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1. Introduction

This paper focusses on the postulated behaviour of firms
competing in imperfect competitive markets, first theorized in the
late 30s by a number of well known economists (Robinson (1933),
Sweezy (1939)), and best known as the “kinked demandmodel”. This
basically predicts an asymmetric behaviour of firms in response to a
price change, each expecting its rivals to be more reactive in matching
its price cuts than its price increases. This prediction has been
empirically tested by Hall and Hitch (1939) and later by Bhaskar et al.
(1991), extensively criticized as not grounded in rational behaviour
by Stigler (1947), Domberger (1979), Reid (1981) and more recently
analyzed in a dynamic settings by Marschak and Selten (1978),
Maskin and Tirole (1988) and Bhaskar (1988).

In this paper we add to this debate by showing that this
behavioural rule possesses strong stability properties and, therefore,
may sustain firms' collusion. In particular, in a symmetric and
monotone market, we prove that, if every firm adopts and expects a
simple kinked demand social norm of behaviour (KSN), the
symmetric collusive outcome (i.e. monopoly pricing) constitutes an

equilibrium. We show that this result is rather robust and can be
extended to all n-person symmetric strategic form games: a KSN
always makes the symmetric efficient strategy profile (the one
maximizing the sum of all players' utility) stable. Moreover, we
show that under some additional standard assumptions on players'
payoff functions, a slightly stronger norm of behaviour (implicitly
implying a norm of reciprocity) makes the efficient outcome the only
stable outcome of the game.

The paper is organized as follows. The next section introduces a
game-theoretic setting. Section 3 concludes.

2. A general setting

We first introduce a class of games in which players are endowed
with the same strategy space and perceive symmetrically all strategy
profiles of the game. Moreover, players' payoffs possess a monotonicity
property with respect to their opponents' choices. Although very
specific, this setting still coversmanywell knowneconomic applications
(as Cournot and Bertrand oligopoly, public goods games and many
others). We denote a monotone symmetric n-player game in strategic
form as a triple G=(N, (Xi,ui)i∈N), in which N={1,..., i,...,n} is the finite
set of players, Xi is player i's strategy set and ui :XN→R+ is player i's
payoff function, where XN=X1×...×Xn denotes the Cartesian product of
players' strategy sets. We assume that each strategy set is partially
ordered by the relation v. We assume the following.
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P1. (Symmetry) Xi=X for each i ∈ N. Moreover, for every i ∈ N, x ∈ XN

and any permutation of players' indexes π(N) :N→N

ui x1; x2; ::; xnð Þ = uπ ið Þ xπ 1ð Þ; xπ 2ð Þ; ::; xπ nð Þ
� �

: ð2:1Þ

P2. (Monotone Spillovers) For every i, j ∈ N with j≠ i, we have either:

ui x−j; x′jÞ ≥ ui x−j; xj
� �

for every x and x′j v xj
�

ð2:2Þ

or

ui x−j; x′jÞ ≤ ui x−j; xj
� �

for every x and x′j vxj;
�

ð2:3Þ

where x− j=(x1,..,xj−1,xj+1,..,xn).

We will talk of positive spillovers (PS) when Eq. (2.2) holds and of
negative spillovers (NS) when Eq. (2.3) holds. A strategy profile x is
symmetric if it prescribes the same strategy to all players. A Pareto
Optimum (PO) for G is a strategy profile xo such that there exists no
alternative profile which is preferred by all players and is strictly
preferred by at least one player. A Pareto Efficient (PE) profile xe

maximizes the sum of payoffs of all players in N.
We now introduce the notion of a generic social norm of behaviour. 1

Definition 1. (Social norm of behaviour). We say that the social norm
of behaviour σ :X↦Xn−1 is active in G if every player i ∈ N deviating
from a given profile of strategies x ∈ XN by means of the alternative
strategy x′i ∈ Xi such that x′i≠xi, expects the response σN \ i(x′i) from all
players j∈N \ {i}.

Finally, let us introduce a general definition of stability of a strategy
profile in our game G, under any arbitrary social norm of behaviour.

Definition 2. A strategy profile x ∈ XN is stable under the social norm
σ if there exists no i ∈ N and x′i ∈ Xi such that

ui x′i;σN n if g x′i
� �� �

N ui xð Þ∀i ∈ N:

We are interested in the Kinked Social Norm (KSN) of behaviour. The
original idea of the kinked demand model (Robinson, 1933; Sweezy,
1939) was based on the assumption that firms competing in a common
market would react to changes in rivals' prices in an asymmetric
manner. Specifically, when a firm raises its price it expects the other
firms to raise their price comparatively less (under-reaction); when a
firm lowers its price, conversely, it expects the others to reduce even
more their price (over-reaction). If firms set quantities instead of prices
the above norm of behaviour would require that firms expect their rival
to over-react when increasing their quantity and under-react when
decreasing their quantity. In general, this social norm can be defined in
abstract terms in the way that follows.

Definition 3. (Kinked Social Norm) A Kinked Social Norm of
behaviour (KSN) k is defined as follows: for each i∈N, and x′i:

kN n if g x′i
� �

= x−i ∈ Xn−1 jxjUx′i ∀j ∈ Nn if g
n o

ð2:4Þ

under positive spillovers(PS) and

kN n if g x′i
� �

= x−i ∈ Xn−1 jxjvx′i ∀j ∈ N n if g
n o

: ð2:5Þ

under negative spillovers(NS).

Note that, according to the definition above, the KSN imposes to all
agents in N \ {i} to play a strategy lower (greater) or equal than the
strategy played by the deviating player i under positive (negative)
spillovers. Behind the KSN of behaviour there is no presumption of
rational behaviour and players' reactions may not correspond to
their best reply mappings (see below for a brief digression on this
point).

We are now ready to present the main result of the paper.

Proposition 1. Let conditions P1–P2 hold on G. Then, under the
Kinked Social Norm of behaviour (KSN), all symmetric Pareto efficient
strategy profiles of G are stable.

Proof. We know by Definition 1 that KSN implies xjUx′i for all
xj ∈ kN \ {i}(x′i) under positive spillovers (PS) and xjvx′i for all xj ∈ kN \ {i}

(x′i) under negative spillovers (NS). Assume first positive spillovers (PS)
on G and suppose that the symmetric efficient profile (PE) xe ∈ XN is not
stable and there exists a i∈ N and a x′i ∈ Xi such that

ui x′i;kN n if g x′i
� �� �

N ui x
e� �
: ð2:6Þ

Using PS and the fact that kj(x′i)Ux′i for every j ∈ N \ {i}, we obtain

ui x′i; :::; x′iÞ ≥ ui x′i;kN n if g x′i
� �� �

N ui x
e� ��

ð2:7Þ

and therefore, by P1,

∑
i∈N

ui x′i; :::; x′i
� �

N ∑
i∈N

ui x
e� �
; ð2:8Þ

which contradicts the efficiency of xe.
Assume now that under negative spillovers (NS) there exists a

player i∈ N with a x′i ∈ Xi such that

ui x′i;kN n if g x′i
� �� �

N ui x
e� �
: ð2:9Þ

By NS and the fact that kj(x′i)vx′i it must be that

ui x′i; :::; x′i
� �

≥ ui x′S;kN n if g x′i
� �� �

N ui x
e� � ð2:10Þ

which, again, leads to a contradiction. □
Proposition 1 simply tells us that if the expected behaviour of

players in the event of a deviation from an efficient strategy profile
is described by the kinked social norm, then every such efficient
profile, if reached, is stable. In terms of imperfect competition,
the expected kinked behaviour of firms makes collusion a stable
outcome.

The example below makes clear that stable inefficient (and
asymmetric) outcomes cannot be ruled out without adding more
structure to the above analysis.

Example 1. (2-player symmetric and positive spillovers game).

A B C

A 4,4 2,3 1,2
B 3,2 2,2 1,2
C 2,1 2,1 1,1

In this game we assume that players' strategy can be ordered and,
e.g., A ≻ B ≻ C, therefore the game respects both P1 and P2, with
positive spillovers (PS). In this game, (A,A), the PE strategy profile, is
obviously stable under KSN. If, say player 1 deviates playing B, KSN
implies k2(B)={B,C} and player 1 ends up with a lower payoff than
before, since u1(A,A) N u1(B,B) N u1(B,C). By symmetry, the same
happens to player 2. However, asymmetric inefficient strategy
profiles as (B,A), (A,B), (C,A) and (A,C) are also stable under KSN,1 See, for instance, Bicchieri, 1990.
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given that u1(B,A)Nu1(A,B)Nu1(A,C) and u1(C,A) N u1(B,B) N u1(B,C)
and the same for player 2.

To strengthen the result of Proposition 1 and rule out inefficient
stable outcomes, we add the following assumptions on the structure
of G.

P3. Each player's strategy set is a compact and convex subset of the set of
real numbers.

P4. Each player i's payoff function u(x) is continuous in x and strictly
quasiconcave in xi.

Under these additional conditions, Lemma 1 in the appendix
shows that there is a unique Pareto Efficient strategy profile of G, and
it is symmetric. In order to rule out all inefficient stable outcomes, we
need to refine the social norm employed in Proposition 1. Intuitively,
the kinked norm imposes an upper bound on the profitability of
deviations, and was therefore useful to show that efficient profiles are
stable. In order to rule out the stability of inefficient profiles, we need
to impose a lower bound on the profitability of deviations. We do so
by imposing a “symmetric” social norm of behaviour, which
essentially prescribes players to mimic the strategy adopted by a
deviator.

Definition 4. (Symmetric Social Norm) The Symmetric Social Norm
of behaviour (SSN) s is described as follows: for each i ∈ N, and x′i:

sN n if gðx′i Þ = x−i ∈ Xn−1 jxj = x′i ∀j ∈ Nn if g
n o

: ð2:11Þ

We are now ready to prove the next proposition.

Proposition 2. Let the game G satisfy conditions P1–P4. Then, under the
Symmetric Social Norm of behaviour the (symmetric) Pareto efficient
profile xe∈XN is the unique stable strategy profile.

Proof. Considerfirst the efficient profile xe, which, by Lemma1,must be
symmetric. Suppose player i has a profitable deviation x′i. Using the
Symmetric SocialNorm(SSN), the expected payoff for iwould beui(x′i,...,
x′i). By symmetry, the same payoff level would be obtained by all other
players in N \{i}. We conclude that

∑
N

uhðx′i; :::; x′iÞ N ∑
N

uh xe
� �

which contradicts the efficiency of xe. We next show that all
inefficient profiles are not stable. The argument for inefficient
symmetric profiles is trivial: thanks to the Symmetric Social Norm
(SSN), it is enough for any player i to switch to the efficient profile to
improve upon any inefficient strategy profile. Consider then an
asymmetric profile x′. Let i be one player such that ui(x′)b ui(xe)
(obviously, such a player must exist by efficiency of xe and
inefficiency of x′). By continuity of payoffs, there exists some strategy
xi close enough to xi

e such that

ui x
e� �
−ui xi; :::; xið Þ b ui x

e� �
−ui x′

� �
:

Since the profile xi; :::; xið Þ can be induced by player i thanks to SSN,
player i has a profitable deviation, and the result follows. □

Finally, a relevant question to raise is whether the behaviour
predicted by the model of kinked demand can in general be
considered rational. About this issue, it can be shown that in all
symmetric supermodular games in which strategy sets are ordered,
the behaviour postulated by the kinked demand model is fully
compatible with players' rationality. The same cannot be said when
games are submodular, i.e. when players' actions are strategic
substitutes and their best responses negatively sloped.

3. Concluding remarks

In this paper we have shown that, for all symmetric andmonotone
strategic form games, the behaviour postulated by the classical model
of kinked demand possesses strong stability properties. Such a result
holds even stronger when players expect a fully symmetric norm of
behaviour by all remaining players in the event of an individual
deviation. In this case, the perfectly cooperative (collusive) outcome
becomes the only stable outcome of the game, As a consequence, firms
may implicitly adopt such norms of behaviour in order to implement
tacit collusion and sustain perfectly collusive outcome in imperfectly
competitive markets.
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Appendix

Lemma 1. Let the game G satisfy conditions P1–P4. Then, there is a
unique strategy profile xe=arg max x∈XN

∑ i∈N ui(x) and it is such that,
x1
e=x2

e=...= xn
e.

Proof. Compactness of each Xi implies compactness of XN. Continuity
of each player's payoff ui(x) on x implies the continuity of the social
payoff function uN=∑ i∈N ui(x). Existence of an efficient profile (PE)
xe∈XN directly follows fromWeiestrass theorem.We first prove that a
PE strategy profile is symmetric.

Suppose xi
e≠xj

e for some i, j ∈ N. By symmetry we can derive from
xe a new vector x′ by permuting the strategies of players i and j such
that

∑
i∈N

ui x′
� �

= ∑
i∈N

ui x
e� � ð4:1Þ

and hence, by the strict quasiconcavity of all ui(x), for all λ∈(0,1) we
have that:

∑
i∈N

ui λx′ + 1−λð Þxe� �
N ∑

i∈N
ui x

e� �
: ð4:2Þ

Since, by the convexity of X, the strategy vector (λx′+(1−λ)xe)∈XN,
we obtain a contradiction. Finally, by the strict quasiconcavity of both
individual and social payoffs in each player's strategy, the efficient
profile xe can be easily proved to be unique. □
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