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Abstract. Comparison of metabolic pathways is useful in phylogenetic
analysis and for understanding metabolic functions when studying dis-
eases and in drugs engineering. In the literature many techniques have
been proposed to compare metabolic pathways, but most of them focus
on structural aspects, while behavioural or functional aspects are gener-
ally not considered. In this paper we propose a new method for comparing
metabolic pathways of different organisms based on a similarity measure
which considers both homology of reactions and functional aspects of
the pathways. The latter are captured by relying on a Petri net repre-
sentation of the pathways and comparing the corresponding T-invariant
bases, which represent potential fluxes in the nets. The approach is im-
plemented in a prototype tool, CoMeta, which allows us to test and
validate our proposal. Some experiments with CoMeta are presented.

1 Introduction

The life of an organism depends on its metabolism, the chemical system which
generates the essential components - amino acids, sugars, lipids and nucleic acids
- and the energy necessary to synthesise and use them. Subsystems of metabolism
dealing with some specific function are called metabolic pathways. Comparing
metabolic pathways of different species yields interesting information on their
evolution and it may help in understanding metabolic functions. This is impor-
tant for metabolic engineering and for studying diseases and drugs design.

In the recent literature many techniques have been proposed for comparing
metabolic pathways of different organisms. Each approach chooses a representa-
tion of metabolic pathways which models the information of interest, proposes a
similarity or a distance measure and possibly supplies a tool for performing the
comparison.

Representations of metabolic pathways at different degrees of abstraction
have been considered. A pathway can be simply viewed as a set of components
of interest, which can be reactions, enzymes or chemical compounds. In other
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approaches pathways are decomposed into a set of paths, leading from an initial
metabolite to a final one. The most detailed representations model a metabolic
pathway as a graph. Clearly, more detailed models produce more accurate com-
parison results, in general at the price of being more complex.

The distances in the literature generally focus on static, topological infor-
mation of the pathways, disregarding the fact that they represent dynamic pro-
cesses. In this paper we propose to take into account also behavioural aspects: we
represent the pathways as Petri nets (PNs) and compare also aspects related to
their behaviour as captured by T-invariants. Petri nets seem to be particularly
natural for representing and modelling metabolic pathways (see, e.g., [8] and ref-
erences therein). The graphical representations used by biologists for metabolic
pathways and the ones used in PNs are similar; the stoichiometric matrix of a
metabolic pathway is analogous to the incidence matrix of a PN; the flux modes
and the conservation relations for metabolites correspond to specific properties
of PNs. In particular minimal (semi-positive) T-invariants correspond to ele-
mentary flux modes [43] of a metabolic pathway, i.e., minimal sets of reactions
that can operate at a steady state. The space of semi-positive T-invariants has a
unique basis of minimal T-invariants which is characteristic of the net and we use
it in the comparison. Hence we propose a similarity measure between pathways
which considers both homology of reactions, represented by the Sørensen index
on the multisets of enzymes in the pathways, and similarity of potential fluxes in
the pathways, obtained by comparing the corresponding T-invariant bases. We
developed a prototype tool, CoMeta, implementing our proposal. Given a set of
organisms and a set of metabolic pathways, CoMeta automatically gets the cor-
responding data from the KEGG database, builds the corresponding Petri nets,
computes the T-invariants and the similarity measures and shows the results of
the comparison among organisms as a phylogenetic tree. We performed several
experiments with CoMeta and, although further investigations are definitively
needed, the approach appears to be promising and worth to be pursued.

The paper is organised as follows. In Section 2 we introduce metabolic path-
ways and give a classification of various proposals for metabolic pathways com-
parison. In Section 3 we show how a Petri net can model a metabolic pathway
and present our proposal. In Section 4 we briefly illustrate the tool CoMeta
and we present some experiments. A short conclusion follows in Section 5.

2 Comparison of Metabolic Pathways

In this section we briefly introduce metabolic pathways and classify various pro-
posals for the comparison of metabolic pathways in the literature.

2.1 Metabolic pathways

Biologists usually represent a metabolic pathway as a network of chemical re-
actions, catalysed by one or more enzymes, where some molecules (reactants or
substrates) are transformed into others (products). Enzymes are not consumed
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in a reaction, even if they are necessary and used while the reaction takes place.
The product of a reaction is the substrate for other ones.

To characterise a metabolic pathway, it is necessary to identify its components
(namely the reactions, enzymes, reactants and products) and their relations.
Quantitative relations can be represented through a stoichiometric matrix, where
rows represent molecular species and columns represent reactions. An element
of the matrix, a stoichiometric coefficient nij , represents the degree to which
the i-th chemical species participates in the j-th reaction. By convention, the
coefficients for reactants are negative, while those for products are positive. The
kinetic of a pathway is determined by the rate associated to each reaction. It
is represented by a rate equation, which depends on the concentrations of the
reactants and on a reaction rate coefficient (or rate constant) which includes all
the other parameters (except for concentrations) affecting the rate.

Information on metabolic pathways are collected in databases. In particular
the KEGG PATHWAY database [2] (KEGG stands for Kyoto Encyclopedia of
Genes and Genomes) contains the main known metabolic, regulatory and ge-
netic pathways for different species. It integrates genomic, chemical and systemic
functional information [23]. The pathways are manually drawn, curated and con-
tinuously updated from published materials. They are represented as maps which
are linked to additional information on reactions, enzymes and genes, which may
be stored in other databases. KEGG can be queried through KGML (KEGG
Markup Language) [1], a language based on XML.

2.2 Comparison techniques for metabolic pathways

Many proposals exist in the literature for comparing metabolic pathways and
whole metabolic networks in different organisms. Each proposal is based on some
simplified representation of a metabolic pathway and on a related definition of
similarity score (or distance measure) between two pathways. Hence we can
group the various approaches in three classes, according to the structures they
use for representing and comparing metabolic pathways. Such structures are:

– Sets. Most of the proposals in the literature represent a metabolic pathway
(or the entire metabolic network) as the set of its main components, which
can be reactions, enzymes or chemical compounds (see, e.g., [17, 18, 29, 22,
14, 13, 10, 48, 33]). This representation is simple and efficient and very useful
when entire metabolic networks are compared. The comparison is based on
suitable set operations.

– Sequences. A metabolic pathway is sometimes represented as a set of se-
quences of reactions (enzymes, compounds), i.e., pathways are decomposed
into a set of selected paths leading from an initial component to a final one
(see, e.g., [49, 30, 11, 27, 50]). This representation may provide more informa-
tion on the original pathways, but it can be computationally more expensive.
It requires methods both for identifying a suitable set of paths and for com-
paring them.
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– Graphs. In several approaches, a metabolic pathway is represented as a graph
(see, e.g., [20, 34, 16, 52, 28, 6, 12, 24, 31, 26, 7, 5]). This is the most informative
representation in the classification, as it considers both the chemical compo-
nents and their relations. A drawback can be the complexity of the compar-
ison techniques. In fact the graph and subgraph isomorphism problems are
GI-complete (graph isomorphism complete) and NP-complete, respectively.
For this reason efficient heuristics are used and simplifying assumptions are
introduced, which produce further approximations.

The similarity measure (or distance) and the comparison technique strictly
depend on the chosen representation. When using a set-based representation, the
comparison between two pathways roughly consists in determining the number
of common elements. A similarity measure commonly used in this case is the
Jacard index defined as:

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

where X and Y are the two sets to be compared. When pathways are represented
by means of sequences, alignment techniques and sum of scores with gap penalty
may be used as similarity measures. In the case of graph representation, more
complex algorithms for graph homeomorphism or graph isomorphism are used
and some approximations are introduced to reduce the computational costs.

In any case the definition of a similarity measure between two metabolic
pathways relies on a similarity measure between their components. Reactions
are generally identified with the enzymes which catalyse them, and the most
used similarity measures between two reactions/enzymes are based on:

– Identity. The simplest similarity measure is just a boolean value: two enzymes
can either be identical (similarity = 1) or different (similarity = 0).

– EC hierarchy. The similarity measure is based on comparing the unique EC
number (Enzyme Commission number) associated to each enzyme, which
represents its catalytic activity.
The EC number is a 4-level hierarchical scheme, d1.d2.d3.d4, developed by the
International Union of Biochemistry and Molecular Biology (IUBMB) [51].
For instance, arginase is numbered by EC : 3.5.3.1, which indicates that
the enzyme is a hydrolase (EC : 3. ∗ . ∗ .∗), and acts on the “carbon nitro-
gen bonds, other than peptide bonds” (sub-class EC : 3.5. ∗ .∗) in linear
amidines (sub-sub-class EC : 3.5.3.∗). Enzymes with similar EC classifica-
tions are functional homologues, but do not necessarily have similar amino
acid sequences.
Given two enzymes e = d1.d2.d3.d4 and e′ = d′1.d

′
2.d

′
3.d

′
4, their similarity

S(e, e′) depends on the length of the common prefix of their EC numbers:

S(e, e′) = max{i : di = d′i}/4

For instance, the similarity between arginase (e = 3.5.3.1) and creatinase
(e′ = 3.5.3.3) is 0.75.
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– Information content. The similarity measure is based on the EC numbers
of enzymes together with the information content of the numbering scheme.
This is intended to correct the large deviation in the distribution in the
enzyme hierarchy. For example, the enzymes in the class 1.1.1 range from
EC1.1.1.1 to EC1.1.1.254, whereas there is a single enzyme in the class
5.3.4. Given an enzyme class h, its information content is defined as I(h) =
−log2C(h), where C(h) denotes the number of enzymes in h. The similarity
between two enzymes ei and ej is I(hij), where hij is their lowest common
upper class.

– Sequence alignment. The similarity measure is obtained by aligning the genes
or the proteins corresponding to the two enzymes and by considering the
resulting alignment score.

3 Behavioural Aspects in Metabolic Pathways
Comparison

In this section we briefly discuss how to represent a metabolic pathway as a
Petri net. Then we define a similarity measure between two metabolic pathways
modelled as Petri nets, which takes into account the flows in the pathways by
comparing their minimal T-invariants. Such measure is combined with a more
standard one which considers homology of reactions.

3.1 Metabolic pathways as Petri nets

PNs are a well known formalism introduced in computer science for modelling
discrete concurrent systems. PNs have a sound theory and many applications
both in computer science and in real life systems (see [32] and [15] for surveys
on PNs and their properties). A large number of tools have been developed for
analysing properties of PNs. A quite comprehensive list can be found at the
Petri net World site [3].

In some seminal papers Reddy et al. [37, 35, 36] and Hofestädt [21] proposed
Petri nets (PNs) for representing and analysing metabolic pathways. Since then,
a wide range of literature has grown on the topic [8]. The structural representa-
tion of a metabolic pathway by means of a PN can be derived by exploiting the
natural correspondence between PNs and biochemical networks. In fact places
are associated with molecular species, such as metabolites, proteins or enzymes;
transitions correspond to chemical reactions; input places represent the substrate
or reactants; output places represent reaction products. The incidence matrix of
the PN is identical to the stoichiometric matrix of the system of chemical re-
actions. The number of tokens in each place indicates the amount of substance
associated with that place. Quantitative data can be added to refine the rep-
resentation of the behaviour of the pathway. In particular, extended PNs may
have an associated transition rate which depends on the kinetic law of the cor-
responding reaction. Large and complex networks can be greatly simplified by
avoiding an explicit representation of enzymes and by assuming that ubiquitous
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substances are in a constant amount. In this way, however, processes involving
these substances, such as the energy balance, are not modelled.

Once metabolic pathways are represented as Petri nets, we consider their
behavioural aspects as captured by the T-invariants (transition invariants) of
the nets which, roughly, represents potential cyclic behaviours in the system.
More precisely a T-invariant is a (multi)set of transitions whose execution start-
ing from a state will bring the system back to the same state. Alternatively,
the components of a T-invariant may be interpreted as the relative firing rates
of transitions which occur permanently and concurrently, thus characterising a
steady state. Therefore presence of T-invariants in a metabolic pathway is bio-
logically of great interest as it can reveal the presence of steady states, in which
concentrations of substances have reached a possibly dynamic equilibrium.

Although space limitations prevent us from a formal presentation of nets and
invariants, it is useful to recall that the set of (semi-positive) T-invariants can
be characterised finitely, by resorting to its Hilbert basis [40].

Remark 1 (Unique basis). The set of T-invariants of a (finite) Petri net N admits
a unique basis which is given by the collection B(N) of minimal T-invariants.

The above means that any T-invariant can be obtained as a linear combi-
nation (with positive integer coefficient) of minimal T-invariants. Uniqueness of
the basis B(N) allows us to take it as a characteristic feature of the net.

The problem of determining the Hilbert basis is EXPSPACE since the size
of such basis can be exponential in the size of the net. Still, in our experience,
the available tools like INA [47] work fine on Petri nets arising from metabolic
pathways.

In a PN model of a metabolic pathway, a minimal T-invariant corresponds
to an elementary flux mode, a term introduced in [43] to refer to a minimal
set of reactions that can operate at a steady state. It can be interpreted as a
minimal self-sufficient subsystem which is associated to a function. Minimal T-
invariants are important in model validation techniques (see, e.g., [19, 25]) and
they may provide insights into the network behaviour. By assuming both the
fluxes and the pool sizes constants, with some further simplifying assumption,
the stoichiometry of the network restricts the space of all possible net fluxes to a
rather small linear subspace. Such subspace can be analysed in order to capture
possible behaviours of the pathway and its functional subunits [38, 39, 41–44].

3.2 A combined similarity measure between pathways

Metabolic pathways are complex networks of biochemical reactions describing
fluxes of substances. Such fluxes arise as the composition of elementary fluxes,
i.e., cyclic fluxes which cannot be further decomposed. Most of the techniques
briefly illustrated in Section 2 compare pathways on the basis of homology of
their reactions, that is they determine a point to point functional correspon-
dence. Some proposals consider also the topology of the network, but still most
techniques are eminently static and ignore the flow of metabolites in the pathway.
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Here we propose a comparison between metabolic pathways based on the
combination of two similarity scores derived from their Petri net representation.
More precisely, we consider a “static” score, R score (reaction score), taking into
account the homology of reactions occurring in the pathways and a “behavioural”
score, I score (invariant score), taking into account the dynamics of the pathway
as expressed by the T-invariants.

Both R score and I score are based on the Sørensen index [46] extended to
multisets as below, where X1 and X2 are multisets and ∩ and | · | are intersection
and cardinality generalised to multisets. 1

S index(X1, X2) =
2|X1 ∩X2|
|X1|+ |X2|

Given two pathways represented as Petri nets P1 and P2, the R score is
computed by comparing their reactions. Each reaction is actually represented
by the EC numbers of the associated enzymes. More precisely, if X1 and X2

denotes the multisets of the EC numbers in P1 and P2 respectively, we define
the R score as

R score(X1, X2) = S index(X1, X2).

The similarity considered between enzymes is the identity, but finer similarity
measures between enzymes, such as the one determined by the EC hierarchy,
could be easily accommodated in this setting. We choose a multiset representa-
tion since an EC number may occur more than once in a pathway and we opted
for the Sørensen index as it fits better to multisets than the Jacard index.

The distance based on reactions is then defined as follows

dR(P1, P2) = 1−R score(X1, X2).

The behavioural component of the similarity is obtained by comparing the
Hilbert bases of minimal T-invariants. Each invariant is represented as a multiset
of EC numbers, corresponding to the reactions occurring in the invariant, and
the similarity between two invariants is given, as before, by the S index. Note
that when T-invariants are sets of transitions (rather than proper multisets)
they can be seen as subnets of the net at hand, and the similarity between
two T-invariants coincides with the R score of the corresponding subnets. More
generally, transitions can occur in an invariant with some multiplicity, which
influences the similarity score.

A heuristic match between the two bases B(P1) and B(P2) is performed and
the S index values corresponding to the matching pairs are accumulated into
I Score(P1, P2) as described by the algorithm in Fig. 1.

1 Formally, a multiset is a pair (X,mX) where X is the underlying set and mX :
X → N+ is the multiplicity function, associating to each x ∈ X a positive natural
number indicating the number of its occurrences. Then |(X,mX)| =

∑
z∈X mX(z)

and (X,mX) ∩ (Y,mY ) = (X ∩ Y,mX∩Y ) where mX∩Y (z) = min(mX(z),mY (z))
for each z ∈ X ∩ Y .
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function I Score(P1, P2);
input : two metabolic pathways P1 and P2;
output : the similarity measure between B(P1) and B(P2);

begin
I1 = B(P1); I2 = B(P2);
score = 0;
card = max{|I1|, |I2|};
while (I1 6= ∅ ∧ I2 6= ∅) do
begin

(X1, X2) = Find max Sim(I1, I2); {Returns a pair of T-invariants, (X1, X2),
in I1 × I2 such that S index (X1 ,X2 )
is maximum}

score = score + S index(X1, X2);
I1 = I1 − {X1};
I2 = I2 − {X2};

end;
score = score/card ;
return score

end Compute I Score;

Fig. 1. Comparing bases of T-invariants

Again, pathways similarity based on minimal T-invariants induces a distance:

dI(P1, P2) = 1− I score(P1, P2)

The two distances are combined by taking a weighted sum as below, where
α ∈ [0, 1]:

dD(P1, P2) = α dR(P1, P2) + (1− α) dI(P1, P2)

The parameter α allows the analyst to move the focus between homology of reac-
tions and similarity of functional components as represented by the T-invariants.

Two organisms O1 and O2 can be compared by considering n metabolic
pathways P1, . . . , Pn. In this case the distances between the two organisms with
respect to the various metabolic pathways Pj , j ∈ [1, n], need to be combined.
The simplest solution consists in taking the average distance:

dD(O1, O2) =

∑n
j=1 dD(P 1

j , P
2
j )

n

When a pathway Pj occurs in one of the two organisms but not in the other,
the corresponding pathway distance dD(P 1

j , P
2
j ) in the formula above is taken

to be 1.

4 Experimenting with CoMeta

In this section we briefly illustrate the tool CoMeta (Comparing METAbolic
pathways) which implements our proposal, and we report on some experiments.
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CoMeta is a user-friendly tool written in Java and running under Windows
and Linux. Due to space limitation, we just list its main integrated functionali-
ties:

– Select organisms and pathways: CoMeta proposes the lists of KEGG organ-
isms and pathways and allows the user to select the ones to be compared.
Such lists can be saved and then recovered for further processing.

– Retrieve KEGG information: the KEGG files corresponding to the selected
organisms and pathways are automatically downloaded by CoMeta from
the KEGG database [2].

– Translate into PNs: CoMeta automatically translates the selected organ-
isms and pathways into corresponding Petri nets, by using an extension of
the tool MPath2PN [9]. The PNML files describing the Petri nets thus ob-
tained are available for further processing.

– Compute T-invariants: CoMeta uses the tool INA [47] to compute the bases
of semi-positive T-invariants of the PN representations.

– Compute Distances: CoMeta automatically computes the reactions and in-
variants distances as defined in Section 3.2, and allows the user to specify the
parameter α used for computing the combined distance. Distance matrices
can be exported as text files. Moreover, CoMeta allows the user to inspect
the details of the comparison between any pair of organisms (T-invariants
bases, matches between invariants, reactions and invariants scores, etc.).

– Show Phylogenetic trees: the combined distance matrix may be the input of a
phylogenetic tree construction method. Currently CoMeta implements the
UPGMA and Neighbour Joining methods, and displays the corresponding
phylogenetic trees.

4.1 Experiments

In order to validate our proposal CoMeta has been applied to many sets of
organisms. We next show some interesting experiments.

Experiment 1. In the first experiment we consider the glycolysis pathway
in five eucaryotes: Homo sapiens (HSA), Rattus norvegicus (RNO), Meleagris
gallopavo (MGP), Sus scrofa (SSC), Saccharomyces cerevisiae (SCE).

The combined distance has been computed with the parameter α ranging in
{0.00, 0.25, 0.50, 0.75, 1.00}. The corresponding phylogenetic trees built with the
UPGMA method are shown in Figure 2.

The tree in Figure 2 (left) is built with α = 1, i.e., by considering in the
comparison only homology of reactions. In this case Homo sapiens and Rattus
norvegicus are closely classified because they have the same glycolysis pathway,
but Meleagris gallopavo is incorrectly close to them. The tree does not change
for α = 0.75. The tree in Figure 2 (right) is obtained with α = 0.5, hence
besides homology of reactions, it considers also the similarity of T-invariants
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Fig. 2. UPGMA trees for Experiment 1, with α = 1 (left) and α ≤ 0.5 (right).

(with weigth 0.5). This modifies the classification which now matches exactly
the standard NCBI taxonomy [4]. With α smaller than 0.5, i.e., by increasing
the relevance of the T-invariants in the computation of the distance, we obtain
the same phylogenetic tree.

In this experiment the classification based on glycolysis obtained by consid-
ering only the distance on reactions does not match the NCBI taxonomy and it
improves by taking into account the distance on T-invariants, i.e., the combined
distance produces a better classification. This is not always true as shown by
the next experiment.

Experiment 2 In this experiment we consider four eucaryotes − Homo sapi-
ens (HSA) Rattus norvegicus (RNO) C. elegans (CEL) Drosophila melanogaster
(DME) − and a bacterium − E. coli (ECO) − and three metabolic pathways,
glycolysis, pyruvate metabolism and purine metabolism.

Fig. 3. UPGMA trees for experiment 2, with α = 1 (left) and α ≤ 0.75 (right).

The results obtained with α ranging in {0.00, 0.25, 0.50, 0.75, 1.00} are shown
in Figure 3. The phylogenetic trees are built with the UPGMA method. The
tree on the left of Figure 3, corresponds to α = 1 and thus it considers only
similarity of reactions in the comparison. This classification matches exactly the
standard NCBI taxonomy [4] of the considered organisms. The tree in Figure 3
(right), corresponds to consider similarity both of reactions and of T-invariants,
with α = 0.75. The classification changes and it does not match any longer
the standard NCBI taxonomy. This remains true by increasing the relevance of
T-invariants i.e., with α = 0.50 or smaller.

In this experiment, by considering the distance based on reactions we get a
classification of the organisms matching the NCBI taxonomy. This is no longer
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true when considering also T-invariants. This could be due to the fact that the
reference NCBI taxonomy considers many characteristics of the organisms, not
just a few metabolic functions as we do. In general, this shows that further
experiments are necessary for understanding how to use our combined distance.

Experiment 3 The third experiment is conducted on a set of 16 organisms,
mainly bacteria, w.r.t. the glycolysis pathway. It has been originally used in [20]
as a test case and then considered also in [10]. The organisms and their reference
NCBI taxonomy are show in Figure 4.

Focusing on an experiment already studied in the literature helps in compar-
ing our technique with other proposals, although, as clarified below, a precise
comparison is quite difficult for the variability of data sources and reference
classifications.

Cod. Organism Reign

afu A. fulgidus Archea
mja M. jannaschii Archea
cpn C. pneumoniae Bacteria
mge M. genitalum Bacteria
mpn M. pneumoniae Bacteria
hin H. influenzae Bacteria
syn Synechocystis Bacteria
dra D. radiodurans Bacteria
mtu M. tuberculosis Bacteria
tpa T. pallidum Bacteria
bsu B. subtilis Bacteria
aae A. aeolicus Bacteria
tma T. maritima Bacteria
eco E. coli Bacteria
hpy H. pylori Bacteria
sce Saccharomyces cerevisiae Eucaryotes

Fig. 4. Left: organisms for experiment 3. Right: reference NCBI taxonomy

As in the previous experiments, α ranges in [0, 1], phylogenetic trees are built
using the UPGMA method and they are compared with the reference NCBI clas-
sification of the 16 organisms. In order to perform such a comparison, follow-
ing [20, 10], we used the cousins tool [53, 45] with threshold 2. The tool compares
unordered trees with labelled leaves by counting the sets of common cousin pairs
up to a certain cousin distance.2 The outcome is reported in the table in Fig-

2 A cousin pair is a triple consisting of a pair of leaves and their cousin distance: 0 if
they are siblings (same parent), 0.5 if the parent of one of them is the grandparent of
the other, 1 if they are cousins (same grandparent but not same parent), 1.5 if their
first common ancestor is the grandparent of one of them and the great-grandparent
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ure 5 (left). Our best result, 0.3163265, corresponds to the phylogenetic tree in
Figure 5 (right) and to the combined distance with α ∈ [0.50, 0.75].

α Similarity
value

0.00 0.25
0.25 0.2673267
0.50 0.3163265
0.75 0.3163265
1.00 0.2621359

Fig. 5. Results for experiment 3. Left: similarity values computed with cousins.
Right: UPGMA phylogenetic tree (α ∈ [0.50, 0.75]).

Our results cannot be immediately compared with those in [20, 10]. In fact,
the reference NCBI classification of the 16 organisms (and apparently also the
corresponding KEGG data) has been changing in the meantime. Nevertheless,
the experiment suggests that our technique produces results which are at least
comparable with those in [20, 10].

In particular, in [20] a pathway is represented as an enzyme graph and a
distance is defined which takes into account both the structure of the graph and
the similarity between corresponding nodes. A phylogenetic tree is built with the
resulting distance matrix by using the Neighbour Joining method. According to
the authors, cousins provides a similarity value of 0.26 between their phyloge-
netic tree and their reference NCBI taxonomy and this outperforms the results
of the phylogenies obtained by NCE, 16SrRNA and [29]. Hence our results im-
proves those obtained in [20]. Although space limitations prevent us to report
the details here, this is true also when we use Neighbour Joining trees.

Instead, in [10] a heuristic comparison algorithm is proposed which computes
the intersection and symmetric difference of the sets of compounds, enzymes,
and reactions in the metabolic pathways of different organisms. Their algorithm
gives in output a similarity matrix which is used by a fuzzy equivalence relations-
based (FER) hierarchical clustering method to compute the classification tree.
The authors were not able to reproduce the experiment in [20]. In the cousins
comparison w.r.t. the reference NCBI taxonomy their best result has a similarity
value of 0.3195876, which is very close to our best result.

5 Conclusions

Biological questions related to evolution and to differences among organisms can
be answered by comparing their metabolic pathways. In this paper we propose
a new similarity measure for metabolic pathways which combines a similarity

of the other one, 2 if they are second cousins (same great-grandparent but not same
grandparent) and so on.
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based on reactions and a similarity based on behavioural aspects such as po-
tential fluxes, which correspond to the minimal T-invariants of the Petri net
representation of a pathway.

We implemented a tool, CoMeta, to experiment with our proposal. It is not
easy to compare the results we obtained with those in the literature. Nevertheless
experiments made with CoMeta showed that:

– Our combined measure produces valid phylogenetic classifications.
– Neither the comparison based on reactions nor the one based on T-invariants

gives always correct results. The refinement due to the introduction of the
behavioural measure can be useful, but further investigations are necessary
to determine how to combine properly the two measures.

– Measures based on more sophisticated representations of a pathway (e.g., us-
ing graphs rather than sets, or considering also compounds besides enzymes)
not necessarily give better results than our combined measure, as our third
experiment shows. However also this hypothesis needs further experiments
to be verified.

We are performing extensive studies on the distributions of the two proposed
distances. This could reveal correlations between them, and, possibly, give in-
sights on the ranges for the α parameter (influence of the T-invariants on the
combined distance) providing the best results. We are also extending CoMeta
to deal with a more refined similarity measure on EC numbers, the hierarchical
similarity. We plan to add also the Tanimoto index (extended Jacard index) as
an alternative to the Sørensen index. This would allow us to compare and evalu-
ate different measures. When comparing organisms on large sets of pathways, a
further extension would be to associate weights to the pathways. Weights could
be chosen by the user in order to put more emphasis on some pathways of inter-
est or could be derived on the basis of characteristics of the pathways, like their
size.

Moreover, it would be very interesting to compare different organisms by con-
sidering their whole metabolic networks. This would allow one to identify more
properly the T-invariants corresponding to functional units in the metabolic net-
work. In fact, when considering single pathways some T-invariants can be not
recognisable since they might be split in different pathways. However, the addi-
tional information deriving from the partitioning in well established functional
pathways would be lost. Additionally, comparing full metabolic networks could
be not viable from a computational point of view since in the worst case Hilbert
bases can be exponential in the size of the original net.

CoMeta is part of a larger project to integrate various tools for representing
and analysing metabolic pathways through Petri nets. We intend to use the dis-
tance matrices computed by CoMeta for different analyses. CoMeta is freely
available at: http://www.dsi.unive.it/∼simeoni/CometaTool.tgz.
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