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Previous research has shown that regret-driven neural networks predict behavior in
repeated completely mixed games remarkably well, substantially equating the perfor-
mance of the most accurate established models of learning. This result prompts the
question of what is the added value of modeling learning through neural networks. We
submit that this modeling approach allows for models that are able to distinguish among
and respond differently to different payoff structures. Moreover, the process of catego-
rization of a game is implicitly carried out by these models, thus without the need of any
external explicit theory of similarity between games. To validate our claims, we designed
and ran two multigame experiments in which subjects faced, in random sequence, differ-
ent instances of two completely mixed 2 × 2 games.Then, we tested on our experimental
data two regret-driven neural network models, and compared their performance with that
of other established models of learning and Nash equilibrium.
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INTRODUCTION
In everyday life, interactive as well as individual decision prob-
lems very rarely repeat themselves identically over time; rather,
the experience on which most human learning is based comes
from the continuous encounter of different instances of different
decision tasks.

The current paper proposes an experimental study in which
subjects faced different instances of two interactive decision prob-
lems (games), making a step forward in the realism of the strategic
situations simulated in the lab. Specifically, subjects played in
sequence different completely mixed games1, each obtained by
multiplying the payoffs of one of two archetypal games for a ran-
domly drawn constant. In each sequence, the perturbed payoff
games of the two types were randomly shuffled. Thus, at each
trial, subjects’ task was twofold: recognize the type of the current
game and act in accordance to this categorization.

In spite of its evident economic relevance, the topic of human
interactive learning in mutating strategic settings has not received
until now much attention, from both an experimental and
modeling perspective.

One important stream of literature on this topic includes stud-
ies in which the experimental design is recognizably divided into
two parts, according to which the repeated play of a stage game
is followed by the repeated play of another one. The main goal of
these studies is that of assessing the effects of learning spillovers
(or transfer) from the first to the second part of the experiment
(as in Kagel, 1995; Knez and Camerer, 2000; Devetag, 2005), also

1Games with a unique Nash equilibrium in mixed strategies.

conditional to different environmental and framing conditions
(as in Cooper and Kagel, 2003, 2008). In a different experimen-
tal paradigm, Rankin et al. (2000) propose a design in which
players faced sequences of similar but not identical stag-hunt
games, and whose goal is that of evaluating the basins of attrac-
tions of the risk- and payoff-dominant strategies in the game
space.

Our experimental design distinguishes from those illustrated
above for two key features. First, subjects played different instances
of two different games, and, second, the instances of the two games
occurred in random order, thus without inducing any evident
partition in the experiment structure; at the beginning of our
experiments, subjects were only told that they would have faced a
sequence of interactive decision problems.

From the modeling perspective, a similarity-based decision
process was for the first time formalized in the “Case-Based Deci-
sion Theory” (Gilboa and Schmeidler, 1995), according to which
decisions are made based on the consequences from actions taken
in similar past situations. Besides, the case-based approach was for
the first time applied to game theory with the “fictitious play by
cases” model proposed by LiCalzi (1995). This model addresses
the situation in which players play sequentially different games,
and the play in the current game is only affected by experiences
with past similar games. In this vein, Sgroi and Zizzo (2007, 2009)
explore neural networks’ capability of learning game-playing rules
and of generalizing them to never previously encountered games.
The authors show that back-propagations neural network can
learn to play Nash pure strategies, and use these skills when facing
new games with a success rate close to that observed in experiments
with human subjects.
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The contribution by Marchiori and Warglien (2008) has shown
that, in repeatedly played completely mixed games, reinforcement
learning models have limited predictive power, and that the best
predictors, i.e., a fictitious play model and a neural network fed
back by a measure of regret, have substantially the same accu-
racy. The current paper extends this research and shows that the
added value of modeling learning by means of neural networks
is that of capturing subjects’ sensitivity to dynamic changes in
the payoff structure. Specifically, we introduce a variant of the
zero-parameter Perceptron-Based (PB0) model, which we call
SOFTMAX-PB0, test these two neural network models on the
data from our multigame experiments, and compare their per-
formance with that of other established learning models and Nash
equilibrium.

THE MULTIGAME EXPERIMENTS
The current paper proposes two multigame experiments, whose
goal is that of improving our understanding of the processes of
categorization in games. Eight groups of eight subjects each par-
ticipated in the experiments, and each group played a different
sequence of 120 games (see Table A3 in Appendix). Within each
group, half of the subjects were assigned the role of row player and
the others that of column player; at each round, subjects assigned
to different roles were randomly and anonymously paired. At the
end of each round, subjects were provided with feedback about
their and their opponents’ actions and payoffs.

The experimental design is summarized in Table 1.

EXPERIMENT 1
Four groups of subjects played four game sequences built start-
ing from two 2 × 2 constant-sum games (henceforth game A and
game B; see Table 1). Game A and B payoffs were chosen in such a
way that equilibrium probabilities for one player were not so dif-
ferent [respectively, P(U ) = 0.9 and 0.7], whereas the other player
was supposed to reverse his/her strategy [respectively, P(L) = 0.1
and 0.9]. Moreover, to get a balanced experimental design, payoffs
in each cell of the two games where chosen to sum up to the same
constant.

To build each sequence, 60 “type A” games were obtained by
multiplying game A’s payoffs for 60 randomly drawn constants2

(normally distributed with mean 10 and SD 4). The same proce-
dure was used to obtain 60 “type B” games3. Type A and B games
were then shuffled in such a way that in each block of 10 trials there
were five type A and five type B games in random order. Thus, in
each block of 10 trials subjects could face the same number of type
A and type B games.

Participants
Thirty-two students from the faculties of Economics, Law, and
Sociology of the University of Trento (Italy) participated in Exper-
iment 1. Subjects were paid based on their cumulated payoff in
12 randomly selected trials plus a show-up fee (see Experimental
Instructions in Appendix).

Results
Figure 1 reports the relative frequency of U and L choices in blocks
of 10 trials, separately for type A and B games.

Observed behavior in type A games is not well approximated
by Nash equilibrium. Row players play Nash mixture in the
first two blocks [for which P(U ) = 0.89], but the proportion
of U choices eventually converges to 0.74. As for the column
players, play starts close to random behavior in the first block
and converges to 0.33, higher than the 0.1 predicted by Nash’s
theory.

The predictive power of Nash equilibrium in type B games
is also rather poor. In equilibrium, row players are supposed
to choose action U with probability 0.7, whereas observed
play converges to the relative frequency of 0.9. Column play-
ers are predicted to choose action L 90% of the times, but
the observed proportion converges, from the third block, to
about 0.4.

2Only positive values were considered.
3Thus type A and B games had, respectively, the same mixed strategy equilibrium
of games A and B.

Table 1 |The two pairs of completely mixed archetypal games used for building the game sequences in the two experiments.

Archetypal games

Game A Game B

Experiment 1 Player 2 L R Player 2 L R
Player 1 Player 1
U 17, 5 16, 6 U 5, 17 2, 20
D 8, 14 17, 5 D 4, 18 11, 11
Nash Eq.: P (U ) = 0.9, P (L) = 0.1 Nash Eq.: P (U ) = 0.7, P (L) = 0.9

Game A Game C

Experiment 2 Player 2 L R Player 2 L R
Player 1 Player 1
U 17, 5 16, 6 U 17, 5 15, 7
D 8, 14 17, 5 D 15, 7 18, 4
Nash Eq.: P (U ) = 0.9, P (L) = 0.1 Nash Eq.: P (U ) = 0.6, P (L) = 0.6
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FIGURE 1 | Observed proportions of U and L choices averaged over blocks of 10 trials, separately for type A and B games.

FIGURE 2 | Observed proportions of U and L choices averaged over blocks of 10 trials, separately for type A and C games.

EXPERIMENT 2
Experiment 2 was identical to the previous one, except for the
fact that games A and C were used to build the four sequences
(see Table 1). Game C was chosen in such a way that equilib-
rium probabilities were, for both players, close to equal chance;
thus, no reversal of choice strategies was implied. Also in this
case, in each cell of games A and B, payoffs sum up to the same
constant.

Participants
Thirty-two students from the faculties of Economics, Law, and
Sociology of the University of Trento (Italy) participated in Exper-
iment 2. Subjects were paid based on their cumulated payoff in

12 randomly selected trials plus a show-up fee (see Experimental
Instructions in Appendix).

Results
Figure 2 illustrates the results from Experiment 2. The relative
frequency of U choices in type A games is systematically higher
than that predicted by Nash’s theory, similarly to what happened in
Experiment 1. It is interesting to note that, in type C games, empir-
ical behavior of both row and column players eventually converges
to Nash play [P(U ) = P(L) = 0.6], confirming that Nash equilib-
rium is a good predictor (at least in the long run) when predicted
choice probabilities are close to 0.5 (Erev and Roth, 1998; Erev and
Haruvy, in preparation).

www.frontiersin.org December 2011 | Volume 5 | Article 139 | 3



Marchiori and Warglien Modeling learning and categorization

Cross-game learning
The question of how play in type A games is affected by the simul-
taneous play of games of a different kind can be easily answered by
comparing choice frequencies in type A games in the two experi-
ments. To this end, we ran a two-way, repeated measures analysis
(results are summarized in A1 and A2 in Appendix), in which we
tested the effects of the variables Experiment (i.e., the experimental
condition) and Time, and of their interaction on choice frequen-
cies for both row and column players. As a result, the variable
Experiment has no significant effect, implying that no cross-game
learning is taking place. We conclude that, when games of just two
types are present, subjects are able to recognize the two strategic
situations and act without confounding them.

THE MODEL
Since when McCulloch and Pitts (1943) introduced the first neu-
ronal model in 1943, artificial neural networks have usually been
intended as mathematical devices for solving problems of classifi-
cation and statistical pattern recognition (see for example, Hertz
et al., 1991; Bishop, 1995). For this reason, neural network-based
learning models are the most natural candidates for predicting
data from our multigame experiments, wherein a categorization
task is implicit.

We present here a variant of the PB0 model proposed in Mar-
chiori and Warglien (2008), which we call SOFTMAX-PB0. This
model is a simple perceptron, i.e., a one-layer feed-forward neural
network (Rosenblatt,1958; Hopfield,1987); its input units (labeled
with ini) are as many as the game payoffs, whereas its output units
(labeled with outj) are as many as the actions available to a player.
Different from the PB0 model, according to SOFTMAX-PB0, the
activation states of output units are determined via the softmax
rule (1), and can thus be readily interpreted as choice probabilities.

outj = e

∑

i
ini wij

∑

k
e

∑
n

innwnk
, (1)

The term wij in (1) is the weight of the connection from input
unit ini to output unit outj.

Compared to the use of the tanh activation function, calcu-
lating activation states via the softmax rule avoids the premature
saturation of output units, and in general results in a better fit of
the data and has important theoretical implications4.

Adaptive learning from time step t − 1 to time step t occurs
through modifications in the connection weights as follows:

wt
ij = wt−1

ij + ∆wij , (2)

with:

∆wij = −λ ·
(

targj − outj

)
· regret · ini . (3)

In the current model, the parameter λ that appears in (3) is
replaced by a deterministic function, whose value at time step
t is defined as the ratio between the experienced cumulated
regret and the maximum cumulated regret. It is worth noting
that the SOFTMAX-PB0 is non-parametric, as also in the softmax
activation function (1) no free parameters are introduced.

In (3), targj is the ex-post best response to the other players’
actions, and it is equal to one if action j was the best response, and
zero otherwise. Finally, the regret term is simply defined as the
difference between the maximum obtainable payoff given other
players’ actions and the payoff actually received.

The SOFTMAX-PB0 and the PB0 models, behavior is the
result of adjustments in the direction of the ex-post best response
(ex-post rationalizing process), and these adjustments are pro-
portional to a measure of regret, consistently with findings in the
neuroscientific field (Coricelli et al., 2005; Daw et al., 2006).

The SOFTMAX-PB0 model, as well as the PB0 one, presents
some architectural analogies with established models of learning
in games, but it has also some peculiar features that differenti-
ate it from its competitors, as illustrated in Figure 3. Established
learning models have two main cyclic component processes: (1)
behavior is generated by some stochastic choice rule that maps

4Moreover, when outputs are calculated via (1), the updating rule (3) leads to Cross-
Entropy minimization or, in other terms, to the maximization of the likelihood of
observing a given training set.

FIGURE 3 | Adapted from Marchiori and Warglien (2008): General architecture of a “propensities and stochastic choice rule” learning model (left), and
general architecture of the (SOFTMAX-)PB0 model (right).
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propensities into probabilities of play; (2) Learning employs feed-
back to modify propensities, which in turn affect subsequent
choices.

The (SOFTMAX-)PB0 model’s architecture is only partially
similar to that of the other learning models. What distinguishes
our models is the direct dependence of choice behavior upon game
payoffs (represented in the“input layer”). Whereas in a typical eco-
nomic learning model choice is a function of propensities only,
here it is function of both propensities and the payoffs of the
game.

This architecture provides the (SOFTMAX-)PB0 model with a
peculiar capability to discriminate among different games. Con-
ventional learning models in economics are designed for repeated
games. There is learning, but no discrimination or generalization:
the simulated agent is unable to discriminate between different
games at a certain moment; if given abruptly a different game, it
would respond in the same way, or just throw away what it had
previously learned. On the other hand, discrimination is some-
thing perceptrons do very well, and since the output is also directly
affected by perceived inputs (the activation states of input units),
a network, besides learning, will respond differently to different
games.

THE SAMPLING PARADIGM FOR MODELING LEARNING
Particularly relevant to the current analysis are the two contri-
bution by Erev (2011) and by Gonzalez and Dutt (2011), in
which the INERTIA SAMPLING AND WEIGHTING (I-SAW)
and INSTANCE BASED LEARNING (IBL) models are proposed.
According to these models, agents are supposed to make their
decisions based on samples from their past experience. These mod-
els have been shown to capture important regularities of human
behavior in decisions from experience (Erev et al., 2010; Gonzalez
et al., 2011).

The most obvious way of modifying these models in order to
perform conditional behavior is that of considering agents that
draw from a subset of past experiences that are relevant to the
current decision task. However, such an implementation would
imply an exogenous intervention for the classification of the situa-
tion at hand, requiring an explicit theory of what is similar/relevant
to what. On the other hand, the modeling approach based on sam-
pling easily gives account for learning spillover effects (Marchiori
et al., unpublished).

However, the classification operated by the (SOFTMAX-)PB0
model is endogenous; agents just observe inputs and respond to
them without any external intervention and the entire process of
classification is implicit in the structure of the model itself.

MATERIALS AND METHODS
Predicted choice frequencies were obtained by averaging results
over 150 simulations, and, for parametric models, this proce-
dure was repeated for each parameter configuration. Table 2
collects the description of the portions of the parameter spaces
investigated.

We tested models’ predictive power by considering esti-
mated choice frequencies corresponding to the parameter con-
figurations that minimized the mean square deviation (hence-
forth MSD; Friedman, 1983; Selten, 1998) in our two exper-
iments. Considering average MSD scores in the two experi-
ments does not penalize directly the number of free parameters
of a model; therefore, in this analysis, parametric models are
advantaged over the non-parametric PB0 and SOFTMAX-PB0
ones.

In our comparative analysis, we considered the following learn-
ing models: normalized fictitious play (NFP; Erev et al., 2007);
normalized reinforcement learning (NRL; Erev et al., 2007); Erev
and Roth’s reinforcement learning (REL; Erev and Roth, 1998);
reinforcement learning (RL; Erev et al., 2007); stochastic fictitious
play (Erev et al., 2007); and self-tuning experience weighted attrac-
tion (stEWA; Ho et al., 2007). Section “Competitor Models and
Investigated Portions of Parameter Spaces” in Appendix briefly
reviews these models.

SIMULATION RESULTS AND DISCUSSION
Although simple perceptrons suffer severe theoretical limitations
in the discrimination tasks they can carry out (Minsky and Papert,
1969; Hertz et al., 1991), our simulation results show that they are
nonetheless able to discriminate between two different strategic
situations and predict well choice behavior observed in our multi-
game experiments. Simulation results are collected in Figure 4
and, more in detail, in Tables 3 and 4.

Established learning models are not able to discriminate
between the two different game structures, providing the same
“average” behavior for both types of games (see Tables 3 and 4),
and are always outperformed by Nash equilibrium. On the con-
trary, the SOFTMAX-PB0 and PB0 models are able to replicate
subjects’ conditional behavior, due to the direct dependence of
their response on game payoffs, remarkably outperforming Nash
equilibrium and all the other models of learning considered in this
analysis.

Comparison of the performance of the PB0 and SOFTMAX-
PB0 models shows how the introduction of the softmax rule
for calculating output units’ activations improves the fit of the
data.

Table 2 | Explored portions of parameter spaces and the parameter configurations yielding the lowest average MSD in the two experiments.

Model Portions of parameter spaces considered Best fit parameters

NFP λ in [1.5, 4.0] by = 0.25 w in [0.1, 0.9] by = 0.1 λ = 4.0, w = 0.7
NRL λ in [3.0, 7.0] by = 0.5 w in [0.10, 0.90] by = 0.05 λ = 5.5, w = 0.50
RE λ in [2.2, 3.4] by = 0.1 N (1) in [27, 34] by = 1 λ = 2.7, N (1) = 31
RL λ in [6.0, 10.0] by = 0.5 w in [0.10, 0.90] by = 0.05 λ = 10.0, w = 0.50
SFP λ in [10.0, 14.0] by = 0.5 w in [0.05, 0.90] by = 0.05 λ = 13.0, w = 0.75
stEWA λ in [1, 9] by = 0.1 λ = 5.8
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FIGURE 4 | Predicted and observed choice frequencies in Experiment 1 (top panels) and 2 (lower panels).

Table 3 | Predicted and observed choice frequencies in Experiment 1.

MSD Type A games Type B games

Blocks 1 2 3 4 5 6 1 2 3 4 5 6

Empirical P (U ) 0.89 0.89 0.84 0.81 0.76 0.74 0.16 0.32 0.41 0.39 0.42 0.38
P (L) 0.53 0.40 0.26 0.26 0.26 0.26 0.74 0.78 0.85 0.86 0.91 0.91

Nash 0.053 P (U ) 0.90 0.90 0.90 0.90 0.90 0.90 0.70 0.70 0.70 0.70 0.70 0.70
P (L) 0.10 0.10 0.10 0.10 0.10 0.10 0.90 0.90 0.90 0.90 0.90 0.90

NFP 0.081 P (U ) 0.55 0.65 0.57 0.56 0.58 0.51 0.62 0.51 0.63 0.60 0.56 0.67
P (L) 0.59 0.50 0.60 0.54 0.64 0.55 0.64 0.65 0.60 0.70 0.57 0.62

NRL 0.094 P (U ) 0.59 0.40 0.68 0.65 0.64 0.64 0.58 0.43 0.68 0.66 0.64 0.64
P (L) 0.65 0.73 0.54 0.53 0.54 0.57 0.67 0.70 0.53 0.53 0.54 0.55

PB0 0.024 P (U ) 0.78 0.96 0.97 0.96 0.95 0.95 0.49 0.35 0.26 0.28 0.16 0.25
P (L) 0.77 0.68 0.47 0.38 0.35 0.33 0.71 0.80 0.85 0.86 0.93 0.87

REL 0.076 P (U ) 0.50 0.49 0.51 0.51 0.51 0.49 0.51 0.48 0.51 0.50 0.49 0.49
P (L) 0.50 0.50 0.50 0.49 0.50 0.49 0.50 0.50 0.51 0.50 0.49 0.49

RL 0.097 P (U ) 0.60 0.37 0.64 0.63 0.63 0.64 0.57 0.40 0.64 0.63 0.63 0.64
P (L) 0.60 0.70 0.47 0.49 0.51 0.57 0.62 0.67 0.47 0.49 0.51 0.55

SFP 0.094 P (U ) 0.57 0.53 0.67 0.59 0.51 0.50 0.63 0.50 0.48 0.42 0.60 0.60
P (L) 0.54 0.50 0.51 0.32 0.52 0.41 0.58 0.69 0.65 0.79 0.68 0.69

SOFTMAX-PB0 0.018 P (U ) 0.84 0.97 0.95 0.90 0.90 0.92 0.46 0.28 0.25 0.31 0.31 0.31
P (L) 0.76 0.56 0.32 0.39 0.51 0.46 0.72 0.82 0.87 0.83 0.89 0.82

stEWA 0.086 P (U ) 0.62 0.64 0.64 0.64 0.64 0.64 0.67 0.64 0.64 0.64 0.64 0.64
P (L) 0.72 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.75 0.75 0.75

The second column from the left reports the MSD scores associated to each model. For parametric models, predicted frequencies have been obtained with the
parameter configuration reported in the fourth column ofTable 2.
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Table 4 | Predicted and observed choice frequencies in Experiment 2.

MSD Type A games Type C games

Blocks 1 2 3 4 5 6 1 2 3 4 5 6

Empirical P (U ) 0.88 0.88 0.86 0.92 0.88 0.86 0.42 0.60 0.60 0.68 0.56 0.63
P (L) 0.51 0.43 0.44 0.43 0.33 0.42 0.78 0.75 0.82 0.70 0.63 0.60

Nash 0.034 P (U ) 0.90 0.90 0.90 0.90 0.90 0.90 0.60 0.60 0.60 0.60 0.60 0.60
P (L) 0.10 0.10 0.10 0.10 0.10 0.10 0.60 0.60 0.60 0.60 0.60 0.60

NFP 0.036 P (U ) 0.62 0.69 0.59 0.66 0.61 0.65 0.62 0.55 0.64 0.64 0.64 0.57
P (L) 0.50 0.50 0.57 0.50 0.56 0.51 0.57 0.51 0.46 0.54 0.50 0.52

NRL 0.047 P (U ) 0.72 0.92 0.87 0.58 0.56 0.70 0.76 0.85 0.86 0.61 0.55 0.70
P (L) 0.52 0.49 0.45 0.43 0.49 0.49 0.56 0.57 0.60 0.46 0.49 0.49

PB0 0.029 P (U ) 0.75 0.85 0.89 0.88 0.95 0.93 0.78 0.73 0.56 0.50 0.53 0.46
P (L) 0.57 0.55 0.55 0.51 0.61 0.70 0.54 0.45 0.52 0.56 0.57 0.57

REL 0.055 P (U ) 0.51 0.49 0.51 0.51 0.50 0.51 0.50 0.51 0.52 0.50 0.51 0.51
P (L) 0.50 0.50 0.49 0.50 0.51 0.49 0.50 0.51 0.50 0.50 0.49 0.49

RL 0.053 P (U ) 0.71 0.93 0.88 0.56 0.52 0.68 0.75 0.87 0.87 0.59 0.50 0.68
P (L) 0.53 0.49 0.47 0.41 0.52 0.52 0.55 0.59 0.59 0.44 0.52 0.52

SFP 0.036 P (U ) 0.62 0.71 0.59 0.61 0.60 0.70 0.59 0.50 0.59 0.60 0.63 0.40
P (L) 0.51 0.48 0.55 0.41 0.46 0.50 0.58 0.51 0.47 0.56 0.56 0.60

SOFTMAX-PB0 0.028 P (U ) 0.77 0.83 0.87 0.85 0.93 0.90 0.80 0.68 0.54 0.56 0.59 0.48
P (L) 0.56 0.61 0.55 0.49 0.60 0.70 0.52 0.46 0.53 0.61 0.56 0.58

stEWA 0.058 P (U ) 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
P (L) 0.61 0.63 0.64 0.64 0.64 0.64 0.61 0.63 0.64 0.64 0.64 0.64

The second column from the left reports the MSD scores associated to each model. For parametric models, predicted frequencies have been obtained with the
parameter configuration reported in the fourth column ofTable 2.

CROSS-GAME LEARNING
As reported at the end of Section “The Multigame Experiments,”
our experimental data do not provide evidence of cross-game
learning. In regard to this, simulation results show that there is
a partial qualitative parallelism between the (SOFTMAX-)PB0
model’s predictions and observed behavior. For example, for
the row player, the (SOFTMAX-)PB0 model provides very sim-
ilar trajectories in the two experiments. However, if we con-
sider column player’s predicted behavior, the (SOFTMAX-)PB0
model produces very different trajectories in the two experi-
ments. This might imply that the (SOFTMAX-)PB0’s structure
is not complex enough to completely avoid spillover effects
across games, although this aspect would deserve a more sys-
tematic investigation. However, it is not difficult to imagine
situations in which learning spillovers do take place and this
feature of the (SOFTMAX-)PB0 model would turn out to be
advantageous.

CONCLUSION
The present paper presents an experimental design in which sub-
jects faced a sequence of different interactive decision problems,
making a step forward in the realism of the situations simu-
lated in the lab. The problems in the sequences were different
instances of two 2 × 2 completely mixed games. Thus, at each
trial, subjects’ task was twofold: recognize the type of the current
decision problem, and then act according to this categorization.
Our experimental results show that subjects are able to recog-
nize the two different game structures in each sequence and play

accordingly to this classification. Moreover, our experimental data
do not provide evidence of cross-game learning, as there are no
significant differences in the play of type A games in the two
experiments.

Our experiments were designed with the precise goal of test-
ing the discrimination capability of the PB0 and SOFTMAX-
PB0 neural network models in comparison with that of other
established models of learning proposed in the Psychology and
Economics literature. Simulation results show that traditional
“attraction and stochastic choice rule” learning models are not
able to discriminate between the different strategic situations, pro-
viding a poor “average” behavior, and are always outperformed
by Nash equilibrium. On the contrary, the (SOFTMAX-)PB0
model is able to replicate subjects’ conditional behavior, due
to the direct dependence of its response on game payoffs, and
performs better than standard theory of equilibrium. This lat-
ter fact is particularly remarkable; in our experiments, the two
classes of games were built based on their Nash equilibrium, so
that the classification was induced by the different equilibrium
predictions. On the contrary, our neural network models of adap-
tive learning were able to classify the different game structures
without any external and predetermined partition of the game
space.

We are well aware of the need for a more systematic and compre-
hensive analysis of categorization in games. Further experimental
research could focus, for example, on sequences with more than
two types of games, or on the effects of different degrees of payoff
perturbations on learning spillovers.
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APPENDIX
EXPERIMENTAL INSTRUCTIONS
Instructions
You are participating in an experiment on interactive decision-
making funded by the Italian Ministry of University and Research
(MIUR). This experiment is not aimed at evaluating you nei-
ther academically nor personally, and the results will be published
under strict anonymity.

You will be paid based on your performance, privately and in
cash, according to the rules described below.

During the experiment, you will not be allowed to communi-
cate with the other participants, neither verbally nor in any other
way. If you have any problem or questions, raise your hand and a
member of the staff will immediately contact you.

The experiment will consist of 120 rounds, and at each round
you will face an interactive decision task. Specifically, at each
round, you will be randomly matched with another participant
and your payoff will depend on both your decision and that of
the other participant. The structure of each decision task will be
represented as shown in the following figure:

The other player
(column player)

Action 1 Action 2

YOU (row player) Action 1 (6, 4) (4, 7)
Action 2 (3, 4) (5, 6)

You have been assigned the role of “row player”: therefore, the
other player will always play the role of “column player.”

For each player two actions are available (labeled“Action 1”and
“Action 2”). For every possible combination of actions by row and
column players, there corresponds a cell in the matrix. In every cell
there are two numbers between parentheses: the first number cor-
responds to YOUR payoff (in experimental currency units), and
the second corresponds to the payoff of the other player (again in
experimental currency units).

As an example, referring to the matrix reported below, if YOU
choose to play “Action 1” and the other player chooses to play
“Action 2,” then the payoffs will be four for YOU (row player) and
seven for the other player (column player).

The other player
(column player)

Action 1 Action 2

YOU (row player) Action 1 (6, 4) (4, 7)
Action 2 (3, 4) (5, 6)

Please, remember that the experiment will consist of 120
rounds. At each round, you will be shown a sequence of two
screenshots.

The first screenshot will show you the current payoff matrix,
and you will be invited to make a decision. In order to make a
decision, you must type either “1” or “2” in the box labeled “your
decision,” and then click on the button “confirm.” Once you have

clicked the confirmation button, you cannot change your deci-
sion. You will have a maximum of 30 s to choose: after those 30 s
a blinking red message will appear on the right-up corner of the
screen and spur you to make a decision. Delaying your decision
will cause the other participants to wait for you.

Once all players have made their decision, the second screen-
shot will appear on your monitor. In this second screenshot there
will be reported the action you chose, the action chosen by the
other player, your respective payoffs, and the payoff matrix you
saw in the first screenshot.

The second screenshot will be visible on your monitor for 10 s
and then another round will start.

This process will be repeated for 120 times. After all rounds have
been played, the experiment will be over and the procedure of pay-
ment will start. In order to determine your payment, 12 integers
between 1 and 120 will be randomly drawn without replacement.
In this way, 12 out of the 120 rounds will be randomly selected and
you will be paid based on their outcomes. One experimental cur-
rency unit is equivalent to 10 eurocents (10 experimental units = 1
euro). Moreover, independently from your performance, you will
be paid an additional show-up fee of 5 euro.

Before the beginning of the experiment, you will be asked to
fill a questionnaire to verify whether the instructions have been
understood. Then the experiment will start.

At the end of the experiment, you will be asked to fill a
questionnaire for your payment.

Thank you for your kind cooperation!

REPEATED MEASURES ANOVA
COMPETITOR MODELS AND INVESTIGATED PORTIONS OF PARAMETER
SPACES
The REL model (Erev et al., 1999, 2002)
Attractions updating. The propensity of player i to play her k-th
pure strategy at period t + 1 is given by:

aij (t + 1) =
{

aij (t )·[N (1)+Cij (t )−1]+x
N (1)+Cij (t ) if k = j

aij (t ) otherwise
,

Table A1 |Two-way, repeated measures ANOVA (row players).

df Sum Sq Mean Sq F value Pr(>F )

Experiment 1 0.03 0.03 0.90 0.38
Residuals 6 0.23 0.04

We tested the model Proportion (U) ∼ Experiment ∗Time + Error (between
groups). The effect of the experimental condition is not significant.

Table A2 |Two-way, repeated measures ANOVA (Column players).

df Sum Sq Mean Sq F value Pr(>F )

Experiment 1 0.11 0.11 1.07 0.34
Residuals 6 0.61 0.10

We tested the model Proportion (L) ∼ Experiment ∗Time + Error (between
groups). The effect of the experimental condition is not significant.
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Table A3 |Two of the game sequences played in Experiment 1 and 2.

Profile: Sequence 1 – Experiment 1 Sequence 1 – Experiment 2

U, L U, R D, L D, R U, L U, R D, L D, R

Game 1 190 56 179 67 89 156 190 56 93 27 87 32 43 76 93 27
Game 2 58 199 23 235 47 211 129 129 120 35 113 42 56 99 120 35
Game 3 152 44 143 53 71 125 152 44 166 49 156 58 78 137 166 49
Game 4 74 21 70 26 35 61 74 21 125 37 111 51 111 51 133 29
Game 5 235 69 221 83 110 194 235 69 156 46 147 55 73 128 156 46
Game 6 33 115 13 135 27 121 74 74 186 54 175 65 87 153 186 54
Game 7 135 39 127 47 63 111 135 39 91 26 80 37 80 37 96 21
Game 8 72 244 28 288 57 259 158 158 106 31 93 43 93 43 112 25
Game 9 34 118 13 139 27 125 76 76 163 48 144 67 144 67 173 38

Game 10 42 142 16 168 33 151 92 92 148 43 131 61 131 61 157 34

Game 11 52 180 21 211 42 190 116 116 162 47 142 66 142 66 171 38
Game 12 170 50 160 60 80 140 170 50 170 50 160 60 80 140 170 50
Game 13 51 174 20 205 41 185 113 113 105 30 92 43 92 43 111 24
Game 14 53 183 21 215 43 194 118 118 195 57 184 69 92 161 195 57
Game 15 124 36 117 44 58 102 124 36 212 62 199 74 99 174 212 62
Game 16 62 213 25 250 50 225 137 137 188 55 177 66 88 155 188 55
Game 17 232 68 218 81 109 191 232 68 141 41 124 58 124 58 149 33
Game 18 64 219 25 258 51 232 141 141 74 21 65 30 65 30 78 17
Game 19 218 64 205 77 102 180 218 64 298 87 263 122 263 122 315 70
Game 20 192 56 181 68 90 158 192 56 183 54 172 64 86 151 183 54

Game 21 60 205 24 242 48 217 133 133 173 51 153 71 153 71 183 40
Game 22 100 29 94 35 47 82 100 29 95 27 83 39 83 39 100 22
Game 23 49 166 19 196 39 176 107 107 106 31 100 37 50 87 106 31
Game 24 148 43 139 52 69 122 148 43 97 28 91 34 45 80 97 28
Game 25 79 270 31 318 63 286 175 175 109 32 102 38 51 90 109 32
Game 26 246 72 232 87 116 203 246 72 189 55 178 66 89 155 189 55
Game 27 61 210 24 247 49 222 135 135 148 43 131 61 131 61 157 34
Game 28 142 42 134 50 67 117 142 42 158 46 140 65 140 65 168 37
Game 29 229 67 215 80 107 188 229 67 161 47 142 66 142 66 171 38
Game 30 48 166 19 195 39 175 107 107 153 45 144 54 72 126 153 45

Game 31 54 183 21 216 43 194 118 118 164 48 145 67 145 67 174 38
Game 32 203 59 191 71 95 167 203 59 182 53 171 64 85 150 182 53
Game 33 72 245 28 288 57 259 158 158 109 32 96 45 96 45 116 25
Game 34 52 179 21 210 42 189 116 116 170 50 150 70 150 70 180 40
Game 35 170 50 160 60 80 140 170 50 128 37 120 45 60 105 128 37
Game 36 151 44 142 53 71 124 151 44 166 48 156 58 78 136 166 48
Game 37 171 50 161 60 80 141 171 50 220 64 207 77 103 181 220 64
Game 38 61 209 24 246 49 222 135 135 164 48 145 67 145 67 174 38
Game 39 44 150 17 176 35 158 97 97 72 21 64 29 64 29 77 17
Game 40 146 43 137 51 68 120 146 43 92 27 86 32 43 75 92 27

Game 41 240 70 225 84 112 197 240 70 144 42 135 50 67 118 144 42
Game 42 74 252 29 296 59 267 163 163 240 70 212 99 212 99 255 56
Game 43 240 70 226 85 113 198 240 70 38 11 33 15 33 15 40 8
Game 44 122 35 114 43 57 100 122 35 189 55 167 78 167 78 201 44
Game 45 47 161 18 189 37 170 104 104 145 42 137 51 68 119 145 42

(Continued)
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Table A3 | Continued

Profile: Sequence 1 – Experiment 1 Sequence 1 – Experiment 2

U, L U, R D, L D, R U, L U, R D, L D, R

Game 46 41 140 16 165 33 149 91 91 151 44 133 62 133 62 160 35
Game 47 203 59 191 71 95 167 203 59 190 56 179 67 89 156 190 56
Game 48 52 180 21 211 42 190 116 116 146 43 137 51 68 120 146 43
Game 49 61 209 24 246 49 221 135 135 182 53 160 75 160 75 193 42
Game 50 180 53 169 63 84 148 180 53 216 63 203 76 101 178 216 63

Game 51 198 58 187 70 93 163 198 58 239 70 211 98 211 98 253 56
Game 52 196 57 185 69 92 162 196 57 115 34 109 40 54 95 115 34
Game 53 284 83 268 100 134 234 284 83 142 41 134 50 67 117 142 41
Game 54 44 152 17 179 35 161 98 98 90 26 84 31 42 74 90 26
Game 55 34 117 13 138 27 124 75 75 152 44 134 62 134 62 161 35
Game 56 26 91 10 107 21 97 59 59 156 46 138 64 138 64 165 36
Game 57 57 196 23 231 46 208 127 127 210 61 185 86 185 86 222 49
Game 58 121 35 113 42 56 99 121 35 238 70 210 98 210 98 252 56
Game 59 187 55 176 66 88 154 187 55 180 53 170 63 85 148 180 53
Game 60 54 184 21 217 43 195 119 119 82 24 77 29 38 67 82 24

Game 61 61 209 24 245 49 221 135 135 177 52 156 73 156 73 188 41
Game 62 35 121 14 142 28 128 78 78 141 41 133 49 66 116 141 41
Game 63 21 73 8 87 17 78 47 47 235 69 221 83 110 194 235 69
Game 64 208 61 196 73 98 171 208 61 278 82 246 114 246 114 295 65
Game 65 163 47 153 57 76 134 163 47 235 69 221 83 110 193 235 69
Game 66 42 143 16 168 33 151 92 92 204 60 180 84 180 84 216 48
Game 67 31 107 12 126 25 114 69 69 201 59 178 83 178 83 213 47
Game 68 258 75 243 91 121 212 258 75 159 46 150 56 75 131 159 46
Game 69 163 48 153 57 76 134 163 48 163 48 153 57 76 134 163 48
Game 70 125 37 118 44 59 103 125 37 161 47 142 66 142 66 170 37

Game 71 47 162 19 191 38 171 105 105 177 52 167 62 83 146 177 52
Game 72 147 43 138 52 69 121 147 43 169 49 159 59 79 139 169 49
Game 73 18 64 7 75 15 67 41 41 59 17 52 24 52 24 63 14
Game 74 145 42 136 51 68 119 145 42 185 54 163 76 163 76 196 43
Game 75 38 130 15 153 30 138 84 84 108 31 102 38 51 89 108 31
Game 76 132 39 124 46 62 109 132 39 218 64 205 77 102 180 218 64
Game 77 79 271 31 319 63 287 175 175 168 49 148 69 148 69 178 39
Game 78 118 34 111 41 55 97 118 34 128 37 112 52 112 52 135 30
Game 79 123 36 116 43 58 101 123 36 187 55 165 77 165 77 198 44
Game 80 44 152 17 178 35 161 98 98 225 66 212 79 106 186 225 66

Game 81 54 186 21 219 43 197 120 120 121 35 107 50 107 50 128 28
Game 82 125 36 117 44 58 103 125 36 269 79 237 110 237 110 284 63
Game 83 232 68 218 82 109 191 232 68 237 69 209 97 209 97 251 55
Game 84 61 210 24 247 49 223 136 136 196 57 185 69 92 162 196 57
Game 85 41 140 16 165 33 148 90 90 55 16 52 19 26 45 55 16
Game 86 29 100 11 118 23 106 65 65 202 59 190 71 95 166 202 59
Game 87 155 45 146 54 73 128 155 45 125 36 118 44 59 103 125 36
Game 88 131 38 123 46 61 107 131 38 121 35 114 42 57 100 121 35
Game 89 58 198 23 233 46 210 128 128 187 55 165 77 165 77 198 44
Game 90 315 92 296 111 148 259 315 92 256 75 226 105 226 105 271 60

(Continued)
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Table A3 | Continued

Profile: Sequence 1 – Experiment 1 Sequence 1 – Experiment 2

U, L U, R D, L D, R U, L U, R D, L D, R

Game 91 200 58 188 70 94 165 200 58 228 67 215 80 107 188 228 67
Game 92 220 64 207 77 103 181 220 64 135 39 119 55 119 55 143 31
Game 93 43 146 17 172 34 155 95 95 155 45 146 54 73 128 155 45
Game 94 161 47 152 57 76 133 161 47 116 34 109 40 54 95 116 34
Game 95 186 54 175 65 87 153 186 54 270 79 238 111 238 111 286 63
Game 96 30 104 12 123 24 111 67 67 151 44 142 53 71 125 151 44
Game 97 55 189 22 222 44 200 122 122 148 43 140 52 70 122 148 43
Game 98 218 64 205 77 102 179 218 64 195 57 172 80 172 80 206 45
Game 99 51 174 20 205 41 184 113 113 193 56 170 79 170 79 204 45

Game 100 62 211 24 249 49 224 137 137 196 57 173 80 173 80 208 46

Game 101 202 59 190 71 95 166 202 59 145 42 136 51 68 119 145 42
Game 102 67 230 27 271 54 244 149 149 156 45 137 64 137 64 165 36
Game 103 62 212 25 250 50 225 137 137 169 49 149 69 149 69 179 39
Game 104 195 57 183 68 91 160 195 57 123 36 108 50 108 50 130 28
Game 105 266 78 250 94 125 219 266 78 129 38 121 45 60 106 129 38
Game 106 64 218 25 257 51 231 141 141 123 36 116 43 58 101 123 36
Game 107 103 30 97 36 48 85 103 30 218 64 192 89 192 89 230 51
Game 108 45 154 18 181 36 163 100 100 152 44 134 62 134 62 161 35
Game 109 40 137 16 162 32 145 89 89 228 67 215 80 107 188 228 67
Game 110 111 32 104 39 52 91 111 32 227 66 214 80 107 187 227 66

Game 111 44 150 17 177 35 159 97 97 159 46 150 56 75 131 159 46
Game 112 47 159 18 188 37 169 103 103 189 55 167 78 167 78 201 44
Game 113 29 101 11 119 23 107 65 65 183 54 172 64 86 151 183 54
Game 114 135 39 127 47 63 111 135 39 59 17 56 21 28 49 59 17
Game 115 143 42 135 50 67 118 143 42 208 61 184 85 184 85 221 49
Game 116 44 151 17 178 35 160 98 98 160 47 141 66 141 66 170 37
Game 117 207 61 195 73 97 171 207 61 146 43 129 60 129 60 155 34
Game 118 32 109 12 129 25 116 70 70 204 60 180 84 180 84 216 48
Game 119 195 57 183 68 91 160 195 57 138 40 130 48 65 113 138 40
Game 120 110 32 104 39 52 91 110 32 199 58 188 70 94 164 199 58

where Cij(t ) indicates the number of times that strategy j has been
chosen in the first t rounds, x is the obtained payoff, and N (1)
a parameter of the model determining the weight of the initial
attractions.

Stochastic choice rule. Player i’s choice probabilities are calcu-
lated as follows:

pik (t ) =
exp

[
λ·aik (t )

S(t )

]

∑
j exp

[
λ·aij (t )

S(t )

] ,

where λ is a sensitivity parameter, whereas S(t ) gives a measure of
payoff variability.

Initial attractions. S(1) is defined as the expected absolute dis-
tance between the payoff from random choices and the expected

payoff given random choices, denoted as A(1). At period t > 1:

S (t + 1) = S (t ) · [t + m · N (1)] + |A (t ) − x|
t + m · N (1) + 1

,

where x is the received payoff, m the number of player i’s pure
strategies, and A(t + 1) is:

S (t + 1) = A (t ) · [t + m · N (1)] + x

t + m · N (1) + 1
.

Initial attractions are such that aij(1) = A(1), for all i and j. This
model has two free parameters, namely λ and N (1).

The RL model (Erev and Roth, 1998; Erev et al., 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.
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Attractions updating. Propensities are updated as follows:

aij (t + 1) =
{

(1 − w) · aij (t ) + w · vik (x) if j = k

aij (t ) otherwise
,

where vij(t ) is the realized payoff, and w parameter expressing the
weight of past experience. The updating rule above implies agents’
insensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are calculated as
follows:

pik (t ) = exp [λ · aik (t )]
∑

j exp
[
λ · aij (t )

] ,

where λ is a payoff sensitivity parameter.

The NRL model (Erev et al., 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.

Attractions updating. Propensities are updated according to the
following:

aij (t + 1) =
{

(1 − w) · aij (t ) + w · vik (x) if j = k

aij (t ) otherwise
,

where vij(t ) is the realized payoff and w a weight parameter. The
updating rule implies agents’ insensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are defined as:

pik (t ) =
exp

[
λ·aik (t )

S(t )

]

∑
j exp

[
λ·aij (t )

S(t )

] ,

where S(t ) gives a measure of payoff variability and λ is payoff
sensitivity parameter.

S (t + 1) = (1 − w) · S (t ) + w
∣∣max {recent1, recent2} − vij (t )

∣∣ ,

where recenti is the most recent experienced payoff from action
i = 1, 2. At the first period, recenti = A(1), and S(1) is set equal to
λ. Similarly to the NFP model, payoff sensitivity [the ratio λ/S(t )]
is assumed to decrease with payoff variability.

The NFP model (Erev et al., 2007; Ert and Erev, 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.

Attractions updating. Propensities are updated according to the
following:

aij(t + 1) = (1 − w)·aij(t ) + w·vij(t ), for all i and j,

where vij(t ) is the expected payoff in the selected cell and w is a
parameter that measures sensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are obtained as
follows:

pik (t ) =
exp

[
λ·aik (t )

S(t )

]

∑
j exp

[
λ·aij (t )

S(t )

] ,

where S(t ) gives a measure of payoff variability, and λ is payoff
sensitivity parameter.

S (t + 1) = (1 − w) · S (t ) + w
∣∣max {recent1, recent2} − vij (t )

∣∣ ,

where recenti is the last experienced payoff from action i = 1, 2. At
the first period, recenti = A(1), and S(1) is set equal to λ.

The SFP model (Erev et al., 2007)
Initial propensities. Initial propensities are set equal to the
expected payoff from random choice [denoted by A(1)], so that
aij(1) = A(1), for all i and j.

Attractions updating. Propensities are updated according to the
following:

aij(t + 1) = (1 − w)·aij(t ) + w·vij(t ), for all i and j,

where vij(t ) is the expected payoff in the selected cell and, w is a
parameter that measures sensitivity to foregone payoffs.

Stochastic choice rule. Choice probabilities are calculated as
follows:

pik (t ) = exp [λ · aik (t )]
∑

j exp
[
λ · aij (t )

] ,

where λ is a payoff sensitivity parameter.

The stEWA model (Camerer and Ho, 1999; Ho et al., 2007)
Attractions updating. At time t, player i associates to his j-th
pure strategy the attraction aij(t ), given by:

aij (t ) =
φi (t ) · N (t − 1) · aij (t − 1) +

[
δij (t )

+
(
1 − δij (t )

)
· I

(
sij , si (t )

)]
· πi

(
sij , s−i (t )

)

N (t − 1) · φi (t ) + 1
,

where si(t ) and s−i(t ) are the strategies played by player i and
his opponents, respectively, and πi(sij,s−i(t )) is the ex-post payoff
deriving from playing strategy j, and I (·) is the Kronecker function.
Functions δij(t ) and φi(t ) are called, respectively, attention func-
tion and change detector function. The latter depends primarily on
the difference between the relative frequencies of chosen strategies
in the most recent periods and the relative frequencies calculated
on the entire series of actions. The attention function essentially
determines the importance that players give to past experience.

Stochastic choice rule. Choice probabilities are calculated as
follows:

pij (t + 1) = exp
(
λ · aij (t )

)
∑

j exp
(
λ · aij (t )

) ,

where λ is the unique free parameter of the model.
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Initial attractions. Authors suggest at least four ways of setting
initial attractions aij(0). In our implementation, initial attractions
are set equal to the average payoff from random choice, leading to
first period uniformly distributed choices.
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