steel, 1997) is

reversibility as defined by Equations (4) and (5). This hypothesis

is sufficient to compute t~ in all cases for which P is congruent with

(2), but is not sufficient to guarantee that the instantaneous substi-

tution rate matrix is characterized by non-negative non-diagonal

entries.

Therefore, imposing (11) when performing the non-linear optim-

ization problem guarantees that ~PP is congruent with (2), but does not

guarantee that ~PP a transition probability matrix of a markovian pro-

cess. In such a circumstance, we propose three possible strategies.

First, one could accept t~ and R (eventually with negative non-

diagonal entries) as they are congruent with (2), but one then accepts

the risk of loosing the conservative continuous markov chain hypo-

thesis and, row per row, one uses the questionable interpretation that

the eventual negative instantaneous substitution rates are decreasing

substitutions in favor of the positive ones.

Second, one could accept t~, and decompose the instantaneous

substitution rate matrix into R¼PB, change the sign of all negative

non-diagonal entries of B; in this case, the conservative continuous

markov chains hypothesis is guaranteed, but the optimality of

R is lost.

Third, one could incorporate the conservative continuous markov

chains hypothesis in the set of constraints of the non-linear optim-

ization problem, i.e. we further add the constraints t̂t ¼
�trace½P log ðPÞ� > 0 and, given (7), rii < 0 and rij > 0. In this

case we obtain:

R ¼

�0:767536 0:195231 0:149692 0:478393

0:139451 �0:984637 0:19725 0:366612

0:149692 0:276149 �0:534333 0:187391

0:478393 0:513257 0:187391 �1:0324

0
BB@

1
CCA

ð72Þ

and the corresponding evolutionary distance between the two first

sequences is

t̂t ¼ 1:343396: ð73Þ

Unfortunately such an approach is very computationally intensive

and provides no guarantee that a global optimal solution can be

determined.

Now, let us indicate with dP(1)(Sa, Sb) and dP̂PðSa‚SbÞ the like-

lihood of observing the actual pair of sequences given P(1) and P̂P,

respectively. We obtain

d~PPðSa‚SbÞ ¼ 3:473385·10�12 ð74Þ

dPð1ÞðSa‚SbÞ ¼ 7:493790·10�15 ð75Þ

dP̂PðSa; SbÞ ¼ 3:552713·10�15: ð76Þ

This result confirms that ~PP is the matrix that maximizes the

likelihood of observing the specific pair of sequences. Let us

compute now the overall probability to pick up a pair of sequences

(Sr, Ss) that yields a likelihood greater than or equal to d~PPðSa‚SbÞ
when ~PP, P(1) or P̂P are considered. To estimate such probabilities,

we generated a set of 100 sequences for each substitution matrix.

We then compute the proportion of (Sa, Sb) pairs [among all pairs

(ancestral sequence, generated sequence)] that exhibit a dP(Sa, Sb)

greater than d~PPðSa‚SbÞ, dP(1)(Sa, Sb) and dP̂PðSa‚SbÞ. The process

was repeated 100 times for each transition probability matrix ~PP,

P(1) and P̂P and the three populations of sequences are character-

ized by the following means and variances:

P ~PP ’ 1:3% ± 3:2·10�4% ð77Þ

PPð1Þ ’ 27:4% ± 0:073% ð78Þ

PP̂P ¼ 100%±0:0% ð79Þ
As discussed in Section 3.3, P ~PP � PPð1Þ � PP̂P :

5 CONCLUSIONS AND PERSPECTIVES

In this paper we formally characterized the mathematical conditions

that lead to the inapplicability of the published estimation proced-

ures (Rodriguez et al., 1990; Waddell and Steel, 1997; Yang and

Kumar, 1996) to compute evolutionary distances and instantaneous

rate matrices under the GTR model of nucleotide substitution. We

provided criteria to accept or reject such estimations and suggested

biological interpretations of these conditions. Furthermore, we

extended existing procedures (Rodriguez et al., 1990; Waddell

and Steel, 1997, Yang and Kumar, 1996) by reformulating them

in terms of a non-linear optimization problem. We analytically

investigated the effect of our approach on estimated evolutionary

distances, the transition probability matrix, and the instantaneous

substitution rate matrix. Our formulation yields the best net trans-

ition matrix ~PP that (1) is congruent with (2), (2) maximizes the

proposed measure (22) and (3) best describes the substitution pro-

cess for the specific sequence pair.

For overcoming the problem of undefined evolutionary distances,

we propose a procedure that is more generally applicable and more

biologically meaningful than the alternative strategy proposed by

Waddell and Steel (1997).

In Section (4) we have shown that the estimation procedures

proposed by Rodriguez et al., 1990; and by Waddell and Steel

(1997) might lead in general to an estimated R that does not respect

the conservative continuous markov chains hypothesis. This phen-

omenon also affects the non-linear formulation we proposed: con-

ditions (11) are necessary and sufficient to guarantee that ~PP is

congruent with (2), but are insufficient to guarantee the conservative

continuous markov chains hypothesis. We suggested three possible

ways to overcome such a problem.

Finally, we observed that ~PP has a low probabilityP ~PP . This situation

seems contradictory: the matrix that maximizes the likelihood of the

observed data [Equation (22)] also minimizes the probability of gen-

erating apair of sequenceswith likelihood smaller thanor equal to that

of the observed data (43). However, we argue that a pair of sequences

requiring the computation of ~PP can not be considered as a random

draw: they generate negative eigenvalues of P. This brings us to the

perspective of questioning the validity of the GTR model. First, the

strength of the argument of rejecting the GTR model as a biologically

valid model of nucleotide substitution depends on the frequency with

whichnegativeeigenvaluesofParegenerated with realdata sequence

pairs (and this points warrants further investigation). Second, there
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are fundamental limitations to the GTR model: it does not separate the

mutation process from other factors influencing the substitution pro-

cess.Toinvestigatewhether thiswouldbringabout the rejectionof the

GTR model and motivate the development of alternative, more com-

plex, models, one needs to identify the biological conditions under

which sets of observed sequences would be characterized by very low

probabilities [Equation (43)] of being generated by the GTR model

[described by Equation (2)]. Finally, another interesting issue would

be to characterize the amount of time t^for which, given ~RR, the prob-

ability of obtaining negative eigenvalues of Pð̂ttÞ ¼ eRt̂t is high. The

answer to this question would return the range of applicability of the

GTR model. The reformulation of the GTR model as non-linear

optimization problem described above is implemented in version 2

of the phylogeny inference program MetaPIGA (Lemmon and

Milinkovitch, 2002), available at www.ulb.ac.be/sciences/ueg/

html_files/MetaPIGA.html

ACKNOWLEDGEMENTS

We would like to thank Joseph Felsenstein and L. Gatto for helpful

general discussions regarding the GTR model, as well as C. Lanave

and Mike A. Steel for their invaluable comments on a previous

version of this manuscript.

Conflict of Interest: none declared.

REFERENCES

Barry,D. and Hartigan,J.A. (1987) Statistical analysis of hominoid molecular evolution.

Stat. Sci., 2, 191–207.

Bertsekas,D.P. (1999) Nonlinear Programming, 2nd edn. Hardcover.

Brinkhuis,J. and Tikhomirov,V. (2005) Optimization: insights and applications.

Princeton University Press.

Felsenstein,J. (1984) Distance methods for inferring phylogenies: a justification. Evolu-

tion, 38, 16–24.

Felsenstein,J. (2004) Inferring Phylogenies. Sinauer Associates, Sunderland, UK.

Keilson,J. (1979) Markov Chain Models–Rarity and Exponentiality. Springer-Verlag,

New York.

Lake,J.A. (1994) Reconstructing evolutionary trees from dna and protein sequences:

Paralinear distances. Proc. Natl Acad. Sci. USA, 91, 1455–1459.

Lanave,C. et al. (1984) A new method for calculating evolutionary substitution rates.

J. Mol. Evol., 20, 86–93.

Lemmon,A.R. and Milinkovitch,M.C. (2002) The metapopulation genetic algorithm:

An efficient solution for the problem of large phylogeny estimation. Proc. Natl

Acad. Sci. USA, 99, 10516–10521.

Lio,P. and Goldman,N. (1998) Models of molecular evolution and phylogeny. Genome

Res., 8, 1233–1244.

Li,W.H. (1997) Molecular Evolution. Sinauer Associates, Sunderland, UK.

Lockahart,P.J. et al. (1994) Recovering evolutionary trees under a more realistic model

of sequence evolution. Mol. Biol. Evol., 11, 605–612.

McGuire,G. (2001) Models of sequence evolution for DNA sequences containing gaps.

J. Mol. Evol., 18(4), 481–490.

Page,R.D.M. and Holmes,E.C. (1998) Molecular Evolution: A Phylogenetic Approach.

Blackwell Science, Oxford, UK.

Papadimitriou,C. and Steiglitz,K. (1998) Combinatorial Optimization, Algorithm and

Complexity. Dover Publications, Mineola, NY, USA.

Rodriguez,F. et al. (1990) The general stochastic model of nucleotide substitution.

J. Theor. Biol., 142, 485–501.

Steel,M.A. (1994) Recovering a tree from the markov the leaf colourations it generates

under a markov model. Appl. Math. Lett., 7, 13–23.

Swofford,D.L., Olsen,G.J., Waddell,P.J. and Hillis,D.M. (1996) Phylogenetic

inference. In Hillis,D.M., Moritz,C. and Mable,B.K. (eds), molecular systematics.

Sinauer & Associates, Sunderland, UK, pp. 407–514, chapter 11.

Tavare,S. (1987) Some probabilistic and statistical problems in the analysis of DNA

sequences. Lect. Math. Life Sci., 17, 57–86.

Waddell,P.J. and Steel,M.A. (1997) General time reversible distances with unequal

rates across sites: Mixing gamma and inverse gaussian distributions with invariant

sites. Mol. Phylogenet. Evol., 8, 398–414.

Yang,Z. and Kumar,S. (1996) Approximate methods for estimating the pattern

of nucleotide substitution and the variation of substitution rate among sites.

Mol. Biol. Evol., 13, 650–659.

Yang,Z. (1994) Estimating the pattern of nucleotide substitution. J. Mol. Evol., 39,

105–111.

Zharkikh,A. (1994) Estimation of evolutionary distances between nucleotide

sequences. J. Mol. Evol., 39, 315–329.

Non-linear optimization of GTR distances

715


