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1. Introduction	

The	 purpose	 of	 this	 paper	 is	 to	 consider	 a	 proper	 way	 to	 rank	 investment	 Funds	 using	 a	
quadratic	utility	function.	

The	choice	of	this	type	of	function	is	motivated	by	the	requirement	to	link	the	ratings	to	risk	
(standard	 deviation)	 and	 return,	 conditionally	 to	 the	 subjective	 risk‐aversion.	 The	 risk‐
aversion	is	determined	by	coefficients	of	this	function.	

Irrespective	of	 their	 standard	deviation,	 it	 seems	counterintuitive	 that	a	Fund	with	positive	
performance	may	be	ranked	below	another	Fund	with	negative	return.	

In	 addition,	 the	 parameter	 ARA	 (Absolute	 Risk	 Aversion),	 usually	 defined	 on	 the	 basis	 of	
general	considerations,	 in	 this	case	 is	defined	only	 in	accordance	with	 the	characteristics	of	
return	and	risk	of	Funds	being	analyzed,	and	it	is	therefore	strongly	linked	to	the	fact	that	we	
can	give	an	its	measure	independently	from	other	considerations.	

This	is	a	crucial	parameter	and	its	link	with	the	characteristics	of	the	Funds	makes	possible	a	
clear	distinction	of	ranking	between	Funds	with	positive	and	those	with	negative	return.	

Conversely,	an	example	is	given	in	which	a	utility	function	of	the	type	used	by	Morningstar,	i.e.	
CRRA	 (Constant	Relative	Risk	Aversion),	 leads	 to	 the	 possibility	 that	 a	 fund	 with	 positive	
performance	has	a	rating	less	than	one	with	a	negative	return.	

In	 this	 latter	 case,	 by	 following	 a	 truncated	 Gaussian	 density	 function,	 its	 non‐central	
moments	of	 order	n	 are	 computed	 in	 closed	 form.	The	 subsequent	 calculation	of	 the	utility	
function	coming	from	a	series	expansion	highlights	that	this	function	provides	a	rating	based	
essentially	on	measures	of	returns	and	considers	the	risk	in	a	marginal	way.	In	fact,	the	level	
curves	in	the	risk/return	plane	have	a	linear	behaviour,	almost	parallel	to	the	risk	axis,	when	
standard	deviations	are	less	than	20%.	

Therefore,	the	CRRA	utility	function,	focused	on	the	constancy	of	the	RRA	parameter,	greatly	
reduces	the	importance	of	the	risk	component.	

Morningstar	is	the	most	influential	rating	agency	for	mutual	funds.	It	is	therefore	important	to	
analyze	the	sensitivity	of	its	evaluations	with	respect	the	risk	and	return	dimensions.	

Our	results	give	a	methodological	support	to	other	studies	that	have	examined	the	role	of	risk	
measurements	in	the	Morningstar	rating	under	various	aspects.	For	example,	Lisi	and	Caporin	
(2012)	show	that	ratings	obtained	with	the	setting	of	Morningstar	are	very	similar	 to	 those	
obtained	by	assuming	that	the	investor	is	risk‐indifferent.	

Del	Guercio	and	Tkac	(2008)	estimate	the	value	of	a	star	in	terms	of	the	asset	flow	it	generates	
for	 the	 typical	 fund	 and,	 following	 rating	 changes,	 they	 find	 economically	 and	 statistically	
significant	abnormal	flow	in	the	expected	direction,	positive	for	rating	upgrades	and	negative	
for	rating	downgrades,	ranging	from	13	to	30%	of	normal	flows.	

In	the	analysis	of	Amenc	and	Le	Sourde	(2007)	it	appears	that	the	Morningstar	rating	(among	
other	rating	measures)	does	not	deal	adequately	with	some	aspects	of	fund	evaluation.	One	of	
these	aspects	concerns	risk,	both	in	terms	of	measuring	the	risks	that	were	really	taken	by	the	
manager	and	of	the	necessity	of	taking	into	account	extreme	risks.	

Casarin	 et	 alias	 (2005)	 provide	 a	 comprehensive	 analysis	 of	 the	 relative	 benchmark	
performance	measure	(Morningstar	rating)	applied	to	Italian	equity	funds.	They	find	that	the	
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Morningstar	 rating	 is	 highly	 correlated	 with	 the	 classical	 performance	 measures	 (Sharpe	
ratio,	Sortino	ratio	 and	Treynor	ratio)	 and	 lowly	 correlated	with	 the	 customized	benchmark	
measure	(Information	ratio).	This	result	is	important	because	the	information	ratio	measures	
the	 quality	 of	 the	 manager’s	 information	 discounted	 by	 the	 residual	 risk	 in	 the	 betting	
process.	

Adkisson	 and	 Fraser	 (2003)	 perform	 a	 statistical	 analysis	 which	 shows	 an	 inverse	
relationship	between	fund	rating	and	fund	age,	both	for	the	overall	ratings	and	time‐specific	
ratings,	with	a	tendency	for	larger	funds	to	dominate	the	middle	star	rankings.	Similar	results	
are	 found	by	Vinod	and	Morey	 (2002),	 that	 is,	 young	 fund	 ratings	 contain	more	 estimation	
risk	than	middle‐aged	and/or	seasoned	funds.	

The	paper	is	organised	as	follows.	Section	2	introduces	the	Quadratic	Utility	Function	(QUF)	
as	 objective	 function	 on	which	 the	Arrow‐Pratt	measure	 of	 absolute	 risk‐aversion	 (ARA)	 is	
applied.	The	ARA	measure	depends	on	parameters	which	are	modified	through	the	definition	
of	 the	 Normalized	 Quadratic	 Utility	 Function	 (NQUF).	 In	 contrast	 with	 Morningstar	 rating,	
with	 the	NQUF	 rating	measure	 a	 positive	 return	 Fund	has	 always	 a	 rating	 higher	 than	 one	
with	 a	 negative	 return.	 Furthermore,	 following	 this	 new	NQUF	measure,	 also	 new	 ranking	
classes	 are	 suggested.	 In	 Section	 3	 we	 prove	 that	 if	 we	 assume	 the	 Morningstar	 utility	
function,	 then	 there	 exist	 funds	 with	 negative	 return	 having	 better	 rating	 of	 funds	 with	
positive	 returns.	 Section	4	discusses	analytically	 the	 lack	of	dependence	of	 the	Morningstar	
utility	function	from	the	risk	represented	by	the	standard	deviation.	In	Section	5	a	comparison	
between	NQUF	and	Morningstar	rating	measures	is	done	by	using	the	actual	sample	of	Italian	
pension	Funds.	Section	6	contains	the	conclusions.	
	
	
	
2. Quadratic	Utility	Function	

The	evaluation	of	Funds	is	based	on	the	Quadratic	Utility	Function	(QUF),	where	Return	and	
Standard	 Deviation	 enter	 as	 parameters.	 Consequently,	 risk	 aversion	 is	 determined	 by	 the	
values	of	these	parameters	and	the	rating	is	given	without	considering	other	external	data	to	
the	 considered	 market.	 The	 use	 of	 Returns	 and	 Standard	 Deviations	 without	 other	
information	sources	assures	a	more	objective	measurement	of	the	Ratings.	

Some	useful	constraints	on	the	ARA	(Absolute	Risk	Aversion)	measure	related	to	the	QUF	are	
done	 for	 avoiding	 the	 higher	 rating	 assignments	 to	 the	 Funds	 with	 negative	 returns	 with	
respect	the	ones	positive.	

Consider	the	following	general	quadratic	utility	function	(QUF):	

(2.1)	 2( ) , 0U W a bW cW b c    	,	

where	W 	is	the	wealth	(or	a	quantity	of	the	uncertain	payment):	

	 0 (1 )W W R  	,	

with	the	initial	value	 0W 	and	the	(monthly)	return	R .	
If	 (2.1)	 function	has	positive	 first	derivative	 and	negative	 second	derivative,	 it	 represents	 a	
risk‐averse	person	with	insatiable	appetite,	that	is: 
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(2.2)	
2 0

2 0 0

U b cW

U c c

   
     

	

(2.3)	
2

0
2

U c
ARA

U b cW


   

 
	

Now	consider	a	sequence	of	returns	of	K	Funds	 ; 1, ,jR j K  ,	each	with	mean	 ( )j jE R  	

and	standard	deviation	  1 22
( )j j jE R E R     .	We	indicate	with	 M 	the	maximum	expected	

return	 within	 all	 the	 sequence	 of	 returns,	 i.e.	  max , 1, ,M j j K    	and	 we	 chose

02 (1 )Mb cW   . The	rationale	of	this	latter	choice	is	that	the	maximum	of	the	expected	value	

of	the	QUF	will	be	reached	in	the	point	 (0,
M

,( ,
M

)) 	on	the	space	 ( ,,( ,)) 	,	where	

 is	the	standard	deviation,   is	the	mean	and	( ,)  is	the	expected	value	of	the	QUF. 

The	condition	that	a	Fund	with	
i
 0 	cannot	have	an	expected	value	of	QUF	less	than	a	Fund	

with	
i
 0 	implies	that	the	ARA	of	the	investors	(and	consequently	the	coordinates	of	the	

maximum	of	( ,) )	must	be	modified	through	a	transformation	of	values	 (
i
,

i
)	of	the	

Funds.	This	means	that	ARA	is	defined	only	on	the	values	 (
i
,

i
)	of	the	Funds	rather	than	by	

external	considerations	to	these	values.		

Theorem	 2.1:	With	 the	 definition	b 2cW
0
(1

M
),	 the	 expected	 value	 of	 QUF	 in	 (2.1)	 is	 a	

function	 	of	 standard	deviation	 and	expected	return	 	represented	by	a	paraboloid	 in	 the	
risk‐return	 space	 ( , , )   with	 downward	 concavity,	 whose	 vertex	 is	 given	 by	 the	 point	
(0, , (0, ))M M   .	That	is:	

	 2 2 2 2 2
0 0 0[ ( )] ( , ) ( ) [ ( ) ]M ME U W U W cW cW          		,	

where	 2
0 0 0( )U W a bW cW  . 

	
Proof:	Appendix	A	.	�	

From	(2.3)	and	from	the	choice	b 2cW
0
(1

M
) ARA	expression	becomes:	

	
0

1
 ( )

(1 )M

ARA W
W W


 

	

and	

	 0
0

1
 ( )=

M

ARA W
W 

		.	

If	we	compute	the	same	expression	in	 0( ) (1 )E W W   ,	then:	
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(2.4)	
0

1
 ( )

( )M

ARA
W


 




		.	

This	expression	implies	that	risk	aversion	(absolute	and	relative)	increases	with	increment	of	
expected	return.	
A	 criticism	 says	 that	 in	 some	 cases	 this	 can	 be	 unrealistic:	 approaching	 to	 a	 limit	 level	 of	
expected	return,	it	makes	no	sense	to	risk.	Despite	of	this,	the	quadratic	function	is	very	useful	
because	it	can	be	seen,	according	to	the	Taylor	expansion,	as	the	second‐order	approximation	
to	 any	 utility	 function,	 and	 because	 a	 person	 with	 Quadratic	 Utility	 Function	 takes	 its	
decisions	on	the	basis	of	both	Returns	and	Standard	Deviations	parameters.	

Figure	2.1	shows	the	three	dimensional	paraboloid	representing	the	QUF.	The	paraboloid	is	
defined	on	the	half‐plane	 ( , )  	with	  0 	and	  

M
	and,	due	to	the	definition	of	

M
 and	

the	choice	of		b,	contains	all	the	Funds.	

QUF	is	applied	to	the	values	of	return	and	standard	deviation	of	a	set	of	Funds	and,	from	
geometrical	point	of	view,	the	i‐th	Fund	has	a	geometrical	representation	as	a	point	of	
coordinates	 (

i
,

i
,(

i
,

i
)).	

	
	

Figure	2.1:	3D	Quadratic	Utility	Function	

	
	

The	iso‐utility	curves	can	be	obtained	from	the	equality	 ( , ) K    ,	where	K 	is	a	constant.	

In	this	way	we	have	a	sheaf	of	circumferences	on	the	plane	 ( , )  with	centre	(0,	ߤெ).	
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The	i‐th	Fund	has	a	geometrical	representation	as	a	point	of	coordinates	 ( , )i i  .	
	
	

Figure	2.2:	Quadratic	Utility	Function,	Iso‐utility	Curves	

	
	

For the evaluation of the iso-utility values we assume that the maximum utility value corresponds to 
the maximum value of return, i.e. for M  . In this point, where the radius of the sheaf	 of	
circumferences	 is equal to zero, the utility is maximum; assumes decreasing values for the points 
of coordinates ( , )   which have an increasing radius, i.e. it moves away from the vertex. In the 

following we consider 0M  . 

If	 ( , )e e  	are	 the	 co‐ordinates	 of	 the	 most	 distant	 point	 from	 the	 centre	 of	 the sheaf	 of	
circumferences,	we	can	distinguish	2	cases.	

	

a) Funds	with	positive	returns	only,	i.e.:			 2 2 2( )e e M M     	
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Figure	2.3	–QUF	‐	Funds	with	positive	returns	only	

	
	
	

The	 Fund	 with	 greater	 distance	 from	 the	 centre	 is	 in	 any	 case	 inside	 a	 circle	 with	 centre	
(0, )M 	and	radius	 M 	

The	 distance	 of	 a	 generic	 point	 of	 coordinates ( , )   from	 the	 centre	 of	 the	 sheaf	 of	
circumferences	is	given	by:	

(2.5)	 2 2( )MD      	

If	 eD 	is	 the	maximum	 value	 of	 these	 distances,	 then	we	 can	 divide	 all	 the	 distances	 of	 the	

points	of	generic	 ( , )  coordinates	from	the	point	of	coordinates	 (0, )M 	by	 eD 	obtaining	the	
normalized	distance:	

(2.6)	
2 2

( , )
( )M

N
e

D
D

  
 

 
 	
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By imposing the	boundary	condition1:	

	 ( , ) 0e e    	

we	obtain	the	following	value	of	 0( )U W :	

(2.6)	 2 2 2
0 0( ) ( ) 0e MU W cW D    	

We	define	the	Normalized	Quadratic	Utility	Function	(NQUF)	as	follows:	

(2.7)	
 2 2

2

2 2
0 0

2
0

( ) [ ( )
)

]
( ,

M

e

M

N D

U W cW

cW

  
 




   
 	.	

Consequently,	for	any	coordinate	 ( , )  	the	NQUF	is:	

(2.8)	

 

 
2

2

2 2 2 2
0 0

2
0

2 2 2 2 2 2 2
0 0

2
0

2 2 2 2
0

2

2
0

2
0

2

( ) [ ( )
( , )

( ) [

]

]

( , )

( )

( )

1

M M

N

e M M M

e

e

e

e M

N

U W cW

cW

cW D cW

cW

cW

D

D

D

D cW

cW

D

  
  

   



  



 

   


    


 


 

   

	

The	NQUF	reaches	 its	maximum	value	1	at	 	 the	point	 (0, )M 	and	the	minimum	at	 the	point	

( , )e e  .	 The	 representation	 in	 three	 dimension	 indicates	 a	 paraboloid	 with	 vertex	 at	 the	

point	  0,  ,1Mµ .	

Considering	two	dimensions,	Figure	2.3	becomes:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

                                                 
1 This condition is given simply for the purpose of ordering. Any alternative constant could be used with the effect of 

translating the paraboloid if the same constant is added to the vertex. 
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Figure	2.4	–NQUF‐	Funds	with	positive	returns	

	
	

and	in	three	dimensions	is:	
	

Figure	2.5	–3D	NQUF	‐	Funds	with	positive	returns	
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b) Funds	with	positive	and	negative	returns,	i.e.:			 2 2 2( )e e M M     	

In	this	case	the	application	of	the	methodology	here	proposed	gives	NQUF	with	rating	higher	
for	Funds	with	positive	returns	with	respect	to	any	other	Fund	with	negative	return.	
The	 appropriate	 representation	 needs	 to	 determine	 the	 centre	 of	 coordinates	 (0, )Me 	such	

that	the	related	circle	crosses	the	point	 (0,0) 	and	includes	all	the	Funds	with	positive	returns,	

that	is	to	say,	in	the	Theorem	2.1	the	coordinate	
Me

 substitutes 
M
.	The	unknown	value	 Me 	

can	be	determined	by	imposing	the	condition	that	the	value	of	NQUF	is	equal	zero	to	the	Fund	
with	positive	return	and	maximum	distance	from	this	new	centre.	
This	means	that	Funds	with	negative	returns	have	negative	value	of	NQUF.	
	
	

Figure	2.6	–QUF	‐	Funds	with	positive	and	negative	returns	

	
	

Therefore,	the	boundary	condition	is:	

	 (0,0) 0  	,	

which	implies:	

	 0( ) 0U W  	
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Now,	considering	all	the	generic	points	 ( , )i i  which	satisfy	the	inequality	b)	with	 0i  ,	we	

impose	 the	 condition	 that	 the	 paraboloid	 with	 vertex	 (0, , (0, ))Mi N Mi   ,	 where	 Mi is	 the	

unknown	centre	correspondent	to	each	Fund,	has	value	of	zero	for	the	point	 ( , )i i  :	

	 ( , ) 0i i    	,	

that	is,	it	is	coplanar	with	the	point	(0,	0).	
	
Consequently,	for	the	i‐th	Fund	we	have:	

	  2 2 2 2
0( , ) [ ( 0) ]i i Mi i i MicW         	,	

from	which:	

	
2 2

2
i i

Mi
i

 



 .	

The	new	 coordinate Me , vertex	of	 the	paraboloid,	 and	 also	 centre	of	 the	 sheaf	of	 iso‐utility	
circumferences,	is	given	by	the	choice:	

(2.9)	 ( )Me Mi
i

Max  	,	

and the NQUF becomes: 

	
2 2

2

[ ( ) ]
1 Me

N
Me

  


 
  	

Taking	in	account	that	the	i‐th	Fund	satisfies	the	inequality	b),	we	can	write:	

	 2 2 2 22i i i M M M        	

	 2 2 2 0i i i M      	,	

and	being	 0i  ,	we	have:	

	
2 2

2
i i

Mi M
i

  



  	,	

consequently:	
	 Me M  	
	
The	centre	 Me 	of	the	sheaf	of	circumferences	shifts	towards	superior	values	of	 M 	along	the	
vertical	axis.	This	means	that	to	obtain	a	greater	rating	for	positive	return	Funds	with	respect	
to	the	negative,	the	ARA	parameter	given	in	(2.4),	i.e.:	

	
0

1
 ( )

( )M

ARA W
W  




	

diminishes	assuming	the	value:	
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(2.10)	
0

1
 ( )

( )N
Me

ARA W
W  




	

In	this	case	the	NQUF	assumes	value	1	in	 (0, )Me 	and	0	in	 ( , )e e  ;	furthermore,	it	has	value	0	
also	in	(0, 0). 
Graphically,	the	representation	of	Figure	2.6	changes	to	the	representation	given	by	the	Figure	
2.7.	

In	conclusion,	in	case	a),	which	represents	Funds	with	only	positive	returns,	the	centre	of	the	
sheaf	of	 the	circumferences	is	given	by	 M 	and	the	ARA	by	the	relation	(2.4);	 in	the	case	b),	
which	 considers	 Funds	 with	 positive	 and	 negative	 returns,	 the	 centre	 of	 the	 sheaf	 of	
circumferences	is	given	by	(2.9)	and	the	ARA	by	(2.10).	

	
Figure	2.7	–NQUF	–	Iso‐utility	curves	

	
	
	

and	in	three	dimensions:	
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Figure	2.8	–NQUF	3D	

	
	

The	comparison	among	the	different	Funds	is	done	by	computing	the	NQUF	after	the	choice	of	
the	appropriate	window,	for	example	10,	7,	3	years	or	1	year.	The	values	of	NQUF	are	rescaled	
between	(0,	10)	as	follows:	

(2.11)	 10
NQUF Min( NQUF )

Rescaled NQUF
Max( NQUF ) Min( NQUF )





	

The	 ranking	 can	 be	 done	 assigning	 a	 particular	 class,	 only	 for	 the	 Funds	 that	 convey	 their	
returns	since	at	 least	10	years.	This	period	is	consistent	with	financial	assets	which	need	to	
show	their	quality	in	the	long‐run.	

Here	we	propose	in	Table	2.1	a	possible	ranking	using	7	classes2	formed	on	the	basis	of	the	
values	obtained	in	(2.11),	in	decreasing	order.	
	

Table	2.1	–	Ranking	classes	(7‐th	is	the	best)	

Class	7	 (0%, 5.0%]	
Class	6	 (5.0%, 17.5%]
Class	5	 (17.5, 37.5%]	
Class	4	 (37.5%, 62.5%]	
Class	3	 (62.5%, 82.5%]	
Class	2	 (82.5%, 95.0%]	
Class	1	 (95.0%, 100.0%]	

                                                 
2 It is understandable that 7 classes give more detailed information in comparison to 5 classes, therefore they are more 

sensitive to the change of the parameters. 
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To	calculate	the	outlook,	 i.e.	 the	tendency	of	 the	ranking	values	 	over	time,	 the	period	of	10	
years	is	divided	into	5	windows	of	2	years	length.	
Within	each	window	NQUF	is	calculated	and	the	obtained	values	are	rescaled	between	0	and	
10	using	the	(2.11).	
Therefore,	 the	 outlook	 is	 determined	 by	 using	 a	 regression	 on	 the	 re‐scaled	 numbers.	
Minimum	deviations	from	the	value	zero	are	set	to	zero	to	avoid	frequent	changes	in	sign	with	
the	inclusion	of	new	data,	that	is	we	avoid	the	formation	of	a	band	of	hysteresis.	
A	graphical	representation	of	the	outlook	can	be	done	by	using	upward	arrows	if	the	sign	of	
the	regression	coefficient	is	positive,	and	downward	arrows	if	negative.	
 
 
 
 
3. The	Morningstar	Utility	Function		
 
Morningstar	uses	a	utility	function	of	exponential	type	with	CRRA	(Constant	Relative	Risk	
Aversion)	with	the	risk	aversion	parameter	γ.	
	
Given	a	period	of	months	T,	the	Morningstar	Risk‐Adjusted	Return	is	defined	as	follows:	

(3.1)	 MRAR( ) 

1

T
(1ER

t
)

t1

T












12



1,   0

(1ER
t
)

t1

T












12

T

1,   0














				,	

with:	

(3.2)	
1

1
1

t
t

t

LR
ER

Rf


 


			,	

where	 tLR 	is	the	monthly	return	including	the	commissions	and	 tRf 	is	the	risk	free	rate.	

( )MRAR  	are	annualized	values.	

For	 0  ,	the	investor	is	risk	adverse	and	calls	a	premium	against	his	choice	of	a	risky	asset.	

The	value	 2  	is	chosen	by	Morningstar,	considered	consistent	with	the	risk	aversion	of	the	
typical	retail	customers.	
As	a	measure	of	performance	Morningstar	uses	the	annualized	geometric	return	

(3.3)	

12

1

(0) (1 ) 1
T T

t
t

MRAR ER


 
   
 
 	

That,	considering	the	definition	 2(1 )t ta ER  	becomes:	
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6

1

(0) 1
T T

t
t

MRAR a


 
  
 
 .	

This	represents	a	geometrical	mean	 aG 	of	the	series	 ta 	raised	to	the	sixth	to	which	1	is	
subtracted.	Therefore:	

(3.4)	 6(0) 1aMRAR G  	

	
As	for	the	risk‐adjusted	performance	Morningstar	uses	the	Morningstar	Risk‐Adjusted	
Returns	(2),	or	MRAR	(2):	

	

12

2
2

1

6

2
1

6

2
1

1
(2) (1 ) 1

1 1
1

(1 )

1
1

1 1
(1 )

T

t
t

T

t t

T

t t

MRAR ER
T

T ER

T ER












 
    

 
   

 
 
  







	

	
Which	is	the	harmonic	mean	 aH 	of	the	series	 ta 	raised	to	the	sixth	to	which	1	is	subtracted:	

(3.5)	 6(2) 1aMRAR H  	

Consequently,	the	well	known	Morningstar	Risk,	MRisk,	becomes	the	difference	between	the	
geometric	and	harmonic	mean	of		the	series	 ta 	as	follows:	

	 6 6

(0) (2)

a a

MR MRAR MRAR

G H

 

 
	

Consider	two	Funds,	the	Fund	A	has	MRAR	(0)>	0	and	the	Fund	B	has	MRAR	(0)	<0.	We	want	
to	see	if	there	are	conditions	for	which	the	Fund	B	is	evaluated	in	a	better	way	than	the	Fund	
A,	in	other	words	if	a	Fund	with	a	negative	return	can	have	a	better	rating	than	a	Fund	with	
positive	 return.	 The	monthly	 returns	 are	 defined	with	 AtER 	and	 BtER 	for	 the	 Fund	A	 and	B	
respectively.	We	define	also:	

	
2

2

(1 )

(1 )

t At

t Bt

a ER

b ER

 

 
	

We	consider	 two	series	 ta 	and	 tb 	whose	characteristics	satisfy	MRAR	(0)>	0	 for	Fund	A	and	

MRAR	(0)	<0	for	Fund	B	and	we	build	the	series	 tb 	such	that:	
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1 1 1

2 2 2

, 2t t

b a

b a

b a t





 
  

			,	

that	 is	 the	 series	 tb 	differs	 from	 the	 series	 ta 	for	 two	 elements	 and	 1 ,	 2 	are	 two	 positive	
parameters	subjected	to	some	constraints.	

We	can	prove	the	following		

Theorem	3.1:	Given	two	Funds,	Fund	A	with	MRAR	(0)>	0	and	Fund	B	with	MRAR	(0)	<0,	which	

differ	 for	 two	 positive	 elements	 1 	and	 2 ,	 under	 the	 conditions	 1 2
1 2 2

1 2

4

( )

a a

a a
  


	Fund	 B	 can	

have	a	Morningstar	rating	better	than	Fund	A.	

Proof:	Appendix	B.	�	

	
The	 series	 tb 	can	 differ	 from	 the	 series	 ta 	for	 more	 than	 two	 elements.	 In	 this	 case	 other	
constraints	 need	 to	 be	 found,	 but	 in	 any	 case	 remains	 shown	 the	 existence	 of	 Funds	 with	
negative	 return	 for	 which	 the	 Morningstar	 rating	 can	 be	 greater	 than	 other	 Funds	 with	
positive	return.	
	
	
	
	
4. Morningstar’s	Utility	Function	and	Standard	Deviation	
	
The	starting	utility	function	utilized	by	Morningstar	is:	

(4.1)	 (1 )U z w ER    		

where:	
U	 represents	 the	model	 investor’s	 utility	 or	 satisfaction	 from	each	monthly	 return,	z	 is	 any	
number,	w	is	any	negative	number,	ER	indicates	the	monthly	geometric	excess	return	for	the	
Fund	(adjusted	for	commissions	and	the	risk‐free	rate)	and	γ	is	a	parameter	that	expresses	an	
investor’s	sensitivity	to	risk.	
Without	 loss	 of	 generality,	we	 can	 substitute	 in	 (4.1)	 the	 excess	 return	 ER	 simply	with	 the	
return	R	.	

As	 stated	 in	 the	 previous	 chapter,	 Morningstar	 sets	 γ	 =	 2	 to	 illustrate	 a	 model	 investor’s	
sensitivity	to	risk3.	Furthermore,	Morningstar	states	z	=	2	and	w	=	‐1,	so	that	the	Morningstar	
Utility	Function	(MRUF)	becomes:	

(4.2)	
2

1
(2) 2MRUF

W
  			,	

where	

                                                 
3 The	value	2	of	the	parameter	 	comes	from	Morningstar’s	Fund	analysts	who	have	concluded	that	γ=2	results	
in	Fund	rankings	that	are	consistent	with	the	risk	tolerances	of	typical	retail	investors	(Cf. Morningstar (2009), 
p. 12). 
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	 0 (1 )W W R  	
	
with	the	initial	amount	 0W 	and	the	monthly	return	R .	

The	ARA	has	the	expression:	

	
3

ARA
W

 	

	
	

Figure	4.1:	Morningstar’s	Utility	Function	

	
	

The	expression	(4.2)	becomes:	

	
2 2

0

1
(2) 2

(1 )
MRUF

W R
 


	

Now,	we	consider	the	expression:	

(4.3)	
2

1

(1 )R
	

It	is	easily	shown	that		(4.3)	can	be	written	as:	

(4.4)	
2

0

1
( 1) ( 1)

(1 )
n n

n

n R
R





  
  	

In	fact,	under	the	condition	 1R  ,	we	know	that:	

	
0

1
( 1)

1
n n

n

R
R





 
  			,	
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therefore:	

	

2

0

0

1 1

(1 ) 1

( 1)

( 1) ( 1)

n n

n

n n

n

d

R dR R

d
R

dR

n R









      
     

  





	

Computing	the	expected	value	of	(4.4)	we	have:	

(4.5)	 2
0 0

1
( 1) ( 1) ( 1) ( 1)

(1 )
n n n

n
n n

E E n R n
R


 

 

              
  			,	

where	 n 	is	the	nth	non	central	moment	of	the	random	variable	R .	

Consequently,	the	expected	value	of	MRUF(2)	is:	

(4.6)	
  2 2 2

00 0

2 2
32 2 2 2

0 0 0 0

1 1
(2) 2 2 ( 1) ( 1)

(1 )

1 2 3 4
2 ( )

n
n

n

E MRUF E n
W R W

W W W W



   





 
       

      




	

In	Appendix	C	we	show	 that	 the	non	central	moment	of	 a	normal	distribution	can	 increase	
with	the	order	increment.	

For	the	convergence	of	(4.4)	we	need	to	constrain	the	returns.	

Theorem	4.1:	 If	the	returns	are	normally	distributed	in	the	range	(‐1,	1),	then	the	non	central	
moments	are	decreasing.	

Proof:	Appendix	D.	� 

	

Consider	the	truncated	Normal	 2( , )u N   	constrained	to	assume	values	only	in	the	interval	

1 2( , )K k k ,	with	 1 21 0 1k k     	and	 1 2k k  		

From	computational	point	of	view,	it	is	well	known4	that	the	non	central	moment	 n 	of	a	

truncated	normal	distribution	in	the	interval	 1 2( , )K k k ,	with	 1 21 0 1k k     	and	

1 2k k  ,	has	a	recursive	representation	as	follows:	

	
0

n
n k k

n k
k

n
I

k
  



 
  

 
 		,	

with:	

	 2

1

1
( )

h

H

k
k h

I d   



  		,	 1 1( ) /h k    ,		 2 2( ) /h k    	

                                                 
4 Cf for example Dhrymes (2005) or Burkardt (2014), pg. 25. 
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where ( )h 	represents	the	cumulative	distribution	function	of	the	standardized	random	

variable	 h ,	 ( )h 	the	related	density	function,	and	 H 	the	probability	that	u K :	

	 2 1( ) ( )H h h    	

Therefore:	

	 		.	

 
Alternatively,	in	Appendix	E	we	give	the	closed	form	expression	for	the	non	central	moments	
of	the	Truncated	Normal	Distribution. 

The	calculation	of	 n 	is	possible	also	with	the	use	of	the	incomplete	gamma	function	(see	the	
Appendix	F).	For	n 0 	we	have:	

(4.7)	
2 2

( 1) 2 1 2

0

2 ( 1) , ,
2 22

kn n
k k

n
kH

n h h

k

     






      
                

 	

where	 ( 1) 2k   	and	

	 1

0
( , )

x tx t e dt     ..	

is	the	lower	incomplete	gamma	function.	

Now	we	 consider	 again	 the	 relation	 (4.6)	 in	which,	without	 any	 loss	 of	 generality,	we	 state	
2

0 1W  :	

(4.8)

	

2

0

2 2
( 1) 2 1 2

0 0

[ (2)] 2 [1/ (1 ) ]

2 ( 1) ( 1)

2 ( 1) ( 1) 2 ( 1) , ,
2 22

n
n

n

kn n
n k k

n kH

E MRUF E R

n

n h h
n

k



     









 

  

   

                            






 

		.	

It	 is	possible	to	give	the	three-dimensional representation	of	 iso‐utility	curves	considering	their	
intersection	with	a	general	plane.		
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Figure	4.2:	3D		E[MRUF(2)]	
	

	
	
	

It	is	noteworthy	the	difference	with	Figure	2.1	where	the	intersection	with	a	plane	parallel	to	
the	plane	 ( , )  	has	a	very	different	behavior.	In	this	latter	case	the	curves	appear	only	very	
slightly	 linked	 to	 the	 standard	 deviation	 because	 the	 concavity	 of	 E[MRUF(2)]	 is	 not	 very	
accentuated.	
	
This	lack	of	dependence	of	the	Morning	Star	Utility	Function		from	the	Standard	Deviation	is	
better	shown	looking	at	the	two‐dimensional	representation	of	the	iso‐utility	curves	
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Figure	4.3:	2D	Iso‐utility	curves	of	E[MRUF(2)]	
	

	
	
	
Looking	 at	 these	 results,	 a	 question	 can	 arise	 about	 the	 persistence	 of	 the	 concavity	 in	 the	
utility	 function.	 If	 the	range	of	mean	and	standard	deviation	 is	such	 that	 the	mean	assumes	
values	 near	 ‐0.9,	 then	we	 have	 a	 counterintuitive	 behaviour	 of	 the	 contour	 lines.	 Near	 the	
value	 ‐1	 for	 the	 mean,	 which	 represents	 a	 discontinuity	 point	 for	 the	 utility	 function,	 the	
change	of	 the	 slope	of	 the	 function	 ( )  	are	 relevant.	We	graph	 this	 case	 in	Figure	4.4,	 but	
again	the	anomalous	behavior	is	more	evident	in	Figure	4.5.	

This	interesting	question	is	not	faced	here	because	is	outside	the	scope	of	the	present	paper	
and	is	discussed	in	Corradin‐Sartore	(2014).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



 21

Figure	4.4:	3D		E[MRUF(2)]	
	

	
	
	

Figure	4.5:	2D	Iso‐utility	curves		of	E[MRUF(2)]	
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5. Comparison	between	NQUF	e	MRAR(2)	using	an	actual	sample	
	
The	 discrepancies	 between	 NQUF	 and	 MRAR(2)	 could	 be	 shown	 also	 in	 the	 applied	
measurements.	We	had	already	mentioned	Lisi	and	Caporin	(2012)	paper	in	which	evidence	
is	given	on	the	fact	that	the	Morning	star	rating	system	is	mainly	influenced	by	profitability,	
and	only	marginally	by	risk.	Here,	we	give	a	new	application	with	the	computation	of	the	two	
mentioned	 approaches,	 NQUF	 and	MRAR(2),	 performed	 on	 the	 actual	 sample	 given	 by	 the	
monthly	return	values	of	the	Italian	Pension	Funds.	The	sample	collects	all	the	Funds	with not 
less than 10 years of activity from July 2004 until June 20145.	

The	first	step	is	to	compare	the	parameter	values	used.	With	the	annualized	geometric	mean	
of	 returns,	 formula	 (3.3),	we	 compute	MRAR(0),	 that	 is	 the	 returns	defined	by	Morningstar,	
and	compare	them	with	the	average	annualized	returns.	
	

Figure	5.1:	Average	annualized	returns	vs	MRAR(0)	

	
	
	
The	graphical	comparison	shows	that	the	two	curves	are	approximately	equal,	confirmed	by	
the	calculation	of	the	correlation	coefficient	0.99290.	

The	Morningstar	Risk	(MRisk)	is	computed	with	the	relation:	

	 (0) (2)MRisk MRAR MRAR  	

In	this	case	the	comparison	is	done	with	the	Standard	Deviation.	
	
	
                                                 
5  Morningstar does not compute the MRAR(2) for the Italian Pension Funds, therefore the computations are done by 

using the formulas given in Morningstar (2009). 
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Figure	5.2:	Standard	Deviation	vs	Morningstar	Risk	

	
	

We	 can	 see	 that	 there	 is	 a	 large	 discrepancy	 in	 the	 measurement	 scale	 even	 though	 the	
behaviour	looks	very	similar,	in	fact	the	correlation	coefficient	is	0.96322.	

Hence,	the	MRAR(0)	values	are	equivalent	to	the	average	returns	but	MR	Risk	is	largely	lower	
with	respect	to	the	standard	deviation	measure.	

We	can	compare	graphically	the	NQUF,	NQUF	Rating,	MRAR(2),	MRAR(2)	Rating	versus	some	
other	computed	parameters.	For	this	purpose,	their	values	are	been	rescaled	between	0	and	1	
and	are	renamed	with	additional	suffix	“_N”	in	the	graphs.	
	

Figure	5.3:	Comparison	NQUF	and	MRAR(2)	vs	Average	Returns	
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Figure	5.4:	Comparison	NQUF	and	MRAR(2)	vs	MRAR(0)	
	

	

Figures	5.3	and	5.4	show	big	downturns	for	NQUF.	MRAR(2)	has	very	weak	downturns	at	the	
same	 points.	 This	 different	 behaviour	 is	 attributable	 to	 the	 different	 sensitivity	 of	 the	 two	
measures	regarding	the	variance.	

This	different	behaviour	translates	directly	into	the	rating	scale.	In	Figure	5.5	and	Figure	5.6	
we	compare	 the	rating	of	 the	 Italian	Pension	Funds	 for	 the	NQUF	Rating,	which	 follows	 the	
rating	classes	of	the	Table	2.1	and	the	MRAR(2)	Rating,	obtained	with	the	application	of	the	
method		suggested	by	Morningstar.	

	
Figure	5.5:	Comparison	NQUF	Rating	and	MRAR(2)	Rating	vs	Average	Returns	
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Figure	5.6:	Comparison	NQUF	Rating	and	MRAR(2)	Rating	vs	MRAR(0)	

	

	
	
It	 is	 graphically	 evident	 that	 MRAR(2)	 Rating	 has	 a	 smoother	 behaviour	 and	 is	 increasing	
trend	with	respect	the	increasing	Average	Return	or	MRAR(0).	
	
Similarly,	we	can	see	the	following	graphs:	
	

	
Figure	5.7:	Comparison	NQUF	and	MRAR(2)	vs	Standard	Deviation	
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and	
Figure	5.8:	Comparison	NQUF	and	MRAR(2)	vs	MRisk	

	

	
	

Again,	 both	 the	 Figures	 5.7	 and	5.8	 show	 that	 for	 high	 values	 of	 the	 Standard	Deviation	 or	
MRisk,	MRAR(2)	 is	clearly	 less	sensitive	comparing	with	NQUF.	Furthermore,	 looking	at	 the	
Figure	 5.9	 and	 Figure	 5.10	 there	 is	 graphical	 evidence	 that	 the	 MRAR(2)	 Rating	 does	 not	
decrease	for	high	levels	of	Standard	Deviations	or	MRisk.	

	
	

Figure	5.9:	Comparison	NQUF	Rating	and	MRAR(2)	Rating	vs	Standard	Deviation	
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Figure	5.10:	Comparison	NQUF	Rating	and	MRAR(2)	rating	vs	MRisk	

	

	
	
Beyond	 the	 graphical	 evidence,	 we	 can	 look	 at	 the	 correlation	 coefficients	 between	 the	
different	measures.	
	

Table	5.1:	Correlations	
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In	 Table	 5.1	we	 can	 notice	 the	 strong	 dependence	 of	MRAR(2)	 and	MRAR(2)	Rating	 to	 the	
Average	Returns,	 along	with	 their	 scarce	 sensitivity	 to	 the	 risk.	On	 the	 contrary,	NQUF	and	
NQUF	Rating	exhibit	negative	correlation	coefficients,	as	expected,	 instead	of	positive	values	
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6. Conclusions	

In	this	paper	we	compare	the	performance	of	a	quadratic	utility	function	and	discusses	how	to	
change	 its	 characteristic	 parameter,	 ARA,	 so	 that	 	 rating	 is	 consistent	with	 return	 and	 risk	
measurements.	In	particular,	this	parameter	is	modified	in	such	a	way	that	a	positive	return	
Fund	has	always	a	rating	higher	than	one	with	a	negative	return.	

The	 parameters	 that	 contribute	 to	 this	 assessment	 are	 only	 the	 return	 and	 risk;	 the	
considerations	 on	 how	 to	 change	 the	 NQUF	 are	 all	 within	 the	 market	 of	 reference,	 not	
influenced	by	measurements	taken	outside.	

Here,	 the	 risk	 aversion	 is	 considered	 as	 a	 parameter	 characteristic	 only	 of	 the	 considered	
market	and	therefore	does	not	require	analysis	or	surveys	on	a	variety	of	agents.	

The	preference	 is	given	to	 the	analysis	of	 the	actual	dependence	of	 the	rating	by	 the	return	
and	 risk,	 considering	 these	 parameters	 as	 necessary	 for	 any	 score;	 ARA	 is	 modified	
accordingly	in	order	to	obtain	results	that	are	not	counterintuitive.	

A	counter	example	is	the	utility	function	used	by	Morningstar,	which	makes	it	possible	reward	
a	Fund	with	a	negative	yield	with	respect	to	a	positive	return.	This	function	also	shows	to	be	
dependent	 in	 a	weak	 form	 by	 the	 standard	 deviation	 in	 a	 range	which	 can	 include	 a	 good	
percentage	of	the	actual	cases	observed.	

A	 new	 application	 with	 the	 computation	 of	 NQUF	 and	 Morningstar	 rating	 measures	 are	
performed	 on	 the	 actual	 sample	 given	 by	 the	monthly	 return	 values	 of	 the	 Italian	 Pension	
Funds.	 Through	 the	 graphical	 analysis	 and	 the	 correlation	 analysis,	 the	 rating	 results	 give	
empirical	 evidence	 to	 the	 scarce	 sensitivity	 of	Morningstar	 to	 the	 risk	 comparing	with	 the	
NQUF	rating	measure.	
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Appendix	A.		Proof	of	Theorem	2.1	

Theorem	 2.1:	With	 the	 definition	 02 (1 )Mb cW   , the	 expected	 value	 of	 QUF	 in	 (2.1)	 is	 a	
function	 	of	standard	deviation	 	and	return	 	represented	by	a	paraboloid	 in	 the	 the	risk‐
return	 space	 ( , , )   with	 downward	 concavity,	 whose	 vertex	 is	 given	 by	 the	 point	
(0, , (0, ))M M   .	That	is:	

	 2 2 2 2 2
0 0 0[ ( )] ( , ) ( ) [ ( ) ]M ME U W U W cW cW          		,	

where	 2
0 0 0( )U W a bW cW  . 

Proof:		Consider	the	expected	value	of	the	utility	function	(2.1):	

	

2 2 2
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



   



	,	

where	 ( )E R  	and	 22 ( )E R   .	

Substituting	the	parameter	b 	with	its	expression,	we	have:	

	
2 2 2

0 0 0 0 0 0

2 2 2 2
0 0 0
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Adding	and	subtracting	the	same	quantity	 2 2
0 McW  	and	considering	the	expectation	of	 ( )U W in	

function	of	 	and	 	we	obtain:	

(A.1)	  
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The	expression	(A.1)	represents	a	paraboloid	in	the	space	 ( , , )   	with	downward	

concavity,	whose	vertex	is	 (0, , (0, ))M M   .	�	
	
	
	
Appendix	B.		Proof	of	Theorem	3.1	

Theorem	3.1:	Given	two	Funds,	Fund	A	with	MRAR	(0)>	0	and	Fund	B	with	MRAR	(0)	<0,	which	

differ	for	two	positive	elements	 1 	and	 2 ,	under	the	conditions	 1 2
1 2 2

1 2

4

( )

a a

a a
  


	Fund	B	can	

have	a	Morningstar	rating	better	than	Fund	A.	

Proof:	For	Fund	A,	the	hypothesis	MRAR	(0)>0	implies	

	 6 61 0 1a aG G    		,	
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while	for	Fund B, the	hypothesis	MRAR	(0)<0	implies	

	 6 6
1 2

1
1 0 1b b T

a

G G
G

       	

The	last	inequality	is	easily	obtained	by	considering	the	relationship	 1
1 2( ) T

b aG G  . 

Consider	now	the	harmonic	mean	of	the	Fund	B:	

	 6
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			,	

taking	in	account	that	
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6 6

1 1 2 2 1 2 1 2

1 1 2 1 2

1 1

( )1 1 1 1T

t t a

a a a a
T b T a a H

   
 


     

   
   


		.	

Therefore	
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The	condition	that	the	rating	of	the	Fund	B	is	greater	than	the	rating	of	Fund	A	can	be	
expressed	as:	

	 6 6 6 6(2) (2) 1 1B A b a b aMRAR MRAR H H H H       	

This	means	that:	
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			,	

and	being	 0aH  ,	we	can	simplify	as:	

	 1 1 2 2
1 2

1 2

a a

a a
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


	

In	conclusion,	the	constraint	on	the	product	 1 2  	is:	

	 1 1 2 2
1 2

1 2

1
T
a

a a

a a G
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 


.	

If	we	define	 1 2

1
T
a

K
G

     ,	where	 	is	any	arbitrary	small	positive	real	number	such	that	

0K  ,	then 1
2

1

K



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(B.1)	
1

T
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K
G
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Furthermore,	given	the	positive	values	of	 1 2, ,K a a ,	we	have:	

(B.1)	 21 1 2 2 1
2 2 2 1 2

1 2

( ) 0
a a a

K a K a a
a a K
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The	inequality	(B.1)	is	satisfied	if		

(B.2)	 2 1 2
1 2 1 2 2

1 2

4
( ) 4 0

( )

a a
K K a a a a K

a a
        	

In	this	way,	taking	in	consideration	series	that	have:	

	 1 2
2

1 2

41
0

( )T
a

a a

G a a
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
	

will	be	possible	fixing	δ,	if	the	original	series	respects	the	conditions	(B.2),	then	the	solutions	
can	be	obtained	from	(B.1)	and	(B.1).	�	
	
	
Appendix	C.		Moments	of	Normal	Distribution	

Given	a	standard	Normal	 (0,1)Z N ,	the	central	moments	of	order	n	are	the	following:	



 33

	
( 1)!!
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As	well	known,	the	standard	Normal	can	be	defined	from	any	non	standard	Normal	
2( , )X N   	considering	the	transformation:	 ( ) /Z X    .	

Considering	that	 X Z   ,	its	non	central	moments	are	given	by:	
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		.	

If	 0  ,	then	 ( )nE Z  	increases	when	n	increases.	
	
	
	
		
Appendix	D.		Proof	of	Theorem	4.1	

Theorem	4.1:	 If	the	returns	are	normally	distributed	in	the	range	(‐1,	1),	then	the	non	central	
moments	are	decreasing.	

Proof:	Consider	the	truncated	Normal	 2( , )u N   	constrained	to	assume	values	only	in	the	
interval	 1 2( , )K k k ,	with	 1 21 0 1k k     	and	 1 2k k  		

If	 we	 define	 the	 standardized	 variable	 ( ) /h u    ,	 and	 ( )h represents	 its	 standardized	
cumulative	distribution,	then	the	probability	that	 h K 	is:	

(D.1)	 2 1( ) ( )H h h   		,	

where 1 1( ) /h k     and 2 2( ) /h k     

The	truncated	density	of	the	random	variable	u	is	given	by:	
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The	non	central	moments	of	order	n	of	the	random	variable	u	are:	
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H

E u u K d
    

 
        		.	
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This	moments	can	be	written	as:	

	
2

1

1 k n
n n k

H

d
     

 
       		,	

	
and	using	the	Schwarz’s	inequality	we	have:	

	  2 2 2

1 1 1

1 22

1 221 1k k kn n

k k k
H H

d d d

 
        

  

             
  
 

   .	

The	calculation	of	the	integrals	on	the	right‐hand	side	of	the	inequality	gives:	

	    2 2 1

1

1 22 1 2 11 2 1 22 2 2 1

0 0

( )

2 1

n n
k k kn n n

k

k k
d d d

n
     

    
     

   		,	

and	

	
2 2

1 1

1 22

1 22 2

2

exp( 2( ) 2 )

2

k k

k k
d d

 
     

 

                 
 

  	

This	last	integral	can	be	solved	by	substitution	with	the	change	of	variable	
2( )

t
 



 .	

We	have:	

	

2 2

1 1

1 2 1 22 2 22 ( )

2 2 ( )

1 2

2 1

1 2

2

exp( 2( ) 2 ) exp( 2)

2 2 2

( 2( ) ) ( 2( ) )

2

2

k k

k k

H

t
d dt

k k

 

 

   
 

   
 

 





     
   

   

    
 
 

 
  
 

 

		,	

with	 2 12
( 2( ) ) ( 2( ) )

H
k k         according with the notation in (D.1). 

In	conclusion:	

(D.3)	

1 22 1 2 1 1 2
2 1

2

4

( )

2 1

2

n n

H

n

H

k k

n


 

         


.	

The	application	of	the	ratio	test	shows	that	the	series (4.5) is	convergent	because	the	modulus	
values	of	 1 2,k k  in	(D.3)	are	less	than	one.	� 
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Appendix	E.		Closed	form	expression	for	the	non	central	moments	of	Truncated	Normal	
Distribution	

	
Consider	the	expression	(D.2):	

	  2 2

1 1

1 1
( )

k hn n
n k h

H H

d d
         

 
        		,	

and	define:	
	

2

1

1
( )

h

H

k
k h

I d   



  		.	

If we substitute in (D.2) the following term: 

	
0

( )
n

n n k k k

k

n

k
    



 
   

 
 		,	

we obtain: 

	
0

n
n k k

n k
k

n
I

k
  



 
  

 
 	

We	can	use	the	following	result:	

	
( )

( )
d

d

   


  		,	

for	the	integration	by	parts	of	 kI :	

	

 

 

2 2

1 1

22

1 1

1

1 2

1 12 1
2 1 2

1 1
( )

1
( 1)

( ) ( )

( )

( ) ( )

( 1)

h hk k
k h h

hhk k

h h

k k
k

H H

H H

H

I d d

k

h h
h h

d

k I

d

d
     

 

 

 



    



 

 


    
 

     

    
 


 







 

 		.	

With	the	notation:	

	 1 12 1
2 1 1 2 2 1 1

( ) ( )
, , k k

k
H H

h h
h h

      
     

 
		,	

the	previous	expression	can	be	simplified	in:	

	 1 2( 1)k k kI k I      		,	

which	is	a	non‐autonomous	non‐homogeneous	difference	equation	of	second	order.	

The	solution	can	be	found	recursively	given	the	initial	condition	for	 0I 	and	 1I .	That	is:	
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2

1

2

1

0

1 2
1 0

1
( ) 1

( ) ( )1
( )

h

h
H

h

h
H H

I d

h h
I d

  

    

 



    
 




		.	

Alternatively,	we	can	find	the	closed	form	solution	for	every	 kI 	as	function	of	the	solely	 k .	

For	this	purpose,	we	consider	the	behaviour	of	 kI 	for	higher	values	of	k ,	by	following	its	
recursive	formula,	that	is:	

	

2 1

3 2 0 2 0

4 3 1 3 1

5 4 2 0 4 2 0

6 5 3 1 5 3 1

1

2!!
2 ,

0!!
3!!

3!! 3( 1),
1!!
4!! 4!!

4 4 2 ,
2!! 0!!
5!! 5!!

5!! 5 5 3 ( 1),
3!! 1!!

.

I

I

I

I

I

etc



   

   

     

     

  

       

         

            

               

	

therefore:	

	

( 1) 2

1 2
0

( 1) 2

1 2

0

1 ( 1)( 1)!!
( 1)!!

( 1 2 )!! 2

1 ( 1)
( 1)!! , 1, 2,

( 1 2 )!! 2

kk

k k r
r

kk

k r

r

k
I k

k r

k k
k r







 



 



       
 

            



 
		,	

where	 ( 1) 2k  	is	the	whole	number	preceding	the	value	 ( 1) 2k  	and	0!! 1 ,	1!! 1 .	

In	conclusion:	

	

( 1) 2

1 2

0 0

( 1) 2

1 2

0 0

1 ( 1)
( 1)!!

( 1 2 )!! 2

1 ( 1)
( 1)!!

( 1 2 )!! 2

kkn
n k k k r

n
k r

k kkn
n k r

k r

n
k

k k r

n
k

k k r

  





  

 


 

 

                 
                    

 

 
		.	

	
	
	
	
	
	
	



 37

Appendix	F.	Computation	of	Non	Central	Moments	of	a	Standard	Normal	with	the	
Incomplete	Gamma	Function	

	
Consider	(D.2),	here	reported	for	brevity:	

	
2

1

1
( | )

kn n
n k

H

E u u K d
    

 
        		.	

With	the	definition	of	the	following	function	

	 2

1

1
( )

h

H

k
k h

I d   



  		,	

we	have:	

	
0

n
n k k

n k
k

n
I

k
  



 
  

 
 		,	

and	with	the	definition	of	

	
22

1

2h k
k h

G e d   		,	

we	have:	

	
0

1

2

n
n k k

n k
kH

n
G

k
  






 
    

 		.	

From	the	constraints	 1 21 0 1k k     	it	follows	 1 20, 0h h  .	

If	 0k  	is	even,	then:	

	  ke 2 2 d
h1

h2   ke 2 2 d
0

h1   ke 2 2 d
0

h2 		.	

If	 0k  	is	odd,	then:	

	  ke 2 2 d
h1

h2    ke 2 2 d
0

h1   ke 2 2 d
0

h2 	.	

Therefore:	

	  ke 2 2 d
h1

h2  (1)k  ke 2 2 d
0

h1   ke 2 2 d
0

h2 		.	

We	can	use	the	definition	of	the	Lower	Incomplete	Gamma	Distribution:	

	 1

0
( , )

x tx t e dt     	

to	obtain	the	following	relation:	

	
0

( , ) 1
, , 0, 0

p
px k x k

e d p
p p




     


 
    		.	

Now	we	can	write	the	expression:	
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(F.1)	
2 2

( 1) 2 1 2

0

2 ( 1) , ,
2 22

kn n
k k

n
kH

n h h

k

     






      
                

 	

If	 0k  ,	the	Gamma	functions	inside	the	square	brackets	become	becomes:	

	 2 e 2 2 d
h1

h2  2 2
H 		,	

and	taking	in	consideration	that	
0

1
0

 
 

 
 the	(F.1)	is	true	for n 0. 

We	can	rewrite	the	expression	as:	

	

2 2
( 1) 2 1 2

1

2 2
( 1) 2 1 2

1

2 ( 1) , ,
2 22

2 ( 1) , ,
2 22

2
kn n

k k
n

kH

kn n
n k k

kH

H

n h h

k

n h h

k

     

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

 







                           

      
                 

 


		.	


