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1 Introduction

This document is the result of a reorganization of lecture notes used by the
authors while TAing the Econometrics course at the PhD program at the School
for advanced Studies in Economics at the University of Venice. It collects a series
of results in Matrix Algebra and Vector Spaces analysis useful as a background
for a course in Econometric Theory at the P.h.D. level. Most of the material is
taken from Appendix A of Mardia et al. (1979) and chapters 4, 5 of Noble and
Daniel (1988)

2 Matrix Algebra

2.1 basic de�nitions

De�nition 1 (Matrix) A matrix A is a rectangular array of numbers. If A
has n rows and p columns, we say it is of order n× p

An×p =

a11 . . . a1p

...
...

an1 . . . anp

 = (aij)

De�nition 2 (Column vector) A matrix with column�order 1 is called col-
umn vector

a =

a1

...
an


Row�vectors are column vector transposed: a′ =

(
a1 . . . an

)
A matrix can be written in terms of its column (row) vectors:

A = (a(1), . . . , a(p)) =

a′1
...

a′n


Notation: we write the j�th column of matrix A as a(j), the i�th row as ai

(if written as a column vector), the ij�th element as (aij).

De�nition 3 (Partitioned Matrix) A matrix written in terms of its sub�
matrices is called a partitioned matrix:

Example: A(n× p) =
[

A11(r × s) A12(r × (p− s))
A21((n− r)× s) A22((n− r)× (p− s))

]

De�nition 4 (Diagonal Matrix) Given a n�dimensional vector a, a n × n
diagonal matrix B = diag(a) is a matrix with bii = ai; bij = 0 ∀i 6= j:

B = diag(a) =

a1 . . . 0
... ai

...
0 . . . an


Given a matrix An×p, B = diag(A) is a matrix with bii = aii; bij = 0 ∀i 6= j
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Table 1: common types of matrices
Name De�nition Notation

Scalar p = n = 1 a
Column vector p = 1 a
Unit vector p = 1; ai = 1 1 or 1n

Square p = q
Symmetric aij = aji

Unit matrix aij = 1; p = n Jp = 11′

(Upper) Triangular aij = 0 ∀j > i
Null matrix aij = 0 ∀i, j 0

Table 2: Basic matrix operations
Operation Restrictions De�nitions

Addition A, B same order A + B = (aij + bij)
Subtraction A, B same order A−B = (aij − bij)
Scalar multiplication cA = (caij)
Inner product a, b same order a′b =

∑
i aibi

2.2 Matrix operations

De�nition 5 (Matrix multiplication) If A, B are conformable, i.e. the num-
ber of columns of A equals the number of rows of B, then AB is the matrix
with at each entry abij has the inner product of the i�th row vector of A and
the j�th column vector of B:

AB = (a′ib(j))

Note that in general AB 6= BA

De�nition 6 (Transpose) A′, the transpose of A is the (p×n) matrix where
(a′ij) = (a′ji), i.e. the matrix where the j�th column corresponds to the j�th row

of A: A′ = (a1, a2, . . . , an).

The transpose satis�es

(A′)′ = A; (A + B)′ = A′ + B′; (AB)′ = B′A′.

For a partitioned A

A′ =
[
A′11 A′21
A′12 A′22

]
If A is symmetric then aij = aji ⇔ A = A′

De�nition 7 (Trace) If A is a square matrix, than the trace function is

trA =
∑

i

aii
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It satis�es the following properties for A, B square matrices, C, D and D, C
conformable, i.e. Cn×p,Dn×p, a scalar α and a set of vector xi, i = 1, . . . , t:

tr α = α; tr A±B = tr A± tr B; tr αA = αtr A

tr CD = tr DC =
∑

i

∑
j cijdji and tr CC′ = tr C′C =

∑
i

∑
j c

2
ij∑

i x′iAxi = tr AT where T =
∑

i xix
′
i

To prove the last property note that x′iAxi is a scalar and so it is
∑

i x′iAxi.
Therefore,

tr
∑

i x′iAxi =
∑

i tr x′iAxi =
∑

i tr Axix
′
i = tr A

∑
i xix

′
i = tr AT

2.3 Determinants and their properties

De�nition 8 (Minors and Cofactors) Given Ap×p,

1. The ij�minor of A, Mij is the determinant of the (p− 1)× (p− 1) matrix
formed by deleting the i�th row and the j�th column of A.

2. The ij�cofactor of A, Aij, is (−1)i+jMij.

Note that sign(−1)i+j forms an easy�to�remember pattern on a matrix:
+ − + . . .
− + − . . .
+ − + . . .
. . . . . . . . . . . .


De�nition 9 (Determinant)

1. The determinant of a 1× 1 matrix α is |α| = α.

2. The determinant of a p× p matrix A is |A| =
∑p

j=1 a1jA1j, i.e. the sum
of the products between the entries of the �rst row and the corresponding
cofactors.

Notation: |A| = det A.
Note that the de�nition of determinant is given with respect to the �rst row

for simplicity. |A| =
∑p

j=1 aijAij is the same for any i, and it can be computed

with respect to a column as well: |A| =
∑p

i=1 aijAij .
Example:

A =
[
a b
c d

]

|A| = aA11 + bA12

= a|d| − b|c|
= ad− bc
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De�nition 10 (Non�singular matrix) A square matrix is non�singular if
|A| 6= 0; otherwise it is singular

It can be proved that:

� If A is triangular (or diagonal), |A| =
∏

i aii

� |αA| = α|A|

� |AB| = |A||B|

2.4 Inverse and other useful matrices

De�nition 11 (Inverse) The inverse of A is the unique matrix A−1 satisfying

AA−1 = A−1A = I

The inverse exists if and only if A is non singular, i.e. if |A| 6= 0

The following properties holds:

1. A−1 = 1
|A| (Aij)′, where (Aij) is the adjoint matrix, the matrix whose

i, j�th entry is the i, j�th cofactor

2. (cA−1) = c−1A−1

3. (AB)−1 = B−1A−1

4. (A′)−1 = (A−1)′

The �rst property follows from the de�nition of determinant, the others from
the de�nition of inverse applied to AB.

� For a partitioned matrix P =
[
A B
C D

]
,

|P | = |A||D −CA−1B| = |D||A−BA−1C|

� For B(p× n) and C(n× p),
|A + BC| = |A||Ip + A−1BC| = |A||In + CA−1B|

De�nition 12 (Kroneker product) Let A be a (n×p) matrix and B a (m×
q) one. Than, the Kroneker product of A and B is the (nm× pq) matrix

A⊗B =


a11B a12B . . . a1pB
a21B a22B . . . a2pB
...

...
...

an1B an2B . . . anpB


De�nition 13 (Orthogonal matrices) A square matrix A is orthogonal if
AA′ = I.

The following properties hold:

1. A−1 = A′
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2. A′A = I

3. |A| = ±1

4. The sum of squares in each columns (rows) is unity whereas the sum of
cross-products of the elements of any two columns (rows) is zero:

a′iai = 1;a′iaj = 0 if i 6= j

5. C = AB is orthogonal if A and B are orthogonal

De�nition 14 (Quadratic form) A quadratic form in the vector x is a func-
tion of the form

Q(x) = x′Ax =
p∑

i=1

p∑
j=1

aijxixj

with A symmetric.

De�nition 15 (De�niteness) A symmetric matrix A is called positive de�-
nite (p.d) /positive semi�de�nite (p.s.d) and we write A > 0 / A ≥ 0 respec-
tively if

Q(x) > 0 ∀x 6= 0; Q(x) ≥ 0 ∀x 6= 0
Negative de�nite and semi�de�nite are similarly de�ned.

Theorem 1 If A ≥ 0 is a (p × p) matrix, then for any (n × p) matrix C,
C′AC ≥ 0. If A > 0 and C is non�singular (thusp = n), then C′AC > 0.

Proof : A ≥ 0 implies that ∀x 6= 0

x′C′ACx = (Cx)′A(Cx) ≥ 0 =⇒ C′AC ≥ 0

If A > 0 and C is non�singular then Cx 6= 0 and the result follows from
the previous statement.

3 Vector Spaces

3.1 Geometry of 2× 1 vectors

� 2× 1 geometrical vector

A 2× 1 vector has a natural representation on a standard x�y coordinate
system as a segment from the origin to a given point P :

P (u1, u2) −→ u = [u1 u2]′

6



The sum of two 2�dimensional geometrical vectors has a natural geomet-
rical meaning:

u + v = [u1 u2]′ + [v1 v2]′ = [u1 + v1 u2 + v2]′

The parallelogram rule: place the tail of a vector parallel to v and with
v's length on the head of vector u. Call the "sum" of the two vectors the
new vector u + v connecting the tail of u with the head of v.

The length of a geometric vector, the shortest distance between its tail
and its head, can be derived by Pythagorean theorem:

d =
√
u2

1 + u2
2 = (uT u)1/2
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Therefore, the matrix product u′v = u1v1 + u2v2 = 0 has a geometric
meaning: u′v = 0 implies that the two vectors are orthogonal. Since the
slope of u is u2/u1, and the slope of v is v2/v1, it is easily to check that the
two vectors are perpendicular. The product of their slopes (u2/u1)(v2/v1)
equals −1. Rewriting it, u1v1 + u2v2 = 0.

3.2 Algebraic Structures

We start this part introducing a de�nition of binary operation. We see when it
is internal or external with respect to a set. Then we describe the characteristics
of an algebraic structure.

De�nition 16 (Binary Operation) Let A,B,C be sets. We de�ne a binary
operation any application ϕ : A×B → C.
If A = B = C we can say that ϕ : A × A → A is an internal binary operation
on A.

For algebric structure we mean a n-tuple formed by sets and operation on
themselves. The simplest one is a couple (X,ϕ) where X is a set and ϕ :
X ×X → X is an internal binary operation on X

De�nition 17 Given (X,ϕ)

1. The operation ϕ is called associative if ∀x, y, z ∈ X, (xϕy)ϕz = xϕ(yϕz).

2. The operation ϕ is called commutative if ∀x, y ∈ X, xϕy = yϕx.

3. An element u ∈ X is neutral with respect to the operation ϕ if ∀x ∈ X,
xϕu = uϕx = x.

4. If (X,ϕ) admits the neutral element u, an element x ∈ X is called in-
vertible if ∃x′ ∈ X, xϕx′ = x′ϕx = u. In this case, x and x′ are called
opposites.

Now, we focus on a special algebraic structure (X,+, ∗) formed by a set X
and by two internal operations on X.

� The latter operation + is called addition, it is associative and commuta-
tive, (X,+) admits neutral element, denoted by 0.

� The former operation ∗ is called multiplication, it is associative, (X, ∗)
admits neutral element, denoted by 1.

If ∀x, y, z ∈ X, x∗ (y+ z) = (x∗y)+(x∗ z) and (y+ z)∗x = (y ∗x)+(z ∗x),
we can say that the multiplication is distributive with respect to the addition.

De�nition 18 (External Binary Operation) V is a set and K is an alge-
braic structure (K,+, ∗). (i.e., the set R of real numbers or the set C of complex
numbers). Any application ϕ such that K×V → V is said an external operation
on V with coe�cients in K.
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3.3 Vector Spaces

De�nition 19 (Vector Space) We de�ne a vector space on K an algebraic
structure V = (K,V ,⊕,�), formed by an algebraic structure K = (K,+, ∗) with
0 and 1 as respective neutrals, a set V , an internal operation ⊕ on V :

⊕ : V × V → V

and an external operation � on V with coe�cients in K:

� : K× V → V

satisfying the following axioms:

SV1 The algebraic structure (V ,⊕) is commutative, associative, admits the
neutral element and the opposite for each own element.

SV2 ∀α and ∀β ∈ K and v,w ∈ V

(i) (α+ β)� v = (α� v)⊕ (β � v)

(ii) α� (v �w) = (α� v)⊕ (α�w)

(iii) α� (β � v) = (α ∗ β)� V)

(iv) 1� v = v

If K is R, then we have a real vector space. If K is C, then we have a complex
vector space.
The elements of set V are called vectors and the elements of K are called scalars.
Operation ⊕ is said vector addition. Hereafter we denote it only with +.
Operation � is said multiplication by a scalar. Hereafter we denote it only with
∗. We often omit it. It is up to the reader to understand when they mean vector
operation or when they mean internal operation in K.
The unique neutral element of (V ,+) is called null vector and denoted by 0.
The unique opposite vector of a v ∈ V is denoted by −v.

Proposition 1 Let V be a vector space on K. For any α and β ∈ K and for
any v ∈ V, we have:

(i) αv = 0 if and only if α = 0 or v = 0;

(ii) (−α)v = α(−v) = −(αv);

(iii) if αv = βv and v 6= 0, then α = β

(iv) 1� v = v

� G3, the real vector space of all geometrical vectors in three-dimensional
physical space.

� Rp (Cp), the real (complex) vector space of all real (complex) p×1 column
matrices.

9



� Suppose that V and W are both real or both complex vector spaces. The
product space V ×W is the vector space of ordered pairs (v,w) with v
in V and with w in W , where

(v,w) + (v′,w′) = (v + v′,w + w′)

and
α(v,w) = (αv, αw)

using the same scalars as for V .

De�nition 20 (Subspaces) Suppose that V0 and V are both real or both com-
plex vector spaces, that V 0 is a subset of V , and that the operations on elements
of V 0 as V0-vectors are the same as the operations on them as V-vectors. Then
V0 is said to be a subspace of V.

Theorem 2 (Subspace Theorem) Suppose that V is a vector space and that
V 0 is a subset of V ; de�ne vector addition and multiplication by scalars for
elements of V 0 exactly as in V . Then V0 is a subspace of V if and only if the
following three conditions hold:

1. V0 is nonempty.

2. V0 is closed under multiplication in the sense that αv0 is in V0, ∀v0 in
V0 and all scalars α.

3. V0 is closed under vector addition in the sense that v0 + v′0 is in V0 for
all vectors v0 in V0 and v′0 in V0.

Example 1 Suppose that {v1,v2, . . . ,vr} is some nonempty set of vectors from
V . De�ne V 0 as the set of all linear combinations

v0 = α1v1 + α2v2 + · · ·+ αrvr

where the scalars αi are allowed to range over all arbitrary values.
Then V0 is a subspace of V. (Prove it using the Subspace Theorem)

3.4 Linear dependence and linear independence

De�nition 21 A linear combination of the vectors v1,v2, . . . ,vn is an expres-
sion of the form α1v1 + α2v2 + . . .+ αnvn where the αi are scalars.

De�nition 22 A vector v is said to be linearly dependent on the set of vec-
tors v1,v2, . . . ,vn if and only if can be written as some linear combination of
v1,v2, . . . ,vn; otherwise v is said to be linearly independent of the set of vectors.

De�nition 23 A set S of vectors v1,v2, . . . ,vn in V is said to span (or gener-
ate) some subspace V0 of V if and only if S is a subset of V 0 and every vector
v0 in V 0 is linearly dependent on S; S is said to be a spanning set or generating
set for V0.

A natural spanning set for R3 is the set of three unit vectors.
A four vectors set, where at least three are linearly independent, is still a

spanning set of R3.
Therefore, given a spanning set S we can always delete all the linearly de-

pendent vectors and still obtain a spanning set of linearly independent vectors.
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e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1



De�nition 24 Let L = {v1,v2, . . . ,vn} be a nonempty set of vectors.

� Suppose that
α1v1 + α2v2 + . . .+ αkvk = 0

implies that α1 = α2 = . . . = αk = 0. Then, L is said to be linearly
independent.

� A set that is not linearly independent is said to be linearly dependent.
Equivalently, L is linearly dependent if and only of there are scalars α1, α2, . . . , αk

not all zero, with

α1v1 + α1v2 + . . .+ αkvk = 0

Example 2 The set {1, 2− 3t, 4 + t} is linearly dependent in the vector space
P3 of polynomials of degree strictly less than three. To determine this, suppose
that

α1(1) + α2(2− 3t) + αk(4− t) = 0

that means, for all t

(α1 + 2α2 + 4α3) + (−3α2 + α3)t = 0.

Then, we get {
α1 + 2α2 + 4α3 = 0
−3α2 + α3 = 0

a system of two equations for the three αi. The general solution is α1 =
−10k

3 , α2 = k
3 where k = α3.

Theorem 3 (Linear Independence)

� Suppose that L = {v1,v2, . . . ,vn} with k ≥ 2 and with all the vectors
vi 6= 0. Then L is linearly dependent if and only if at least one of the vj

is linearly dependent on the remaining vectors vi where i 6= j.

� Any set containing 0 is linearly dependent.

� {v} is linearly independent if and only if v 6= 0.

� Suppose that v is linearly dependent on a set L = {v1,v2, . . . ,vk} and
that vj is linearly dependent on the others in L,
namely L′j = {v1,v2, . . . ,vj−1,vj+1, . . . ,vk}.
Then v is linearly dependent on L′j
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3.5 Basis and dimension

De�nition 25 (Basis) A basis for a vector space V is a linearly independent
spanning set for V .

Example 3 Recalling the de�nition of a spanning set, the vectors forming the
basis should belong to the vector space.
We seek a basis for the subspace V0 of R3 consisting of all solutions to x1 +x2 +
x3 = 0. We can try with {e1, e2, e3}. These vector are linearly independent and
any vector in R3 is a linear combination of these three. Any vector in V0 is a
linear combination of these three, as well. So we can say that {e1, e2, e3} is a
basis for R3 but not for V0 because they do not belong to V0.
A solution for x1+x2+x3 = 0 could be x1 = α and x2 = β, so that x3 = −α−β.
The general vector

v0 =

x1

x2

x3

 =

 α
β

−α− β

 = αv1 + βv2

where

v1 =

 1
0
−1

 ,v2 =

 0
1
−1


form a basis for V0.

Theorem 4 (Unique basis representation theorem) Let B = {v1 . . .vr}
be a basis. Then the representation of each v with respect to B is unique:

if v = α1v1 + · · ·+ αrvr and v = α′1v1 + · · ·+ α′rvr

then ∀i, αi = α′i.

De�nition 26 (Dimension) The number of vectors in a basis for a vector
space is called dimension of the vector space.

3.6 Matrix rank

De�nition 27 Let A be a p× q matrix

1. The real (or complex) column space of A is the subspace of Rp (or Cp)
that it is spanned by the set of columns of A.

2. The real (or complex) row space of A is the subspace of real (or complex)
vector space of all real (or complex) 1 × q matrices that it is spanned by
the set of the rows of A.

The rank of a matrix A is equal to the dimension of the row space or of the
column space.

� The row space dimension is equal to the column space dimension.

Think to a p× p full rank matrix. This is invertible, so it is its transpose.
Therefore A′ rank is the same as A rank

� In a p× q matrix the rank is at most minp, q

Think to a 3×4 matrix: If three columns are linearly independent, we have
three 3×1 vectors spanning R3, therefore the fourth is linearly dependent

12



3.7 Norms

De�nition 28 A norm (or vector norm) on V is a function that assigns to
each vector v in V a nonnegative real number, called the norm of v and denoted
by ‖ v ‖ satisfying:

1. ‖ v ‖> 0 for v 6= 0, and ‖ 0 ‖= 0.

2. ‖ αv ‖=| α |‖ v ‖ for all scalars α and vectors v.

3. (the triangle inequality) ‖ u + v ‖≤‖ u ‖ + ‖ v ‖ for all vectors u and v.

De�nition 29 For vectors x = [x1x2 . . . xp]T in Rp or Cp, the norms ‖‖1,‖‖2,
‖‖∞ (called the 1-norm, 2-norm, ∞-norm) are de�ned as

‖ x ‖1=| x1 | + | x2 | + . . .+ | xp |
‖ x ‖2= (| x1 |2 + | x2 |2 + . . .+ | xp |2)1/2

‖ x ‖∞= max {| x1 |, | x2 |, . . . , | xp |} .
(1)

Theorem 5 (Schwarz inequality) Let x and y be p × 1 column matrices.
Then

| xHy |≤‖ x ‖2‖ y ‖2
where xH is the hermitian transpose, namely a matrix formed by the complex
conjugates of the entries of the transpose matrix.

3.8 Inner product

The angle between geometrical vectors
We want to size the angle between the geometrical vectors a = [a1 a2]′ and
b = [b1 b2]′

From trigonometry we have that

|AB|2 = |OA|2 + |OB|2 − 2|OA||OB|cosθ

Using the Pythagorean Theorem we can rewrite it as

(a1 − b1)2 + (a2 − b2)2 = (a2
1 + a2

2)
2 + (b21 + b22)

2 − 2(a2
1 + a2

2)
1/2(b21 + b22)

1/2cosθ

13



and, after rearranging the terms, we get

(a1b1 + a2b2) = (a2
1 + a2

2)
1/2(b21 + b22)

1/2cosθ.

De�ning (a1b1 +a2b2) as a′b and using 2-norm concept, we can compute the
angle between two nonzero geometrical vectors with the following formula:

cosθ =
a′b

‖ a ‖2‖ b ‖2
.

The special product de�ned above (a′b) could be easily extend to p−dimensional
vectors.

De�nition 30 (Inner product) Let V be a real vector space. An inner prod-
uct on V is a function that assigns to each ordered pair of vectors u and v in
V a real number, denoted by < u,v >, satisfying:

1. < u,v >=< v,u > for all v and v in V.

2. for all u,v,w in V and all real numbers α, β < αu + αv,w >= α <
u,w > +β < v,w > and
< w, αu + αv >= α < w,u > +β < w,v >

3. < u,u > > 0 if u 6= 0,
and < u,u >= 0 if and only if u = 0.

The angle between two nonzero vectors u and v is de�ned by its cosine:

cosθ =
< u,v >

< u,u >1/2< v,v >1/2
.

Theorem 6 (Schwarz inequality) Let < u,v > be an inner product on the
real vector space V. Then |< u,v >|≤< u,u >1/2< v,v >1/2 for all u,v ∈ V.

Theorem 7 (Inner product norms) Let < u,v > be an inner product on
the real vector space V, and de�ne ‖ v ‖=< v,v >1/2. Then ‖ · ‖ is a norm on
V induced by the inner product.

De�nition 31 (Orthogonality) Let < ·, · > be an inner product on V and let
‖ · ‖ be its induced norm.

1. Two vectors u and v are said to be orthogonal if and only if < u,v >= 0
in that set.

2. A set of vectors is said to be orthogonal if and only if every two vectors
from the set are orthogonal: < u,v >= 0 ∀u 6= v.

3. If a nonzero vetor u is used to produce v = u
‖u‖ so that ‖ v ‖= 1, then u

is said to have been normalized to produce the normalized vector v.

4. A set of vectors is said to be orthonormal if and only if the set is orthogonal
and ‖ v ‖= 1 for all v in the set.

In any vector space with an inner product, 0 is orthogonal to every vector.
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