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Abstract

The aim of this paper is to study the cross-sectional effects present in the
market using a new framework based on graph theory. Within this frame-
work, we represent the evolution of a dynamic portfolio, i.e. a portfolio whose
weights vary over time, as a rank-based factorial model where the predictive
ability of each cross-sectional factor is described by a variable. Practically,
this modeling permits us to measure the marginal and joint effects of dif-
ferent cross-section factors on a given dynamic portfolio. Associated to a
regime switching model, we are able to identify phases during which the
cross-sectional effects are present in the market.
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1. Introduction

The ranking of assets plays a major role in both investment decisions and
empirical finance studies. Indeed, the wide-spread momentum and contrar-
ian strategies invest according to the ranking of assets’ returns, Jegadeesh
and Titman (1993) and De Bondt and Thaler (1985). And the cross-section
literature studies the returns of portfolios built using the rankings of assets’
characteristics such as size, price-to-book value, etc. Typically, the portfo-
lios built in these studies are zero-dollar long/short equally weighted (LSEW)
portfolios where the position on an asset can only be long or short depending
on the asset rank. For instance, Fama and French (1992) sort the stocks of
the NYSE, Amex and Nasdaq markets according to their ratio book value to
market value. Then, they form an LSEW portfolio being long the top decile
and short the bottom decile. With this portfolio, they show that the top
decile outperformed the bottom decile by 1.53% in average over the period
1963-1990. However, the portfolio return is a byproduct of the asset returns
ranking. Indeed, the better the asset characteristics rankings explain the fu-
ture assets returns ranking, the higher is the return of the portfolio. So, more
information – such as the rank dependences among the assets characteristics
ranking – would be retained by using the higher dimentionality of a ranking
and by studying how the combination of asset characteristic rankings explain
the asset returns ranking. In addition, as explained in Wärneryd (2001),
people tend to think in terms of rankings rather than numbers1 when facing
an investment choice. Such reasoning might have a cross-sectional effect and
affect the stock returns ranking. As a consequence, a rank-based framework
might be more appropriate to the study of cross-sectional effects than the
conventional regression methods.

A seminal rank-based model was introduced in Mallows (1957). Considering
a set of true rankings π and a set of explanatory rankings σ, it estimates the
degree of expertise of σ in explaining π as the dispersion factor of the distri-
bution describing the distance between π and σ. This model is provided in its

1”If people assign probabilities to future states, they are likely to think in terms of
ranks, that is, one outcome is held to be more likely than another, and they do not use
precise probabilities or even probability intervals. A major problem is that there may
be a correlation between prefered state and rank, since people tend to overestimate the
likelihood of prefered outcomes.”, Wärneryd (2001)

2
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modern version by Diaconis (1988) and generalized to multiple explanatory
rankings by Fligner and Verducci (1986) and Lafferty and Lebanon (2002).
Its applications are mostly found in the field of machine learning, e.g. Fligner
and Verducci (1986), Lafferty and Lebanon (2002), Busse et al. (2007) and
Cheng and Hüllermeier (2009). As suggested in Diaconis (1988), the results
of Billio et al. (2011a) stem from graph theory and provide an explicit formu-
lation of Mallows’ model. This formulation leads to a rank-based framework
used to study the momentum effect. Considering the set of portfolios defined
by the LSEW investment strategy, they build a graph where the nodes are
the portfolios and the edges correspond to a minimal change between two
portfolios. In this framework, each portfolio corresponds to a possible rank-
ing. Then, defining a dynamic portfolio as a sequence of portfolios over a
rolling window, i.e. a portfolio whose weights vary over time, they model
its dynamics as a stochastic process on the graph. A dynamic portfolio of
particular interest is the optimal dynamic portfolio which is the sequence of
the portfolios providing the highest returns over each of the rolling windows.
Each of these optimal portfolios corresponds to a ranking of the assets re-
turns over one period. The dynamics of the optimal portfolio is modeled as
an autoregressive process where the steps between two optimal portfolios are
due to a random walk. Then, the number of random steps determines the
presence of momentum effect. If the number of random steps is low enough,
two successive optimal portfolios are likely to be close and the momentum
effect is observed. Otherwise, investing in the optimal portfolio would yield
no significant returns and there would be no momentum effect. Remark that
this framework assumes that all the asset returns have the same dynamics
and makes no assumption about market efficiency. In addition, the risk taken
by investing in a LSEW portfolio is mostly captured by the number of per-
mutations between the invested portfolio and the optimal portfolio, see Fig.3
in Billio et al. (2011a). In the related area of performance measure, we refer
to Billio et al. (2011b). At last, the dynamics of the optimal portfolio might
not be only driven by an autoregressive process. As seen in the previous
paragraph, the cross-section literature has identified several cross-sectional
factors affecting the optimal portfolio. The aim of this paper is to extend
the rank-based framework developed in Billio et al. (2011a), and to use it for
the development of models dedicated to the study of cross-sectional effects
in financial markets.

In this paper, we first extend the discrete step random walk model introduced

3
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in Billio et al. (2011a) to continuous time in order to get the probability for
the dynamic portfolio following a random walk to be at a given location on
the graph after a given period of time instead of a number of steps. It al-
lows us to work with the average number of steps walked by the dynamic
portfolio. Coupled with a Markov switching model, we use it empirically in
order to identify periods of momentum effect in the U.S. market. Secondly,
we introduce univariate models taking into account the influence of factors
on the optimal portfolio. This is achieved considering that a part of the path
walked by the optimal portfolio is explained by a factor, i.e. a portfolio built
from the ranking of assets characteristics. Then, the unexplained part of the
path – from the factor portfolio to the optimal portfolio – is supposed to
follow a random walk. It permits us to study empirically the cross-section
effects introduced by different factors such as the price-to-book value ratio
and the dividend yields in several markets. Thirdly, we propose multivariate
models – taking into consideration the factors’ possible dependences – for
the dynamics of the optimal portfolio. These models are multivariate convo-
lution models where each explanatory ranking is the origin of a random walk
leading to the explained ranking. The models proposed here are bivariate –
combining the effects of two factors among market value, price earning and
dividend yield – and trivariate – combining the effects of market value, price
earning and dividend yield. The marginal and joint cross-section effects of
these factors are then studied in several markets.

The paper is divided as follows. Section 2 presents the framework. First, we
extend Billio et al. (2011a) by modeling the dynamics of the optimal portfolio
with a continuous time random walk model. Secondly, we propose univari-
ate models where a cross-sectional factor drives the dynamics of the optimal
dynamic portfolio. Thirdly, we extend the previous models to the multivari-
ate case allowing the study of the marginal and joint cross-section effects of
several factors. Section 3 presents applications of the previous framework.
First, we study the momentum effect. Secondly, we study the cross-sectional
effects of different company characteristics in several markets. Thirdly, we
study the marginal and joint cross-section effects of several factors. Section
4 concludes.

4
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2. The Framework

2.1. From Discrete Step to Continuous Time

The LSEW strategy consists in investing in portfolios which are long/short
(including both long and short positions), zero-dollar (the value of the long
positions is equal to the value of the short positions) and equally weighted
(each position has the same value in absolute value). It is usual to consider
that the leverage of these portfolios is 2:12 which is the leverage used in the
following. This strategy is commonly used to track the momentum effect in
most of the literature [Jegadeesh and Titman (1993), Rouwenhorst (1998),
Chan et al. (2000), Okunev and White (2003), Kazemi et al. (2009) and
Billio et al. (2011a) among others].

An elegant representation of this strategy is provided by a graph theoretic
approach where each node represents a portfolio and each edge corresponds
to a single change in position between portfolios. The distance h between
two portfolios is the minimum number of permutations to pass from one to
the other, i.e. it is the Cayley distance [Cayley (1859)]. We denote Γ the
set of the investable portfolios γ induced by this strategy. In a market of n
assets, we represent a portfolio as a weight vector, i.e. γ = (γ(1), . . . , γ(n))′

where γ(i) is the weight associated with asset i, i = 1, . . . , n, and γ′ is the
transpose of γ. As shown in Billio et al. (2011a), the graph representation
of this strategy has interesting properties: it is 2-antipodal and distance
regular. From the 2-antipodal property we can compute the eigenvalues of
the adjacency matrix associated with the graph, and the distance regular
property leads to Theorem 1 below. Before to reach the main theorem, we
need to introduce the stratification of Γ following Hora and Obata (2007).
Considering a given portfolio γ∗ ∈ Γ, the disjoint union of strata Γn such
that

Γ =
∞⋃
n=0

Γn, Γn = {γ ∈ Γ|h(γ, γ∗) = n} (1)

is the stratification of Γ associated with the portfolio γ∗, given by the mini-
mum number of permutations which separate γ∗ from the portfolios of each

2The notation 2:1 means that the amount of capital backing the portfolio represents
50% of the portfolio value. It is the minimum amount required under the U.S. Regulation
(namely Regulation T). As a consequence, the sum of the absolute values of the weights
of the portfolio equals 2.

5
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stratum.

Now, we consider a dynamic portfolio - defined as a sequence of portfolios
- following a random walk on the graph G = (Γ, E). Thus, considering a
rolling window (T1, . . . , Tn) where each Ti has the same length T , we assume
that h

(
γTi , γTi+1

)
≤ 1, ∀i ∈ {1, . . . , n} and each move has the same probabil-

ity of occurrence. In the case of the LSEW momentum strategy, this means
that two consecutive portfolios differ by at most one permutation.3 This
hypothesis is relevant for a dynamic portfolio based on returns as soon as
we expect that two consecutive portfolios with overlapping periods are very
close. We can note that the choice of a long period and a short frequency
makes this assumption particularly relevant.

The probability for a dynamic portfolio following a random walk on G to
be at a distance n from its origin portfolio after N random steps has been
established in Billio et al. (2011a) and we recall it now:

Theorem 1. If G is a finite distance-regular graph with diameter d and
intersection table  c0 c1 c2 . . . cd

a0 a1 a2 . . . ad
b0 b1 b2 . . . bd

 (2)

then the probability for dynamic portfolio γN , following a random walk on G,
to be at a distance n from the original portfolio γo after N random moves on
G is :

P (h(γN , γo) = n) =

√
|Γn|

d2N ‖Pn‖ |Γ|

d∑
i=0

miλ
N
i Pn(λi) (3)

where λi are the eigenvalues of the adjacency matrix of the graph G, with
their multiplicities mi, and {Pi(x)}di=0 are the Gram-Schmidt polynomials,
defined as below in the three-term recurrence relation :

3We can remark that Ti and Ti+1, i ∈ {1, . . . , n}, are overlapping.

6
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P0(x) = 1
P1(x) = x− a0

xPi(x) = Pi+1(x) + aiPi(x) + bi−1ciPi−1(x) , i = 1, 2, . . .
(4)

In our case, the graph Γ is such that an = 2n(d−n), bn = (d−n)2 and cn = n2.
However, the larger the number of of assets, the higher is the degree of Pn.
It follows that in practice, this method is limited to around N = 20 assets.

A future extension of the paper is to approximate

√
|Γn|

d2N |Γ|Pn(λi) for larger N .

The previous random walk can also be represented as a continuous-time
Markov chain where each state corresponds to a portfolio and the probabil-
ities to pass from a portfolio to any neighbor portfolio are identical. In this
uniform continuous-time Markov chain, the waiting time in any state follows
an exponential distribution with parameter νt, where ν ∈ R is given for a
unit time. Thus, the random variable N(t) of number of jumps over a period
of time t is a Poisson distribution with parameter νt. The expected number
of steps over a period of length 1 is ν and we have

P [N(t) = k] =
eνt(νt)k

k!
(5)

Thus, the probability for a dynamic portfolio to be at a distance n from its
origin after a period of time t is given by:

P [h(γt, γo) = n, ν] =

√
|Γn|

‖Pn‖ |Γ|

d∑
i=0

miPn(λi)e
−νte

λiνt

d2 . (6)

Using the Taylor expansion of the exponential function
∞∑
k=0

λki (νt)k

d2kk!
= e

λiνt

d2 , we

get:

P [h(γt, γo) = n, ν] =

√
|Γn|

‖Pn‖ |Γ|

d∑
i=0

miPn(λi)e
( λi
d2
−1)νt (7)

So, the probability for a dynamic portfolio to be at a distance n from its
origin after a period of time t is given by relationship (7). Intuitively, the
lower is ν, the fewer are the number of random steps and the closer are γo
and γt. In Section 3.1, we use expression (7) in order to estimate the number

7
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of random steps wandered by a dynamic portfolio following a random walk
and to study the momentum effect.

2.2. Univariate Models for Dynamic Portfolios

In the previous section, we assumed that the distances between two succes-
sive optimal portfolios were independent and identically distributed. In order
to be more flexible, we assume that some dependence exists and that it can
be captured by a factor.

Let consider two dynamic portfolios γX and γY represented as sequences
of portfolios observed at time t, t ∈ {1, . . . , T}: γX = {γX,t=1, γX,t=2, . . .}
and γY = {γY,t=1, γY,t=2, . . .}. Let assume that the dynamics of γY is partly
explained by γX . Then, we model the dynamics of γY between the times t
and t+1 as the composition of a path from γY,t to γX,t, which is explained by
factor X, and a path from γX,t to γY,t+1 which is random. Such a modeling is
possible because the steps of γY are a composition of permutations and thus
they can be rewritten as a composition of two sets of permutations. Noting
σY the path from γY,t to γY,t+1 and σX the path from γY,t to γX,t, the idea
is to re-write σY as the composition of σX and a random path from γX,t to
γY,t+1 denoted σε: σY = σε ◦ σX . This composition is illustrated in Figure 1.

Figure 1: Composition of the walk from γY,t to γY,t+1 as a determined walk from γY,t to
γX,t and a random walk from γX,t to γY,t+1.

The paths σX and σε do not need to be identified as the aim of our modeling
is to infer the number of steps walked by σε. Observing the two sequences of
portfolios γY and γX , we can compute the sequence of the distances between
γX and γY denoted (hX,Y )t = {hX,Y (t) = h(γX,t, γY,t+1)}T−1

t=1 in a sample of
size T . Because the walk σε is unexplained, theses distances are assumed to
be due to a random walk, i.e. to be distributed according to the following
relationship:

8
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P [hX,Y (t) = n, ν] =

√
|Γn|

‖Pn‖ |Γ|

d∑
i=0

miPn(λi)e
( λi
d2
−1)ν (8)

Intuitively, the lower is ν, the fewer are the random steps and the better γX
explains γY , over the given sample. In Section 3.2, we use the relationship
(8) to study some cross-sectional effects in the U.S. and European markets.

2.3. Multivariate Models of Portfolio Dynamics: The Case of Independent
Factors

In order to extend the results of the previous section, we want to take into
account the effect of several factors on a dynamic portfolio. In this section,
we assume independent factors.

Consider the dynamic portfolio γY explained bym factors denotedX1, . . . , Xm.
We denote hXi,Y (t) the distance between the portfolios γXi at date t and γY
at date t+ 1. In the univariate case, the number of random steps associated
with a factor X can be estimated4 assuming that the difference between γY,t+1

and the factor portfolio γX,t is due to a random walk and using the distribu-
tion (8). Now, the model being multivariate, each random walk issued from
a portfolio γXi,t has to lead γY,t+1, i.e. the m random walks have to meet in
γY,t+1. So, we need to extend the distribution (8) conditionally to the fact
that the walk of each factor γXi,t leads to γY,t+1. In this section, we assume
that each random walk leads to γY,t+1 independently of each other. In other
words, the random walks do not share any common step. The bivariate case
is illustrated in Figure 2.

Figure 2: Random walks of two independent variables.

4see Section 3.2.

9
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Remarking that independent random walks may not lead to the same portfo-
lio and in order to provide the multivariate extension of the distribution (8),
we first compute the unconditional probability that the m random walks lead
to a portfolio γ ∈ Γ which is at given distances from the m origins (γXi)

m
i=1.

Then, we compute the unconditional probability that the m random walks
meet in any portfolio γ ∈ Γ, i.e. the sum of the previous probabilities. Fi-
nally, we provide the probability for the m random walks to meet at certain
distances from their origins (γXi)

m
i=1 conditionally to the fact that they lead

to the same portfolio.

First, remark that the probability for a dynamic portfolio to be in any port-
folio of a given stratum is the same for all the portfolios of this stratum.
So, the probability for a dynamic portfolio starting in γo to be at a specific
portfolio γt ∈ Γn after a period of time t is

P [γo = γt, ν] =
P [h(γo, γt) = n, ν]

|Γn|
, n ∈ {0, . . . , d} and γt ∈ Γn (9)

If the factors (γXi)
m
i=1 are the origins of m random walks, we get several

stratifications of Γ. Such stratifications are illustrated in Figure 3 in the
bivariate case.

Figure 3: Stratification with two origins γX1
and γX2

at a distance n1,2 = 1 from each
other.

So, in a graph of diameter d, the number of portfolios γ ∈ Γ at the given
distances {ni}mi=1 ∈ {0, . . . , d}

m from the portfolios γXi is∣∣∣∣∣
m⋂
i=1

ΓXini

∣∣∣∣∣ (10)

This number of portfolios (10) depends on the distances between the factors
(γXi)

m
i=1. In the bivariate case, the number of portfolios at a distance n1

10
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from X1 and n2 from X2 depends on the distance n1,2 between X1 and X2.
The LSEW graph being distance regular, this number of portfolios can be
computed, Billio et al. (2011a). For instance, in a market of 10 assets, the
number of portfolios at distances 0 to 5 from two factor portfolios which are
themselves at a distance n1,2 = 1 from each other, is illustrated in Table 1
below.

n1 \ n2 0 1 2 3 4 5
0 0 1 0 0 0 0
1 1 8 16 0 0 0
2 0 16 48 36 0 0
3 0 0 36 48 16 0
4 0 0 0 16 8 1
5 0 0 0 0 1 0

Table 1: Number of portfolios γ ∈ Γ, i.e. p
n1,2
n1,n2 , at the distances n1 from γX1

and n2 from
γX2

when n1,2 = 1.

Assuming that each random walk originating in γXi , i = {1, . . . ,m} leads to
γY ∈ Γ independently, the probability for the m random walks to meet in a

portfolio γY of sub-stratum
m⋂
i=1

ΓXini is

P [hXi,Y (t) = ni, νi; i = 1, . . . ,m] =

∣∣∣∣∣
m⋂
i=1

ΓXini

∣∣∣∣∣
m∏
i=1

P [hXi,Y (t) = ni, νi]

|Γni|
(11)

So, the probability that the m random walks meet in any portfolio γY ∈ Γ is

d∑
n1=0

. . .
d∑

nm=0

∣∣∣∣∣
m⋂
i=1

ΓXini

∣∣∣∣∣
m∏
i=1

P [hXi,Y (t) = ni, νi]

|Γni|
(12)

where d is the diameter of the graph.

Finally, the conditional probability that the m random walks meet in sub-

stratum
m⋂
i=1

ΓXini after a period of time t, conditionally to the fact that they

lead to the same portfolio γY is given by the ratio of (11) over (12) :

11
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P [hXi,Y (t) = ni, νi; i = 1, . . . ,m] =

∣∣∣∣ m⋂
i=1

ΓXini

∣∣∣∣ m∏
i=1

P [hXi,Y (t)=ni,νi]
|Γni|

d∑
n1=0

. . .
d∑

nm=0

∣∣∣∣ m⋂
i=1

ΓXini

∣∣∣∣ m∏
i=1

P [hXi,Y (t)=ni,νi]
|Γni|

(13)
In Section 3.3, these multivariate models are used to study cross-sectional
effects in the U.S. markets.

2.4. Multivariate Models of Portfolio Dynamics: The Case of Dependent
Factors

As in the previous section, we consider the dynamic portfolio γY explained
by m factors noted X1, . . . , Xm. We note hXi,Y (t) the distance between the
portfolios γXi at date t and γY at date t+1. Here, we assume that the factors
are dependent in such a way that the m random walks meet before to share
some steps leading to γY . An illustration of this modeling, in the bivariate
case, is provided below in Figure 4.

Figure 4: Random walks of two dependent variables.

For the sake of simplicity, the main part of the following section focuses on
the bivariate case. Considering two processes X1 and X2 with parameters
ν1 and ν2, they are decomposed into a common process with parameter ν1,2

and two idiosyncratic processes with parameters ν ′1 and ν ′2. The dependence
between X1 and X2 is quantified by the following correlation-like coefficient,
Ruan et al. (2008) :

ρ1,2 =
ν1,2

ν1,2 + ν ′1 + ν ′2
(14)

Intuitively, two processes behaving identically share all their steps leading to
a coefficient equal to one. On the contrary, two processes sharing none of

12
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their steps lead to a coefficient equal to zero, and thus 0 ≤ ρ1,2 ≤ 1.

In the case of m factors, we can consider different structures. As an illus-
tration, possible structures for the dependences in the trivariate case are
reported in Figure 5. Structure 1 illustrates a common dependence between
three factors. Structure 2 illustrates a common dependence between three
factors with an additional dependence between two factors.

Structure 1 Structure 2

Figure 5: Dependence structures of random walks from three dependent variables.

Back to the bivariate case, we assume that two random walks originating
from two factor portfolios have the non-null probability to meet at certain
distances from their origins, given by equation (13). These random walks are
characterized by their parameters ν ′1 and ν ′2. Once the two random walks have
met, they both follow a single random walk which is characterized by a single
parameter ν1,2. It is illustrated in Figure 4. So, the resulting probability to
find γY at given distances from the origins portfolios is the convolution of
the probability of the random walks to meet in a portfolio γi ∈ Γ and the
probability for a random walk beginning in γi and with parameter ν12 to end
in γY ∈ Γ. This probability is given by :

P [γY = γ, (ν1, ν2, ν1,2) ;hX1,X2 = n1,2, γ ∈ Γ]

=
∑
γi∈Γ

P [hX1,γi
=n1,hX2,γi

=n2,(ν′1,ν′2);hX1,X2
=n1,2]

|Γn1

⋂
Γn2|

× P [hγi,γ=n,ν1,2]
|Γn|

(15)

In Section 3.4, these multivariate models are used to study joint cross-
sectional effects in the U.S. market.
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3. Applications

3.1. Application to the study of the Momentum Effect

In this section, we use the relationship (7) developed in Section 2.1 to study
the momentum effect in the U.S. and European markets. These markets are
constituted by the ten sectoral indexes provided by Datastream.5 The data
are daily and range from 01/01/1973 to 02/08/2010. In the same way as in
Billio et al. (2011a), we study the momentum effect through the dynamics
of the optimal dynamic portfolio which is the sequence of portfolios, among
the LSEW portfolios, providing the highest returns over successive periods.
In the case of LSEW portfolios, the optimal portfolio is long the half best
performers and short the half worst performers of each period. Here, the
optimal portfolio is built each day using the daily returns of the assets. We
note γt the optimal portfolio built using the return of the assets on day t.
Next, we assume that the optimal dynamic portfolio follows the random walk
described in the first section. So, the steps of the optimal portfolio between t
and t+ 1 are random and the probability for γt+1 to be at a distance n from
γt is given by equation (7).

Intuitively, the lower is ν the closer are two successive optimal portfolios
and the stronger is the momentum effect. Given the sequence of optimal
portfolios (γ1, . . . , γT ) where T is the sample size, we build the sequence
(h(t))T−1

t=1 of the distances between two successive optimal portfolios such
that h(t) = h(γt, γt+1), for t = 1 to T . Assuming that the sequence (h(t))T−1

t=1

is independent and identically distributed, we compute ν̂ using the maximum
likelihood method with the following log-likelihood function:

`(ν̂) =
T−1∑
t=1

log

( √
|Γh(t)|∥∥Ph(t)

∥∥ |Γ|
d∑
i=0

miPh(t)(λi)e
( λi
d2
−1)ν̂

)
(16)

Thus, using ν̂ given by relationship (16) we get an estimate of the distribution

5Datastream codes:

• for the U.S.market : OILGSUS, BMATRUS, INDUSUS, CNSMGUS, HLTHCUS,
CNSMSUS, TELCMUS, UTILSUS,FINANUS and TECNOUS

• for the European market : OILGSEU, BMATREU, INDUSEU, CNSMGEU,
HLTHCEU, CNSMSEU, TELCMEU, UTILSEU, FINANEU and TECNOEU

14
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of the distances between two consecutive portfolios. When ν is very large,
we have6

lim
ν→∞

P [h(t) = n, ν] = |Γn|
|Γ| (17)

Relationship (17) implies that the distribution of the distances is symmetric,
i.e. that we have the same probability to find the dynamic portfolio at any
location on the graph. So, the origin portfolio provides no information on the
final location of the dynamic portfolio and no momentum effect is observed.

To detect the presence of momentum effect, we test whether the distribution
(7) implied by ν̂ is symmetric or not through a χ2 goodness-of-fit test between
this estimated distribution and the symmetric one. In Table 2 we report
the estimated number of random steps and the p-value of the associated χ2

goodness-of-fit test7 for the U.S. and European markets.

Cross-Sectional Factor U.S. Market European Market

Est. Nber of Random Steps : ν̂ 6.75 6.50
χ2 G.o.F. (p-value) 0.00 0.00

Table 2: This table reports the estimated number of random steps ν̂ (the lower the better),
and the p-value of the associated χ2 goodness-of-fit test, of the optimal dynamic portfolio
in the U.S. and European markets. The markets are constituted by the ten sectoral indexes
provided by Datastream. The data are daily and range from 01/01/1973 to 02/08/2010.

The estimated number of daily random steps is 6.5 in the European market
and 6.75 in the U.S. market, so the momentum effect is significantly present
in both samples. In addition, both numbers of random steps are significant
as indicated by the p-values of the χ2 test which are very small.

Until now we have modeled the dynamics of the optimal dynamic portfolio
assuming that the number of random steps is constant over the whole sample.
In order to take into account the possibility of phases in the momentum effect
we relax this last assumption and allow the number of random steps to take
different values. The underlying idea is that different market activity would

6Proof available upon request to the authors.
7Remark that, in a sample of 9500 observations of 10 assets, this test is significant at

the 1% level for a number of random steps lower than 10.8.
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impact differently the number of random steps. For instance, one can expect
that if more information disturbs the market, the optimal dynamic portfolio
would walk more random steps. So, by letting ν take two values, ν1 and ν2, we
get two different regimes for the walk of the dynamic portfolio leading to two
different distributions of its distance to the origin. These two distributions
are as follows:

P [h(t) = n|ν = ν1] =

√
|Γk|

‖Pk‖|Γ|

d∑
i=0

mie
( λi
d2
−1)ν1Pk(λi)

P [h(t) = n|ν = ν2] =

√
|Γk|

‖Pk‖|Γ|

d∑
i=0

mie
( λi
d2
−1)ν2Pk(λi)

(18)

We suppose that the transitions between these two regimes can be modeled
with a Markov switching model Hamilton (1989) which identifies the two
regimes of the momentum effect. Under the same assumption used previously,
we get estimates for ν1 and ν2 by the maximum likelihood method.8 Their
values are presented in Table 3.

ν̂ χ2 G.o.F. (p-value)

State 1 5.75 0.00
State 2 1.26× 108 1

Table 3: This table reports the estimated numbers of random steps (the lower the better),
and the p-value of the associated χ2 goodness-of-fit, of the optimal dynamic portfolio in
the U.S. market of the ten sectoral indexes provided by Datastream from 01/01/1973 to
02/08/2010. The data are daily.

We obtain a small value for ν̂1 and a large value for ν̂2. The associated p-
values suggest that the distribution obtained with ν̂1 is not symmetric while
the distribution obtained with ν̂2 is symmetric. So, state 1 is identified as the
momentum regime and state 2 corresponds to a regime with no momentum
effect. We illustrate the discrete distribution of the distances between two
consecutive optimal portfolios for each state in Figure 6.

The smoothed probabilities resulting from the Markov switching model are
provided in Figure 7. These probabilities correspond to the a posteriori
probabilities, i.e. with the knowledge of the whole sample, to be in the regime

8Here, there is no closed-form likelihood function because we follow Hamilton (1989)
were the likelihood function is the result of an iterative algorithm.
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Figure 6: Distributions associated with each regime. The distribution corresponding to the
momentum effect is skewed toward 0 and corresponds to the blue bars. The distribution
of the regime with no momentum is symmetric and is represented with the red bars.

of momentum. From the beginning of the sample to 1997, the momentum
effect was a permanent effect, with only three periods of absence (77-79,
80, 87-89). From 1997, the momentum effect is recurrent but it is not as
stable as it was before, lasting only few months. It is in line with the results
of Hwang and Rubesam (2008) who suggested that the momentum effect
disappeared in the late 1990’s. The statistics on the returns of the momentum
strategy for each regime are provided in Table 4. As expected, these returns
are significantly positive during the momentum regime and not significantly
different from zero otherwise.

Momentum Regime No Momentum Regime

Avg. Return 0.14% 0.01%
T-stat 23.19 1.25

Table 4: This table reports the average returns and their associated t-statistics of the
momentum strategy for the momentum regime and the regime without momentum ef-
fect. These regimes are those identified in the previous paragraph with the smoothed
probabilities. The data is daily and range from 1973 to 2010.

We used the same model with the European market. However, no phase of
momentum effect could be found. It suggests that the momentum effect is
more diffuse in this market.

17
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Figure 7: Smoothed probabilities to be in a phase of Momentum effect in the U.S. market.

3.2. Applications to the study of cross-sectional effects

In this section, we use distribution (8) developed in Section 2.2 to study
single cross-sectional effects in several markets. Considering the U.S., Eu-
ropean and Asian markets constituted by the ten sectoral indexes provided
by Datastream, we aim to explain the dynamics of the optimal dynamic
portfolio, γY , using as factors the market value, the price earning or the div-
idend yield of the assets. Considering the asset characteristic X, we build
the factor portfolio γX as follows. First, we rank the assets from the highest
value of X to its lowest value. Next, we split the set of assets in two halves,
assigning a long position to the assets with the highest values of X and a
short position to the rest of them. However, a cross-sectional effects may
result from the opposite ranking of a factor (being long the lowest values and
short the highest). So, we also consider the inverse of a factor portfolio γX ,
i.e. −γX . For instance, in the application on the U.S. market, we consider
the inverse dividend yield which is long the assets with the lowest dividend
yield and short the assets with the highest dividend yield. The use of the
inverse dividend yield in the U.S. might be counter-intuitive because of the
positive relationship between dividend yield and returns usually found in the
literature at the firm level. However, at the sectoral level, Günsel and Çukur
(2007) show the presence of the inverse dividend yield effect in the U.K. mar-
ket. Here, we are observing the same effect for the U.S. market.

Assuming that (hX,Y )t is a sequence of independent and identically dis-

18
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tributed, we compute the estimate number of random steps ν̂ distancing γY
from γX by maximizing the following log-likelihood function over the whole
sample:

`(ν̂) = log
T∏
t=1

P [hX,Y (t), ν̂] (19)

In Table 5, we provide the estimations ν̄ obtained with the previous factors
in the U.S. market. As a benchmark, we also report the result obtained for
momentum, i.e. using the previous optimal portfolio as factor. In this sam-
ple, the momentum effect has the lowest ν̂ (ν̂ = 7.16) so it is the strongest
cross-section effect. It is followed by the inverse dividend yield (ν̂ = 8.16)
which is significant and by the market value (ν̂ = 8.69) and price earning (ν̂
= 9.14) which are not significant as indicated by their high p-values.

We report the estimations of the number of random steps ν̂ for the European
and Asian markets in Table 6. In the literature, both positive and negative
relationships between the assets’ returns and their sizes, price earnings and
dividend yields can be found. In particular, Claessens et al. (1995) and
Singh (2008) find that the signs of size and dividend yield effects on stocks
returns are opposite in emerging markets to those of developed markets. The
reasons for these opposite relationships remains unclear. As a consequence,
if the factors considered for the U.S. market provide no cross-sectional effects
for the European and Asian markets, we use the inverse factors. In the Euro-
pean market, the momentum is the strongest effect (ν̂ = 7.88) and the only
one to be significant. In the Asian market, the strongest effect is provided
by the dividend yield (ν̂ = 7.28) followed by the momentum effect (ν̂ = 7.68).

Next, following the previous section, we estimate the Markov switching mod-
els with the inverse dividend yield, for the U.S. market, and the dividend
yield, for the Asian market. In the U.S. market, we were unable to identify
any phase. It suggests that this cross-section effect is aphasic in this market.
On the contrary, in the Asian market, we identify a phase of dividend yield
effect. The estimations of the coefficients are provided in Table 7 and the
smoothed probabilities to be in the phase of dividend yield effect are provided
in Figure 8. We identify three phases of dividend yield effect: the first one

19
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Cross-Sectional Factor U.S. Market
ν̂ χ2 G.o.F. (p-value)

Momentum 7.16 0.001
Market Value 8.69 0.143
Price Earning 9.14 0.260
Inverse Dividend Yield 8.16 0.051

Table 5: This table reports the estimated numbers of random steps (the lower the better),
and the p-value of the associated χ2 goodness-of-fit, of the optimal dynamic portfolio when
using as factors the momentum, the market value, the inverse dividend yield and the price
earning. The results presented are for the U.S. market constituted by the ten sectoral
indexes provided by Datastream. The data are monthly and range from 01/01/1973 to
02/08/2010, i.e. 452 observations. Remark that with a sample of 452 observations, the χ2

goodness-of-fit test is significant at the 10% level for a number of steps lower than 8.48.

Cross-Sectional Factor European Market Asian Market
ν̂ χ2 G.o.F. (p-value) ν̂ χ2 G.o.F. (p-value)

Momentum 7.88 0.024 7.68 0.012
Inverse Market Value 9.47 0.355 9.15 0.261
Inverse Price Earning 13.19 0.949 10.07 0.527
Dividend Yield 8.93 0.202 7.28 0.002

Table 6: This table reports the estimated numbers of random steps (the lower the better),
and the p-value of the associated χ2 goodness-of-fit, of the optimal dynamic portfolio when
using as factors the momentum, the market value, the inverse dividend yield and the price
earning. The results presented are for the European and Asian markets constituted by
the ten sectoral indexes provided by Datastream. The data are monthly and range from
01/01/1973 to 02/08/2010, i.e. 452 observations. Remark that with a sample of 452
observations, the χ2 goodness-of-fit test is significant at the 10% level for a number of
steps lower than 8.48.

from the beginning of the sample to April 1977, the second one from March
1984 to July 1995 and the third one from February 2000 to June 2009.

ν̂ χ2 G.o.F. (p-value)

State 1 5.53 0.00
State 2 36.49 1

Table 7: This table reports the estimated numbers of random steps (the lower the better),
and the p-value of the associated χ2 goodness-of-fit, walked by the random walk issued
from the dividend yield portfolio and leading to the optimal portfolio in the Asian market
of the ten sectoral indexes provided by Datastream from 31/01/1973 to 29/10/2010. The
data are monthly.

20

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.36

ha
ls

hs
-0

07
07

43
0,

 v
er

si
on

 1
 - 

12
 J

un
 2

01
2



Figure 8: Smoothed probabilities to be in a phase of Dividend Yield effect in the Asian
market.

3.3. Applications of multivariate models to the study of independent cross-
sectional effects

In this section, we use distribution (13) developed in Section 2.3 to jointly
study independent cross-sectional effects in the U.S. market made of the 10
sectoral Datastream indexes. The factors are the price earning (PE), the
market value (MV) and the inverse dividend yield (iDY) and the explained
variable is the optimal portfolio. We estimate the parameters (νi)

m
i=1 in (13)

by maximum likelihood following the same methodology as presented in the
previous section. However, the estimated numbers of random steps associ-
ated with each factor are different from those computed independently from
Equation (19).9 Indeed, the multivariate model takes into account the new
information of the distance between the factors. The log-likelihood function
is

`(ν̂1, . . . , ν̂m) = log
T−1∏
t=1


∣∣∣∣ m⋂
i=1

Γ
Xi
ni

∣∣∣∣ m∏
i=1

P[hXi,Y (t)=ni,νi]
|Γni |

d∑
n1=0

...
d∑

nm=0

∣∣∣∣ m⋂
i=1

Γ
Xi
ni

∣∣∣∣ m∏
i=1

P[hXi,Y (t)=ni,νi]
|Γni |

 (20)

9This is an extension of the classical machine learning literature, Lafferty and Lebanon
(2002).
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where the parameters νi correspond to the predictive ability of factor Xi.
Intuitively, the lower is νi the greater is the predictive ability of Xi.

Using (20), we estimate the predictive ability of these factors (ν̂PE, ν̂MV

and ν̂iDY ) by combining them in bi- and tri-variate models. The results are
presented in Table 8. The results of the univariate models come from Table
5. They are computed using (19) and are reported as benchmarks.

Univariate Models ν̂PE ν̂MV ν̂iDY
Model 1 (X=PE) from (19) 9.14
Model 2 (X=MV) from (19) 8.69
Model 3 (X=iDY) from (19) 8.14

Bivariate Models ν̂PE ν̂MV ν̂iDY
Model 4 (X1=PE, X2=MV) from (20) 10.36 9.22
Model 5 (X1=MV, X2=iDY) from (20) 10.55 8.82
Model 6 (X1=PE, X2=iDY) from (20) 13.23 8.35

Trivariate Model ν̂PE ν̂MV ν̂iDY
Model 7 (X1=PE, X2=MV, X3=iDY) from (20) 14.10 10.59 8.99

Table 8: Estimations of the number of random steps walked by the random walks issued
from the lagged price earning factor (ν̂PE), the lagged market value factor (ν̂MV ) and the
lagged inverse dividend yield (ν̂iDY ) to the optimal portfolio considering uni-, bi- and tri-
variate models, in the U.S. market composed by the 10 sectoral Datastream indexes. The
data are monthly (end-of-month quotations) and range from 31/01/1973 to 29/10/2010.

The results of the bivariate models confirm the results of the univariate mod-
els suggesting that the predominant effect is the inverse dividend yield effect.
Indeed it provides the lowest number of random steps among those of the
models 4, 5 and 6. The same result is observed in the trivariate model10 –
model 7 – where the inverse dividend yield factor provides the lowest number
of random steps.

3.4. Applications of multivariate models to the study of dependent cross-
sectional effects

In this section, we use distribution (15) developed in Section 2.4 to study
dependent cross-sectional effects in the U.S. market made of the 10 sectoral

10In the trivariate case, the number of portfolios in the sub-stratum has been computed
by enumeration.
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Datastream indexes. Consider the bivariate models using two of the following
lagged factors: price earning (PE), market value (MV) and inverse dividend
yield (iDY), which explain the optimal portfolio. We estimate the idiosyn-
cratic and shared number of random steps of the random walks originating
from each factor portfolio in the same way as in the previous sections. Using
equation (15) and considering the factors X1 and X2 explaining the portfolio
Y , the log-likelihood function used to estimate ν ′1, ν ′2 and ν1,2 is

` (ν ′1, ν
′
2, ν1,2) = log

T−1∏
t=1

P [γY , (ν1, ν2, ν1,2) ;hX1,X2 = n1,2] (21)

The estimation of the idiosyncratic average number of steps for each factor,
denoted ν̂ ′PE, ν̂ ′MV and ν̂ ′PE, as well as their average number of shared random
steps, denoted ν̂Common, are computed using equation (21). The dependence
between the random walks issued from the two factors of each model is
quantified by the coefficient ρc defined in equation (14). The results are
presented below in Table 9.

Bivariate Models ν̂ ′PE ν̂ ′MV ν̂ ′iDY ν̂Common ρc
Model 8 (X1=PE, X2=MV) from (21) 7.35 6.27 2.96 0.18
Model 9 (X1=MV, X2=iDY) from (21) 5.38 3.87 5.02 0.35
Model 10 (X1=PE, X2=iDY) from (21) 9.24 5.18 3.26 0.18

Table 9: Estimations of the number of random steps walked by the random walks issued
from the lagged price earning factor (ν̂′PE), the lagged market value factor (ν̂′MV ) and
the lagged inverse dividend yield (ν̂′iDY ) to the optimal portfolio considering a bivariate
models taking into account the dependence between the factors. The estimation of the
average number of shared steps between two factors is denoted ν̂Common. The dependence
between the random walks issued from the two factors of each model is quantified by ρc
introduced in equation 14. The market considered is the U.S. market composed by the 10
sectoral Datastream indexes. The data are monthly (end-of-month quotations) and range
from 31/01/1973 to 29/10/2010

The number of random steps estimated in the independent case, from (20),
and in the dependent case, from (21), are in line with each other as shown
in Table 10. Indeed, we have the following relationships:

ν̂PE ≈ ν̂ ′PE + ν̂Common
ν̂MV ≈ ν̂ ′MV + ν̂Common
ν̂iDY ≈ ν̂ ′iDY + ν̂Common

(22)
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Bivariate Models from (20) (ν̂PE) (ν̂MV ) (ν̂iDY )

Model 4 (X1=PE, X2=MV) 10.36 9.22
Model 5 (X1=MV, X2=iDY) 10.55 8.82
Model 6 (X1=PE, X2=iDY) 13.23 8.35

Bivariate Models from (21) (ν̂ ′PE + ν̂Common) (ν̂ ′MV + ν̂Common) (ν̂ ′iDY + ν̂Common)

Model 8 (X1=PE, X2=MV) 10.31 9.23
Model 9 (X1=MV, X2=iDY) 10.40 8.89
Model 10 (X1=PE, X2=iDY) 12.50 8.44

Table 10: This table presents the number of random steps estimated in the independent
case, obtained from Table 8, and the sum of the idiosyncratic and joint numbers of random
steps obtained in Table 9 in the U.S. market composed by the 10 sectoral Datastream
indexes. The data are monthly (end-of-month quotations) and range from 31/01/1973 to
29/10/2010. The factors considered are the lagged price earning (PE), the lagged market
value (MV) and the lagged inverse dividend yield. In the independent case, the associated
estimated number of random steps are denoted respectively ν̂PE , ν̂MV and ν̂iDY . In
the dependent case, the associated estimated idiosyncratic number of random steps are
denoted respectively ν̂′PE , ν̂′MV and ν̂′iDY , and the estimated number of shared random
steps is denoted ν̂Common.

The dependence between the random walks has for main effect to give higher
probabilities to become the next optimal portfolio to the distant portfolios.
Indeed, in the dependent case, the random walks meet after fewer random
steps than in the independent case. So, the condition that they have to meet
in a portfolio before the final portfolio is less restrictive than the assump-
tion to meet in the final portfolio for which they pursue their way with the
common random walk.

4. Conclusion

In this paper, we propose new models for the dynamics of the optimal port-
folio in the case of the LSEW strategy. In a first part, we extend the discrete
step random walk model introduced in Billio et al. (2011a) to continuous
time. By this way the number of random steps does not have to be deter-
mined and is defined in terms of probability. This modeling is then coupled
with a Markov switching model in order to empirically identify periods of
daily momentum in the U.S. market. The results suggest that the momen-
tum effect disappeared in the late 90’s.

Next, we introduce the influence of factors on the optimal dynamic portfolio.
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In a first part, we consider the effect of a single factor. It allows to measure
the cross-sectional effects of several single factors. The results suggest that
the strongest effects are those induced by the previous asset returns (momen-
tum) and by the dividend yields of the assets. In a second part, we consider
the effects of several factors. It enables us to consider the marginal and
joint effects of these factors. As an application, we measure the dependency
among the different factors (price earning, market value and dividend yield)
in the U.S. market. These measures suggest that the most correlated factors
are the market value and the dividend yield.

This modeling provides the probability for any portfolio of the graph to be
the next optimal portfolio. Thus, a direct application would concern its use
in asset management. In particular, we can propose to estimate the idiosyn-
cratic and joint abilities of analysts ranking assets.
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