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Summary We propose a model for a museum institution which offers a
special exhibition in a definite time period. Attention is given to the museum
demand and the quality of the visitors experience, in particular in relation
with the occurrence of congestion situations. The laws governing the behaviour
of the system through time are defined by three distinct dynamical systems,
depending on the position of the visitor attendance rate with respect to two
critical levels: the congestion threshold which is a fixed parameter of the
system and the extreme congestion threshold which depends on the congestion
management policy. Because of the regime switching the optimal control
problem is nondifferentiable and Clarke’s generalized maximum principle
necessary conditions are derived. We discuss the existence of an optimal
solution and some special classes of control functions which are economically
meaningful.
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1. Introduction

The importance of studying the cultural activities from an economic
viewpoint has led to the development of the Cultural Economics as an
autonomous research area [25]. Since the beginning of this approach, which may
be defined by the broad analysis of the performing arts carried out by Baumol
and Bowen [2], many economists concentrated on both micro and macro aspects
of cultural industries (museum institutions, art galleries, organizations which
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operate in the performing arts sector). The economic approach to the cultural
sector is not restricted to the financial aspects of cultural industries, such as
subsidies and costs. It considers, for example, the role of the cultural heritage
in the economic growth of a Nation, as well as the relationship between cultural
heritage and tourism; the social aspects of arts enlighted by the use of economic
models of human behaviour, as well as the adaptation of the concepts of
efficiency and effectiveness to non—profit institutions.

Moreover, as far as museum institutions are concerned, there is a broad
economic literature which testifies the strongly increasing interest in them
among economists and management scientists ([10], [11], [12], [15], [18], [20],
[21]). Nevertheless, only a few mathematical models have been developed in
this field and most of them are econometric models.

In [13] we have emphasized the importance of looking into the behaviour
of a museum institution from a dynamical systems viewpoint. In [14] we have
discussed a variety of modelling elements in order to formulate some specific
optimal control problems. The aim of this paper is to propose a special optimal
control model in order to analyze the behaviour of a cultural organization in
terms of advertising and congestion management policies; the model takes into
account some of the basic features of the museum institutions, which can be
summarized as follows.

Museums can be seen as special multiobjective firms pursuing some
different functions simultaneously, e.g. conservation, exhibition, research and
education. As far as the exhibit function is concerned, they generally face the
same problems as those of a productive firm which adopts marketing strategies
in order to sustain the demand of its products. In fact museum institutions
are in competition with a variety of proposals of recreation and entertainment
activities for attracting visitors; they may therefore advertise the cultural event
in order to enhance the interest for it among the potential audience ([1], [24]).
Moreover museums have to build on word-of-mouth communication to sell
their services; market research conducted in a museum context confirms that
word—of-mouth communication may be more important than advertising (see
[18], p.155).

The exhibition visitor flow model we propose in this work focuses on the
dynamic of museum demand and, in agreement with the above observations,
considers two types of communication channel for transmitting information
on museum exhibitions within the social system. The first one is media
communication, which is directly controlled by the promoter by means of the
advertising policy. The second one is word—of-mouth communication, which is
related to museum visit conditions and is not affected by the advertising policy.

In the literature concerning optimal control applications to marketing
problems (see [9] for a general review) both types of communication processes
are considered: for the first type, advertising, relevant references are [19] and
[6], whereas for the second type, word—of-mouth communication, we may quote
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[7] and [17]. The ezxhibition visitor flow model differs from other dynamic
marketing models because it seeks to deal, in a marketing context, with
problems of congestion within the museum.

In fact, an important difference between traditional firms and the cultural
ones consists in the nature of their products. The services offered by museums
have the nature of public goods, with characteristics of non-rivalry and non—
excludability in their consumption, to some extent. As a consequence, museum
visits, like many public goods (highways, beaches, parks, tourists attractions of
all kinds) are subject to crowding and congestion: the presence of other users
adversely affects the level of utility obtained by each cultural consumer [22].

Congestion is a subject of considerable importance in outdoor recreation,
where more than one agent is attempting to share a type of service that is not
supplied in a separable unit for each users. Most contributions to the literature
on the management and economic analysis of congestion suggest that physical
crowding may cause not only an increase in the time requirement for using a
facility but also some subjective effects in terms of deterioration in the quality
of the facility and discomfort effects induced by crowding, even though the time
costs may not be affected. These subjective congestion effects may be revealed
in different forms and they have been dealt with by management scientists,
operations researchers and economists from each of their different points of
view (see for example [22] and [26]).

We incorporate the subjective effects induced by museum congestion in a
general dynamic model that relates the future rate of arrivals to the cumulative
number of visitors through a social influence process. In Section 2 we present
the exhibition visitor flow model, which assumes that the cultural demand is
influenced by congestion through the word—of-mouth communication process:
past visitors spread both favorable and unfavorable information, according to
their museum experience and the occurrence of the unsatisfied visitors is related
to the visitor attendance rate being greater than the congestion threshold.

In this way the behaviour of the museum system through time is described
by means of a piecewise model involving different dynamical equations in
certain regions of the dynamical variables. The optimal control model is non
linear and nondifferentiable and the standard Pontryagin maximum principle
necessary conditions are not suitable. In Section 3 we present the Clarke’s
generalized maximum principle necessary conditions for an optimal solution
which provide some useful information to define special classes of control
functions. We discuss the existence of an optimal solution which is economically
meaningful and some special classes of control functions in Section 4 and 5
respectively. Some conclusive remarks are presented in Section 6.

2. The exhibition visitor flow model

2.1. Statement of the exhibition visitor flow problem
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The exhibition visitor flow (E'V F') problem is the following optimal control
problem.

T
maximize J = / (ay(t) —vi(t) — va(t)) dt, (1)
0
subject to
- +
&(t) = [min{y(t), yo — (1 = n2(1))(y(t) — yc)}] (2.1)
y(t) = —(y(t) — Byc) + azx(t) — axz(t) + bui (1), (2.2)
2(t) = min{y(t), (2 —nva(t))(y(t) —ye) "}, (2.3)
2(0) =0, 2(0)=0, y(0)=yo, (3)
y(T) = 0, (4)
U(t) elU= [07 vl] X [07 62]7 (5)
T e 0,71, (6)
where sT = max(0, s).
The variables and parameters have the following meanings: B
T, final time, which is the end time of the exhibition (0 <7 <T');
T, least upper bound of the feasible final times (7" > 0);
y(t), visitor attendance rate at time t;
Yo, congestion threshold (yco > 0);
Q, parameter representing the constant admission fee (a > 0);
x(t), cumulative number of satisfied visitors at time ¢;
z(t),  cumulative number of unsatisfied visitors at time ¢;
v1(t), advertising expenditure rate at time ¢t (0 < vy < Ty);
U1, maximum advertising expenditure rate (77 > 0);
va(t), congestion management expenditure rate at time ¢ (0 < ve < Ta);
Vs, maximum congestion management expenditure rate (g > 0);
b, parameter representing the influence of the advertising expenditure
on the visitor attendance rate (b > 0);
v, parameter representing the current influence of the visitor attendance
rate on itself (v > 0);
B, parameter of current congestion dependence (0 < < 1);
n, unsatisfaction enhancement parameter (0 <7 < Ty~ 1);
Qg parameter representing the (positive) influence of the actual satisfied
visitors on the visitor attendance rate (a, > 0);
Qs parameter representing the (negative) influence of the actual unsatisfied

visitors on the visitor attendance rate (a, > a;);

Museums are assumed to control the advertising expenditure rate and to
undertake suitable actions to reduce the effects of congestion on the visitors.
On the other hand, the museum’s entrance fees will not be treated as a control
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variable. In fact, usually the public museums cannot vary autonomously their
entrance prices.

Equations (2.1) and (2.3) represent the way in which satisfied and
unsatisfied visitors appear. All visitors are supposed to be satisfied if the
visitor attendance rate is less than the congestion threshold. On the contrary,
if the visitor attendance rate is greater than the congestion threshold, then
only some visitors are satisfied, whereas the remaining visitors are unsatisfied
and the percentages of satisfied or unsatified visitors depend on the congestion
management expenditure rate. At each istant of time the following equality
holds: &(t) + 2(t) = y(t).

Equation (2.2) represents the growth of museum demand as a function of
excess demand, cumulative satisfied visitors, cumulative unsatisfied visitors
and advertising. The assumption that a, > a, is in agreement with the
observation that “negative experiences tend to have a greater impact than
positive experiences” ([18], p.155). The museum net benefit rate, which is the
integrand function in (1), takes into account that each visitor pays a constant
admission fee and brings a constant exhibition cost, but there are congestion
management and advertising costs which depend on the museum management
decisions.

2.2. Normal, congested and transition regimes

If o(t), t € [0,T], is a piecewise continuous control function such
that v(t) € U, then there exists a unique continuously differentiable state
function (x(t), y(t), z(t)) which satisfies the motion equations (2) and the
initial conditions (3). This follows from the fact that the map g : R® — R?
such that (l’(t), y(t)7 Z(t>) = g(l’(t), y(t>v Z(t>v U1 (t>v ’Ug(t)), as defined by
(2.1)-(2.3), is a Lipschitz function of (x, y, z), uniformly in (v1, vs), since
for all (x1, y1, 21), (z2, Y2, 22) € R? and for all (v1, v2) € U, the following
inequality holds:

||g(l'1, Y1, 21,01, U2) - 9(33'2, Y2, 22, U1, U2>|| < (7)

< \/imax{?) + 7, Qg, az}||(931 — X2, Y1 — Y2, 21 — 22)||-

Hence from a known theorem from calculus (see e.g. [4], p.577 and
[5], p.274), for all piecewise continuous (vy(t), v2(t)), the motion equation
(@(t), 9(t), 2(t)) = g(x(t), y(t), 2(t), vi(t), va(t)) has a unique solution
(z(t), y(t), 2(t)), which is a continuously differentiable function.

We say that the system is in normal regime at time ¢t if y(t) < yco, so
that the evolution of the satisfed and unsatisfied visitors is determined by the
equations:

o(t) = y(t), (8.1)
A(t) = 0.



The system is in simply congested regime at time t if yo < y(t) < ypc(va(t)),

where
2 —nuy

(9)

so that the evolution of the satisfied and unsatisfied visitors is determined by
the equations:

yec(v2) = yoy— —

E(t) = yo — (1 —nv2(t))(y(t) — yo), (10.1)
2(t) = (2—nu2())(y(t) — ye). (10.3)

The system is in extremely congested regime at time t if y > ygpc(v2(t)), so
that the associated x(t) and z(¢) motion equations are:

i(t) = 0, (11.1)
At) = y(), (11.3)

i.e. all visitors which find the museum extremely congested remain unsatisfied.
If either y(t) = yo or y(t) = ypc(v2(t)), the system is in transition regime at
time .

We observe that ypc(ve) € [2yc, yec(v2)], for all vy € [0, U], so that if y(t) €
lyc, 2yc|, then the system is not extremely congested; if y(t) €lypc(v2), oo,
then the system is extremely congested.

Moreover, after defining v¥“(y) as the inverse function of ypc(72), i.e.
EC Yy — 2yc
v (y) = ———, Yy>yo, (12)
’ 0y —yo)

we have that if y(t) ]2yc, yec(U2)], then the system is extremely congested
as far as vy(t) € [0, v¥C(y)]; the system is not extremely congested as far as
va(t) €y (y), T2

Let (z(t),y(t),z(t),v(t),T) be a feasible solution to the museum visitor
flow problem, i.e. let v(t), t € [0, T], be a piecewise continuous control function
such that v(t) € U and let (z(t),y(t),2(t)) be the state function which is
associated to v(t) by the motion equations (2) and the initial conditions (3),
so that condition (4) is satisfied. Then we call epoch a maximal time interval
(w.r.t. C) in which the system is observed staying either in normal regime
(a normal epoch), or in simply congested regime (a simply congested epoch),
or in extremely congested regime (an extremely congested epoch), or else in
transition regime (a transition epoch).

3. Optimality conditions

The standard Pontryagin maximum principle conditions (see [23], pp. 84—
86 and p. 143) are not suitable for the EV F' problem, because the functions on

6



the r.h.s.’s of equations (2.1) and (2.3) have not continuous partial derivatives
w.r.t. y. On the other hand, the Clarke’s generalized maximum principle (see
[3], pp. 210-212) applies to this problem. The Hamiltonian function is

H(z,y,2,p1,D2,p3,01,02,t) = polay — vy —v2) +
+ p1 [min{y, yo — (1= nu2)(y —ye)}]" +
+ po(—v(y — Byc) + azx — a.z + bvy) +

+ pzmin{y, (2 —nv2)(y —yc) "}

(13)

If (z*,y*, z*, vf,v5,T*) is an optimal solution to problem EVF, then there
exists a constant pg € {0,1} and a continuous and piecewise continuously
differentiable function (pi(t),p2(t),p3(t)), such that the following conditions
hold:
i) for all t € [0,T],
(po; p1(t), p2(t), p3(t)) # O; (14)

ii) for all v € [0,71] x [0,D2],

H(x(t),y(t), 2(t),p(t),v"(t),t) = H(x(t),y(t),z(t),p(t), v, t);  (15)

iii) if v(¢) is continuous at ¢, then v.e.:
p1(t) = —p2(t)as; (16)

P2(t) + apo — yp2(t) =

—p1(t), y(t) <yo,
_ ) —ps(t) + (pa(t) — ps3(8)) (1 — nua(t)), (17.1)
yo < y(t) <yec(va(t)),
—p3(t), y(t) > yec(va2(t)),

and

D2(t) + apo — yp2(t) €

co{l—p1(t), —ps(t) + (p1(t) — p3(t))(1 — nu2(t))},
y(t) = ye, (17.2)

=\ —ps(t) + cof0, (pa(H) — pa(t) (1 = moa(£))},
y(t) = ypc(v2(t)),
where co{r, s} = [min(r, s), max(r, s)] is the convex hull of the set {r, s};
p3(t) = p2(t)as; (18)
iv)
po € {0, 1} (19)
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We further observe that the usual Arrow—Kurz type sufficient conditions
[8] apply to this problem, so that if there exists a solution to the conditions
(14)—(21) with pg = 1, then it is an optimal solution. ??? In fact, ... 777

We further observe that the usual Arrow-Kurz type sufficient conditions
([8, p.513]) apply to this problem, whenever the control variables either cause
no regime switching or cause the system to jump, while occurring the regime
transitions at isolated times. In this case, if there exists a solution to the
conditions (14)—(21) with pp = 1, then it is an optimal solution.

In fact, let (v1(t),v2(t),z(t),y(t), 2(t)) be a feasible solution of the EV F
problem and let (pi(t), p2(t), p3(t)) be such that the optimality conditions (14)-
(21) are satisfied, with po = 1. Moreover let (v1(t),v2(t)) causes no regime
switching. Then the function

H° = max H
velU

is linear in (x,y, z) and then it is concave in the state variables, for every fixed
t and p(t). The solution (vy(t),va(t), x(t),y(t), z(t)) is then an optimal solution
([8, p-513, Theorem A.3.2]).



3.1. Observations on the optimality conditions

;From the Hamiltonian maximization condition (15) some features of the
advertising and management policies may be derived. For the advertising
expenditure rate v1(t) we obtain that

. O, pg(t) <p /b,
OIS N .

On the other hand, for the congestion management expenditure rate vy ()
the following policies hold

vo(t) = Do, (23.1)
if either yo < y(t) < 2yc and pi(t) —ps(t) > po/n(y(t) — ye),
or 2yc <y(t) < yrc(v2) and
—pov2 + (p1(t) — p3(t)) [yc — (1 —no2)(y(t) —yo)] > 0;

va(t) = 0, (23.2)
if either y(t) < yc, or y(t) > yrpc(v2),
or yo <y(t) <2yc and pi(t) —ps(t) < po/ny(t) —yo),
or 2yc < y(t) < yrc(v2) and
— pov2 + (p1(t) — p3(t)) [yc — (1 —m2)(y(t) —ye)] < 0.

From (23.2) the congestion management expenditure rate is zero during either
normal or transition epochs and when y(t) > ygpc(v2): in the last case the
system is extremely congested no matter which value of vo(t) were chosen.
Moreover, if y(T') > yc, after observing from (20) that

p1(T) —p3(T) = 0, poT) = 0, (24)

we obtain that the congestion management expenditure rate must be zero in a
suitable neighborhood of the final time 7', so that the museum recipe consists
in avoiding to spend to control congestion when the exhibition is ending and
the visitor satisfaction cannot influence the future attendance.

Because of analogous continuity reasons an optimal congestion manage-
ment policy must be zero in suitable neighborhoods of the transition times at
which y(t) = yc.

If there exists a solutions to the necessary conditions such that y(7°) > 0,
i.e. such that the exhibition closes with a positive visitor flow, then po(7") = 0
and pg = 1, because of (20) and (14). Hence, from (22) we obtain that vy (¢) = 0
in a suitable neighborhood of the final time T, as already obtained for vq(t).

Moreover, H(xz(T), y(T), 2(T), p(T), v(T), T) = ay(T) > 0, so that T" = T,
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i.e. y(T) > 0 implies that the exhibition closes at the end of the reserved time
interval.

If a piecewise continuous optimal control exists, then it must have a
relatively simple structure. In fact, the restriction of such a control function
either to a normal, or to a simply congested, or to an extremely congested
epoch, must satisfy the Pontryagin maximum principle conditions for special
optimal control problems, whose Hamiltonian function are linear w.r.t. the
control v. We obtain that a piecewise continuous optimal control must be a
bang—bang control, except possibly at transition epochs.

However some restrictive necessary conditions for the control components
are known, even in a transition epoch:

a) if v1(t) €]0, 79[ for all t €]o, 7|, then

p2(t) = po/b, forallt €lo, 7; (25)

b) if va(t) €]0, Ty[ for all ¢t €]o, 7[, then

Po

————— and <y(t) < 2yc, forallté€lo, 7|. (26
i) —ya] A ve y(t) < 2yc Jo, [ (26)

p1(t) —ps(t) =

Moreover, a transition epoch is most likely a singleton set, as different
restrictive conditions should hold if it were a nondegenerate interval.

4. Existence of an optimal solution

As far as the existence of an optimal solution is concerned, we have a
positive result in the context of measurable controls and we can state that
there exists a measurable control function which maximizes the objective
functional of the EV F problem. In fact, the integrand function in the objective
functional is a continuously differentiable function in (x, y, z), for all v, v9 and
t. Therefore, the EV F problem is equivalent to the following EV F* problem:

maximize J = w(7T), (27)
subject to w(t) = (ay(t) —vi(t) — va(t)), (28)
w(0) = 0, (29)

and to (2.1), (2.2), (2.3), (3), (4), (5), (6).

The functions which determine the motion equations do not depend explicitly
on the time variable t and, for all x,y, z € R, the set

minf{y, yo — (1 —nva)(y — yo) }™
i ey e | R very G0
(oy —v1 — v2)

11



is a segment of R*, hence it is a convex set. Moreover, for all measurable v and
for all t € [0, 7], where T' < T is the final time of the solution associated with
the control v, we have that

0 < z(t) < ycT, (31.1)
0 < y(t) < [VByc +awycT + ] T, (31.2)
0 < 2(t) < [vByc +awycT +b0] T, (31.3)

jw(t)] < Tmax {01 + s, a [y8yc + azycT +bu1] T}.  (31.4)

This two facts allow us to use a known theorem on the compactness of the set
of attainability (Theorem 2, p. 242, in [16]), which holds also in the case that
the functions which define the motion equations are just Lipschitz functions
and state the existence of an optimal measurable control.

5. A special class of control functions

In the following we present a few examples of control functions and discuss
them with respect to their practical significance and their analytic features.

In the dynamical system (2.1)-(2.3), there is a stable equilibrium for the
state function y(¢) whenever we consider a constant control v(t) = (01, 02), or
equivalently the control v(t) = w(t, 01, 02) such that

wl(t) = @1, t e [O,T]

_ )0, if y(t) € lyc, yec(02)], (32)
walt) = {@2, if y(t) € lyc, yec(02)[.

The equilibrium value is

a(1(2—_77::)2)4£a;2;—>m2> ye € lyo, ypo(ia)] (33)

§(v2) =
which depends on v9 but not on ;. A congestion management policy can
modify both the eventual level of congestion and the unsatisfied visitors
increment rate. On the contrary, every advertising policy is ineffective in the
long run and only the word-of-mouth communication matters.

Now, let us define the control v(t) as a variant of w(t, U1, T2) and such
that

1, ifte|0,0],
nlt) = {01 ifth{O o—{ 5
'UQ(t) — {07 lf y(t) g]yh y2[0rt¢ [07 [7

Ua, if y(t) € Jy1, yo[ and t € [0, 7,

for some fixed o,7 € [0,T[ and y1, 2, such that y; €|yc, 2yc| and yo €
11, yec (V2)[.
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The control functions defined by (34) share some general features with the
solutions to the optimality necessary conditions. In fact, for all controls of this
kind

a) extreme values only are observed, v(t) € {0,7;} x {0,075},

b) the congestion management expenditure rate is zero in suitable neighbor-
hoods of the transition times at which y(t) = y¢,

c) if the final time is large enough, 7" > max{o, 7}, then both the advertising
expenditure rate and the congestion management expenditure rate are zero

in suitable neighborhoods of the final time 7.

A control defined by (34) depends on time and on the state of the system
(but not simply on the regime of the system). The associated state function
(z(t),y(t), z(t)) is continuously differentiable at all times except those ¢ at
which y(t) € {y1, y2}: the latter are isolated points. The transition epochs are
singleton sets. The control may not be equivalent to any piecewise continuous
control, as it is possible that y(t) € {yi1, y2} at infinitely many points in a
bounded interval, thus implying that vs(t) would have infinitely many switches
in a bounded interval. Such controls are not optimal, but practically good
solutions may be found among them. They represent a museum management
which advertises the cultural event during an initial segment of the time interval
[0, T] and opposes the congestion during certain subintervals of the simply
congested epochs.

5.1. “Congestion overlooking” policy

If o > 0 and 7 = 0, then the control function represents a congestion
overlooking policy, with maximum advertising effort in [0, o[, if 0 > 0; whereas
we have the zero policy v(t) = 0, if 0 = 7 = 0. The control drives the
system towards the equilibrium §(0) for the state function y(¢). The system
will possibly have regime transitions, at isolated times, as follows:

* from the normal regime to the simply congested regime (N — SC), or
from the simply congested regime to the normal regime (SC — N), at
times t such that y(t) = yo;

* from the simply congested regime to the extremely congested regime
(SC — EC), or from the extremely congested regime to the simply
congested regime (EC — SC'), at times ¢ such that y(t) = 2yc.

5.2. “Partial relief of simple congestion” policy

If o > 0 and 7 > 0, then the state function (x(t),y(t), 2(t)) will possibly
have regime transitions, in the final segment |7, T, at isolated times with the
same characteristics as for the zero policy. Moreover, the state function y(t)
will tend to g(0) in [7,T]. On the other hand, to study its behaviour in the
initial segment [0, 7], we can distinguish two particular cases.

prsc/1
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Let yo €ly1, 2yc| and y1 €]yc, 2yc|, then the associated state function
(z(t),y(t), z(t)) will possibly have regime transitions, at isolated times in the
initial segment [0, 7], as follows:

*¥ N — SC or SC — N at times t such that y(t) = y¢;

* SC — EC or EC — SC at times t such that y(t) = 2yc.
The control v (t) will have switches at times ¢ such that y(t) € {y1, y2}.
There is an equilibrium for the state function y(t) at g(0), if g(0) €

]yC7 U1 [U]y27 2yC[7 and at g(®2)7 lf g(FQ) S ]y17 y2[
prsc/2

Let y2 € [2yc, ypc(U2)] and y1 €]yc, 2yc|, then the associated state
function (z(t),y(t), z(t)) will possibly have regime transitions, at isolated times
in the initial segment [0, 7], as follows:

* N — SC or SC — N at times ¢ such that y(t) = yc;
* SC — EC or EC — SC at times t such that y(¢) = yo and which are
switch times for the control.
The control v (t) will have further switches at times ¢ such that y(t) =
There is an equilibrium for the state function y(¢) at §(0), if g(0) € ]yc, y1l,

and at §(T), if §(T2) € Jy1, va]-

In both particular cases, we observe that there may exist 0, 1, or 2
equilibria for the state function y(¢). In fact, there does not exist any
equilibrium if y; < §(0) < y2 < y(v2), whereas there exist two equilibria if
9(0) < y1 < 9(v2) < y2.

Therefore, if we want that a prsc policy allow the system to have a definite
equilibrium for y(¢), during the interval [0, 7], then we remain with two families
of prsc policies:

* expensive prsc policy: y1 €]yc, Q(O)[ and yo2 €]y(v2), ypc(v2)[, which has
the unique equilibrium ¢(v2) in |

* cheap prsc policy: y1 €]9(0), §(v2 [ and ya €|y1, §(vU2)[, which has the
unique equilibrium g(0).

6. Conclusions

The model of the exhibition visitor flow we have introduced takes into
account some of the basic features of the cultural institutions. We have
formulated the cultural marketing problem of determining optimal advertising
policies for a museum institution with the objective of maximizing a profit
functional. It is a nonlinear and nondifferentiable optimal control problem
with three state and two control variables. The behaviour of the museum
system through time has been described by means of three dynamical systems.
The first one is associated to a low attendance rate (normal regime), when
no actual congestion effects are observed. The second one is associated to a
high attendance rate (simply congested regime), when the visitor satisfaction is
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affected negatively, though not cancelled, by the actual congestion. The third
one is associated to a very high attendance rate (extremely congested regime),
when the visitor satisfaction is cancelled by the actual congestion.

We have obtained the Clarke’s generalized maximum principle necessary
conditions for an optimal solution, which here do not allow to determine
explicitly any solution. We have also proved the existence of an optimal
measurable control. Some information from the necessary conditions has
been used to define special classes of control functions which are economically
meaningful. We have analysed the characteristics of such special controls and
the dependence of the system behaviour on them, also by means of some
numerical simulations. It appears that some heuristic method may be designed
in order to find good control functions in suitable classes of controls as those
we have studied.

Further attention could be given to the modelling of the visitor congestion
sensitivity, which is essential for the evolution of the system state. We think
that the motion equations (2.1) and (2.2) may be modified in order to account
for different degrees of visitor congestion sensitivity, without changing the
qualitative behaviour of the system or the significance of the control functions
analyzed.
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